
  

  
Abstract—With the proliferation of multimedia data, there is 

an increasing need to support the indexing and searching of 
high-dimensional data. In this paper, we propose an efficient 
indexing method for high-dimensional multimedia databases 
using the filtering approach, known also as vector approximation 
approach which supports the nearest neighbor search efficiently. 
Our technique called RA+-Blocks (Region Approximation Blocks) 
divides a high-dimensional feature vector space into compact and 
disjoined regions. Each region will be approximated by two 
bit-strings according to the RA-Blocks technique. RA+-Blocks 
improves the division strategy of data space compared to the 
RA-Blocks. From our experiment using high-dimensional feature 
vectors, we show that RA+-Blocks achieves better performance on 
the nearest neighbor search than VA-File and RA-Blocks on both 
uniform and real data. 
 

Index Terms—High-Dimensional space, indexing method, 
multimedia database, nearest neighbor (NN) search. 

I. INTRODUCTION 
ne of the fundamental problems, in multimedia databases 
domain, resides in the similarity search, i.e. the need to 

retrieve a small set of objects which are similar or closest to a 
given query object. Generally, the similarity is not measured on 
the multimedia objects directly, but on their traditional 
primitives (histograms of colours, signatures sound…). These 
primitives appear as vectors of numeric values known as 
feature vectors and constitute the indexes of these objects. This 
way, similarity searching in multimedia database becomes a 
K-nearest neighbor (K-NN) search in a high-dimensional 
vector space. It consists to find in a space of great dimension 
the nearest K vectors, in term of distance, to a query vector. For 
applications where the vectors have low or medium 
dimensionalities (e.g., less than ten), the conventional indexing 
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methods, such as R–Tree [1], R*-Tree[2], SR-Tree [3], 
K-D-B-Tree [4], and X-Tree [5], can be adequately used to 
solve the problem of K-NN search. However, there is no 
effective solution to this problem for the applications with 
vectors having high dimensionalities, e.g., dimension over 100. 
In fact, for a high dimensionality, the performance of the 
conventional methods degenerates to being worse than the 
brute-force sequential scan comparing the query object to each 
data object [7]-[8]. Therefore, the main issue is to overcome the 
dimensionality curse [9]-[10] i.e. a phenomenon that the 
performance of indexing methods degrades drastically as soon 
as dimension becomes large. Several new methods based on the 
filtering approach known also as vector-approximation are 
proposed as a palliative solution for this problem (VA-File [8], 
VA+-File [11], LPC-File [10], A-Tree [12], GC-Tree [13], 
RA-Blocks [14]...). These methods divide the data space into 
rectangular cells, allocate a unique bit-string of each cell, and 
approximate the data vector that falls into a cell by this 
bit-string. To search the K-NN of a query vector, they 
sequentially read the relatively smaller approximations file 
instead of the data file and try to filter the original vectors so 
that only a small fraction of them can be read. Then a limited 
access to the database of the real vectors is done just for those 
which have been selected at the first stage. 

In this paper, we propose an efficient indexing method for 
high-dimensional spaces. Being based on the vector 
approximation approach, it adopts a better strategy of 
partitioning than that of K-D-B-Tree used by RA-Blocks. Thus, 
it significantly reduces the number of regions to cross, at the 
phase of filtering, by eliminating the trivial regions (empty). In 
addition, all the regions generated by our method are dense i.e. 
they contain a number of vectors close to their capacity 
(capacity is the maximum number of objects which can be 
accommodated in a disk page). Hence, a CPU time reduction 
related to the computation of the distances between the regions 
and the query vector is assured. 

This paper is organized as follows. Section II presents the 
major high-dimensional indexing methods in particular those 
based on the filtering approach. Section III describes the 
overall structure of our technique and presents its partitioning 
strategy ant its nearest neighbor search algorithm. Section IV 
describes our experimental evaluations and shows performance 
results. We conclude with summary and further work.  
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II. RELATED WORK 
The conventional indexing methods to supporting similarity 

search in high-dimensional vector space can be broadly 
classified into two categories. The first approach uses 
data-partitioning methods, witch divide the data space 
according to their distribution. Many index tree schemes have 
been proposed. They include the R-Tree [1], R+-Tree [15], 
R*-Tree [2], X-Tree [5], M-Tree [16], SS-Tree [17], and 
SR-Tree [3]. Neighbor vectors are covered by MBRs 
(Minimum Bounding Rectangles) or MBSs (Minimum 
Bounding Spheres), which are organized in a hierarchical tree 
structure. These methods can yield possible overlapping 
regions. The second approach use space-partitioning methods 
that divide the data space along predefined hyper planes 
regardless of data distribution like Grid-File [18], K-D-B-Tree 
[4], LSD-Tree [19], and LSDh-Tree [20]. The resulting regions 
are mutually disjoint, with their union being the complete 
space.  Although such access methods generally work well for 
low-dimensional spaces, their performance is known to 
degrade as the number of dimensions increases. 

New techniques based on the approximation vector approach 
appeared to provide a solution to the dimensionality curse. 
VA-file (Vector Approximation File) [8]-[21] is the first 
method based on this approach. The basic idea of the VA-File 
is to keep two files; one contains the exact representation 
(original vectors), the other, relatively smaller, has geometrical 
approximation for each vector. When searching vectors, the 
entire approximations file is scanned to select candidate 
vectors. Upper and lower bounds of the distance to the query 
(dmax and dmin) are computed for each vector (see figure 1). 
These bounds frequently suffice to filter most of the vectors. 
Those candidates are then verified by visiting the original 
vectors file. We note that the sequential scan is done on the 
smaller approximations file; it is very fast and allows reading 
just a few vectors from real database. This process decreases 
the number of I/O operations and the CPU cost compared with 
the sequential method that analyzes the totality of the database. 

Like the VA-File, the LPC-File (Local Polar Coordinate 
File) [10] is based on the approximate approach. Thus, the 
vector space is partitioned into rectangular cells which are used 
to generate bit-encoded approximations for each vector. Cha 
[10] noticed that the performances of the VA-File can be 
improved only by increasing the number of bits for 
approximations. 

However, the performance of the VA-File converges to that 
of the sequential scan or degenerates to being worse than the 
number of bits used for approximations increases.  

 
 

Cha proposes, to overcome this problem, by adding polar 
coordinate information of the vector to the approximation. It 
increases the filtering rate of the filter-based approach. 
 

Berchtold, et al. also used the idea of vector quantization, 
and proposed the IQ-Tree (Independent Quantization Tree) [6], 
a multilevel indexing structure specially designed to perform 
fast nearest neighbor searches over high-dimensional data sets 
[6]. The IQ-tree is derived from the X-tree [5], and uses the 
partitioning strategy proposed with the X-tree bulk-loading 
algorithm. The structure has three levels: Directory Pages, 
Vector Approximation Pages and Vector Pages. For each entry 
of the directory, there is a page containing Vector 
Approximations (VAs) in the second level, and multiple pages 
containing vectors in the third level (represented all together by 
a circle). The number of vector pages associated with a 
directory entry is variable, and depends on the capacity of the 
associated VA page. Each directory entry contains the 
coordinates of the minimum bounding rectangles that encloses 
all the vectors corresponding to that entry. The VAs contained 
in a page of the second level are computed with respect to the 
MBR of the corresponding directory entry, and each page can 
use a different number of bits per dimension for the 
approximations. Given a list of pages to be read, the nearest 
neighbor search strategy for the IQ-Tree involves ordering the 
list of pages by their position in the file, and then performing a 
single read request for any contiguous (or even nearly 
contiguous) sequence of pages in the list. This optimization 
reduces the number of (expensive) positioning at the cost of a 
few extra (cheap) page transfers. 

In the IQ-tree context, it is not known initially exactly which 
pages hold the K nearest neighbors, but Berchtold et al. propose 
a probabilistic model for estimating the probability that each 
page will eventually have to be read in order to satisfy the 
query. The model specifies the set of pages that should be read 
in order to minimize the expected overall I/O cost.  

Sakurai et al. also make use of the idea of quantization in 
proposing the A-tree (Approximation Tree) [12]. The A-tree 
structure and construction algorithm are derived primarily from 
the SR-tree [3]. The A-tree design introduces the concept of 
virtual bounding rectangle (VBR), which a compressed 
approximation is using only a few bits per dimension of a 
minimum bounding rectangle (MBR). In a more general form 
of quantization, VBRs approximate MBRs in a manner 

Fig.1 Construction of VA-File 
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analogous to how VAs approximates vectors. That is, the VBR 
defines a hyper-rectangle guaranteed to fully enclose the 
corresponding MBR. The use of VBRs, which are smaller than 
MBRs, increases the fanout of the nodes, which in turn reduces 
the height of the index tree and speeds up the search. An A-tree 
is a hierarchical index, with three levels: Internal Nodes, Leaf 
Nodes, and Vector Pages. Each of these levels has its own type 
of node. Internal nodes and leaf nodes together form a 
hierarchical index. Vector nodes contain a cluster of 
neighboring vectors. Both internal and leaf nodes contain a 
header and multiple entries. The headers include an MBR that 
encloses all the vectors of the subtree rooted at the node. The 
entries of each internal node contain a VBR that bounds the 
MBR of the corresponding child node. The entries of a leaf 
node are VAs of the vectors in the associated vector pages. 
Each node entry includes the centroïd of the vectors within the 
associated MBR. The centroïd is used only by the insertion 
algorithm and not by the search algorithm. 

 
We note that the performance of the VA-File decreases when 

the capacity of database becomes very large. Thereafter, the 
approximations file cannot be placed entirely in the memory. 
Thus, the RA-Blocks technique (Region Approximated 
Blocks) [14] is proposed. It divides the vectors space into 
regions containing each one a set of cells, in order to 
approximate each region by two string-bits. This reduces the 
computation time of the VA-File and also optimizes the page 
replacement to further reduce the number of I/O access as well. 
Moreover, the bounds dmin and dmax are calculated for each 
region and not for each vector in order to reduce the CPU cost. 
Despite these advantages, RA-Blocks presents some 
limitations. Indeed, the strategy of partitioning, used according 
to the algorithm K-D-B-Tree [4], generates empty regions 
together with regions containing few vectors compared to their 
capacity. This involves a significant number of regions to be 
treated during the filtering step (approximations file relatively 
large). Also, the CPU time due to the calculation of the dmin and 
dmax of these regions increases. 

III. RA+-BLOCKS (REGION APPROXIMATION BLOCKS) 
Our method is inspired of the RA-Blocks method for the 

quantification of the data space; it improves the partitioning 
strategy of the data space compared to the RA-Blocks method.  

 For the quantification step, each dimension di is split into 2bi 
intervals where each interval is encoded with bi bits.  Then, 
data space is subdivided into compact and disjoined regions 
having practically the same capacity. Each region will be 
approximated by two bit -string corresponding to the 

 

 
beginning (left low cell) and the ending (right high cell) 
position of this region (see figure 2). Our method is divided in 
tow phases: the first one focus on data indexing, while the 
second aims at interrogation of the database. 

A. Data indexing 
This phase consists in splitting the data space in regions 

containing each one a number of vectors lower or equal to the 
capacity, then to approximate them by two bit-strings. These 
approximations will constitute the index file. 

1) Subdivision of the data space: After having subdivided the 
data space into hyper-rectangular cells, this stage consists of 
partitioning space in disjoined regions having practically the 
same number of vectors. Almost the whole of the obtained 
regions contain a number of vectors great than the half of the 
capacity (capacity/2). Our partitioning method is inspired by 
the K-D-B-Tree algorithm. It uses the same strategy for 
searching the side to be divided (dimension of subdivision), 
and the calculation of the subdivision value according to this 
dimension.  

The Dimension of subdivision and the Value of subdivision 
are defined as follows: 

- Dimension of subdivision: the subdivision is carried out 
according to the dimension having the maximum of data 
dissemination, i.e. the dimension that corresponds to the 
greatest difference between the vectors components. 

- Value of subdivision: it is the value of quantification 
nearest to the median value according to the dimension of 
subdivision. 

First, the split algorithm defines the dimension of 
subdivision, and then determines its value. The subdivision of 
the mother region is carried out according to the hyper plane 
passing by the value of subdivision, it, thus, results in two 
regions containing practically the same number of vectors. 
Each one of the obtained regions will be approximated by two 
bit-strings corresponding to the left low and right high cells, 
forming the approximations file. Figure 2 describes region 
approximations in a two dimensional vector space of 14 
vectors. The capacity of regions is chosen to be 5, bi is fixed 
equal to 3. It results in 3 regions; each one coded by two 
bit-strings. Let us note that our splitting algorithm is based on 
the elimination of the internal nodes partitioning (downward 
subdivision) of the K-D-B-Tree structure. The main drawback 
of this structure is the fact that it produces important 
reorganizations of the totality of the tree in order to preserve 
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the properties of the K-D-B-Tree structure. These structuring 
often cause the creation of a large number of empty leafs or 
almost empty, which cannot guarantee an optimal rate of 
allocated space use, and thereafter increases the search time of 
K nearest neighbor.  Hence, the basic idea of our method is to 
partition only the overflowed point pages setting a difference to 
the K-D-B-Tree method which divides a priori all region pages 
having an intersection with the hyper plane of subdivision. In 
our case, only the nonempty point pages are generated by the 
splitting algorithm. This way, we can eliminate the internal 
nodes partitioning by transforming the tree structure into a list 
of regions. Thereafter, each overflowed region will be split and 
replaced by two new regions (left region and right region) 
having each one a size less than a half size of the capacity (size 
<capacity/2). 

It allows eliminating the empty regions. Furthermore, all the 
generated regions are dense (i.e. number of 

vectors>capacity/2). On the one hand, this guaranteed, in the 
majority of the cases, the existence of the K-NN in the same 
disk page, and on the other hand, reduced the total number of 
the obtained regions and thereafter reduced the I/O time. 
Figures 3 and 4 present an example of a 2d-space splitting using 
the K-D-B-Tree method and our method. The regions capacity 
is fixed at 3. According to the K-D-B-Tree (fig. 3), all the 
regions having an intersection with the subdivision element are 
split into two sub regions, including those which are not 
overflowed (region 3). Thereafter, resulting point pages are not 
very dense and sometimes empty (e.g. regions 3.1 and 3.2). 
However, according to our method (fig. 4), the subdivision 
element partition only overflowed regions (e.g. region 2). 
Therefore, the number of obtained points pages (4) is lower 
than that of figure 3 (5). 

The construction of the regions is carried out by successive 
insertions of the data vectors. The construction algorithm is 
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described in figure 5. 
Input :  
data : set of real vectors in the database. 
Output : 
ListReg : list of regions containing the splitting result. 
Function RegionsConstruction(vector data[ ], integer N) 
{  
// data : the vectors in database scanned per block 
// N : the number of  vectors per block  
//Pos : integer 
   //ListReg : this list of regions is initialised by one region 

which is the root region 
//Region R_left, R_right : regions resulting from the splitting 

an old region 
1. For i=1 to N do{ 
1.1. Pos= GetIdRegion(data[i]) // return index of region in 

which must be inserted the vector data[i] 
1.2. Let Reg be the region having as index pos 
1.3. Insert(data[i], Reg) // allow to insert data[i] in Reg 
1.4. If (overflow(Reg)) { 
               // number of vectors in the region Reg is greater 

than capacity, then this region is overflow.  
       1.4.1. split(Reg, R_left, R_right) // Reg is split into 2 sub 

regions 
        1.4.2. If (nbredata(R_left)!=0) and  

(nbredata(R_right)!=0) { 
// both the number of vectors in R_left and R_right are not 

equal to 0 
                a. Replace(ListReg, Reg, R_left) // replace the 

region Reg by R_left in ListReg 
                b. InsertToEnd(listReg, R_right) // insert R_right 

into the end of ListReg. 
}// End If 
} // End If 
}// End For 
}// End 
 
2) Index structure: The index structure is similar to 

RA-Blocks. Thus, we record data in two levels. In the first 
level, we use a small file containing the region approximations 
coded in bits. This approximations file is very small, hence, in 
most cases, it can be kept in the main memory and we don’t 
have to access the disk in the first phase. In the second level, we 
record in a file the real vectors.  

To insert a new vector into the database, we find the region in 
which the data should be placed and we insert this vector. If the 
disk page recording this region is full, i.e. the number of its 
vectors exceeds the capacity; we split it into two regions having 
practically the same number of vectors based on the split 
algorithm. In this case, the approximations of these regions are 
calculated and inserted in the approximations file, and then the 
first region is removed. 

Deleting a vector consists in finding the region that contains 
this vector. If the number of vectors remaining after the 
suppression is lower than half capacity (capacity/2), then a 
reorganization of the region is carried out. 

 

 

B K-nearest neighbor algorithm 
Our K-nearest neighbor queries algorithm is inspired of the  

VA-NOA search algorithm in the VA-File [8]. The research 
algorithm for K-NN is divided into two phases. In the first stage 
(filtering step), the approximations file is scanned sequentially, 
and the candidates regions are selected.  During the second 
phase (access to original vectors), we determine the K-NN by 
calculating the real distance from vectors of candidates regions 
to the query vector. 

1) Filtering phase: To search the K-NN, the approximations 
file is entirely scanned, and each region’s upper bound dmax 
and lower bound dmin compared to the query vector are 
calculated (see Figure. 6). We initialize the list of candidates 
LC by k/2 regions having the smallest dmax. This list is sorted 
out by the ascending distance dmax. The approximations file is 
scanned: if an approximation is found such as its dmin is less 
than the biggest upper bound dmax of the list, the 
corresponding region is inserted in LC by keeping the sorted 
list. 

2) Access to real vectors: We initialize the list of the results 
LR by K first vectors of the LC regions. This list is then sorted 
according to the real distance to the query vector. Then, we 
scan the retained regions in LC according to an ascending order 
of their dmin and we calculate the real distance between its 
vectors and the query vector. We suppose that Dm is the current 
maximum real distance. If a region is found, and its dmin is less 
than Dm, the vectors of this region are examined: if the real 
distance which separates a vector from this region and the 
query vector is less than Dm, then the vector is inserted in LR 
and we remove the last LR vector. However, if a region of LC 
has a dmin higher than Dm then we should stop. 

IV. EXPÉRIMENTAL EVALUATIONS  
In order to demonstrate the applicability and the advantages 

of our technique, the experimental evaluations of our method 
compared to RA-Blocks, and VA-File are presented in this 
section. 

All the experiments are conducted on a Microsoft Windows 
XP machine with 3.2 GHZ CPU, 1 Go RAM, 160 GB local 
disk. The following two data sets were used for the 
performance test: (1) random data set, (2) real data set. 

Let d, be the dimensionality of the vectors, and S, the number 
of vectors in the database (database size). 

The random data set is a random data which consists of 
S = 18000 vectors distributed uniformly in range [0 0.01392], 

dmax 

dmin 
 q 

Fig. 6. Upper bound dmax and lower bound dmin using Euclidean 

Fig. 5. Regions construction algorithm 
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with d = 100. The real data set consists of the histograms of 
colors extracted from a real image database, with d=256 and 
S=18000.  

Three experimental evaluations were conducted. In the first 
one, the index structures size of both the RA-Blocks and 
RA+-Blocks methods with various dimensions and with 
different database size are compared. In the second experiment, 
we compare the filling rate for both the RA-Blocks and the 
RA+-Blocks index. Finally, the third experiment, evaluate the 
CPU time of RA+-Blocks, RA-Blocks, and VA-File.  

A. Index structure size study 
Figure 7 shows the results of our experiments and illustrates 

the K-NN search performance of both RA-Blocks and 
RA+-Blocks methods. These experiments are conduct on both 
real and random image database; we show only the results for 
real data. In (fig.7a), the dimensionality of data space is ranged 
from 10 to 100 and the database size is fixed to 10000 
descriptors. While in the (fig.7b), the dimensionality of vectors 
is fixed to 12 and the size database ranged from 2000 to 18000 
vectors. Similarly to the experiments reported in [22], the 
K-NN search performance of RA-Blocks and RA+-Blocks 
index was measured in term of number of the obtained regions 
with two index structures by fixing : K-NN=5, number bit per 
dimension=8, disk page size=16 KB, and capacity=7.  

As we can see from figure 7, the number of the obtained 
regions using K-D-B-Tree strategy for space partitioning 
adopted by RA-Blocks is higher than the one obtained using 
RA+-Blocks. Note that the number of the obtained regions with 
RA-Blocks index grows with the dimensionality and with the 
database size. This will increase the size of the RA-Bocks' 
index structure, and will also require more space allocation for 
its regions. Thus, the storage utilization for the RA-Blocks is 
lower than that one of the RA+-Blocks index. Consequently, the 
performance of the RA-Blocks is lower than that of the 
RA+-blocks  

To explain the reasons behind this degeneration of 
RA-Blocks index, consider an RA-Blocks index when it has 
only one region page R. Let assume that R is completely full 
and the split of a point page P has just begun. Splitting the point 
page P will trigger the split of the parent page R. Then, all 
nodes (MBRs) in R that intersect with the dividing hyperplane 
selected during the split of P will also be partitioned, and the 
splits will propagate into the corresponding child nodes of R. 
Since the node (MBRs) that full extension along the split i axis 
intersect with the dividing plane, a large number of regions will 
be created in the structure. This will increase the size of the 
structure and decrease the average utilization of its regions 
compared to RA+-Blocks index which divide only full regions.  

 
Moreover, due to the splits of many subregions in R, the 

resulting regions R' and R'' instantly become occupied to nearly 
full capacity. Fairly soon, both R' and R'' will be split again, 
most likely along the dimension i+1. As before, one can expect 
that many nodes (MBRs) in R' and R'' will have full extension 
along the split dimension. Thus, the splits of R' and R'' would 
also create a large number of new regions, further increasing 
the size of structure. Figure 8 shows an example of forced 
splitting of regions in a K-D-B-Tree index used by RA-Blocks 
with d=2. 
Finally, when the dimensionality or the database size increases, 
the RA-Blocks index requires an important 

Fig.7. Number of the regions obtained with both RA-Blocks and RA+-Blocks 
index according to the number of dimensions and the database size
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reorganization of the totality of the index which often causes 
a forced splitting of the empty regions, and thus creates a large 
number of empty point pages. 

In RA+-Blocks approach, the partitioning strategy eliminates 
the forced splitting. When a region page R is completely full, 
the split of a point page P will trigger the split of only the region 
in the parent page R that contains the page point P. Thus, the 
split propagation is stopped at this level. From a certain number 
of dimensions or number of vectors, the split of regions cannot 
take place due to their low bounds, so the vectors are inserted 
without splitting. Consequently, the obtained regions with 
RA+-Blocks are few and mostly dense compared to those 
obtained with RA-Blocks. 

As we can see in figure 7. when dimension (Fig 7.a) and 
database size (Fig 7.b) increase, the number of the obtained 
regions varies slowly then remains practically constant. This 
will increase the filling rate of the RA+-blocks, and reduce the 
number of calculation of upper and lower bound, and thus the 
CPU time. 

B. Filling rate comparison  
These experiments present a comparison between the 

RA+-Blocks and RA-Blocks, in term of the filling rate for both 
random and real image databases. The filling rate is the ratio 
between the number of the vectors in the database and the total 
capacity of the index structure (capacity of the index structure 
is the total capacity of all the obtained regions). This ratio is a 
good performance estimator because the multidimensional 
index structure’s performance depends largely on their ability 
to support the “scalability problems” associated with large 
amounts of data. A high value (near 100%) of this parameter 
guarantees an optimal use of disk pages, and decreases the 
number of I/O. 

As can be seen from figure 9, the filling rate of RA-Blocks is 
less than the one in the RA+-Blocks for both random and real 
data. Thus, the RA+-Blocks index generates a low number of 
dense regions, while the RA-Blocks index generates a great 
number of sparse regions, which decrease storage utilization of 
the RA-Block index. The low storage utilization problem in the 
RA-Blocks index is caused by its imperfect splitting strategy 
described previously; it deteriorates directly the retrieval 
performance. 

CPU time study. 
In figures 10 and 11, we compared the K-NN search 

performance for RA-Blocks, VA-File, and RA+-Blocks on both 
random and real image database with various dimensions and 
various number of vectors. 

In the figure 10, S=10000 and the dimensionality varies from 
10 to 100 for both the random and real data. In the figure 11, the 
number of vectors varies from 2000 to 18000, while the 
dimensionality is fixed to 12. 

 

 

 
From these experiments, we note that the CPU time of the 

K-NN search of the RA-Blocks method is higher than that of 
the RA+-blocks method. As the dimensionality or the number 
of vectors increases, the RA+-Blocks becomes better and better, 
compared to the RA-Blocks. Our method reduces the search 
time to be satisfactory. This can be explained by the optimized 
strategy of subdivision used in the RA+-Blocks, that allows us 
to reduce the index structure size compared to the RA-Blocks 
by eliminating the forced splitting used in K-D-B-tree method 
adopted by RA-Blocks. The subdivision strategy of 
RA+-Blocks reduces the number of the candidates regions to be 
selected in the filtering phase and thus the number of 
calculation of upper and lower bounds. The K-NN search time 
of the RA+-Blocks is reduced compared to the RA-Blocks 
method. 

In the figure 12, we also compare the CPU time of 
RA+-Blocks, RA-Blocks, and VA-File using the parameters: 

Fig.8. Forced splitting of regions in an RA-Blocks 
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d=60, K-NN=5, capacity=5, S=10000. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10. CPU time according to dimensionality  

Fig.12. CPU time, d=60, K-NN=5, capacity=5, S=10000 
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Fig.11. CPU time according to the database size 
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We note that our method outperforms also the VA-File. In 
fact, like RA-Blocks, the RA+-Blocks method is based on 
regions filtering approach to calculate the K-NN of the query 
request. Then, the computation time in the filtering phase 
and the access phase has been reduced, compared to the 
VA-file method. This, because in one hand, the lower and 
upper bounds in the filtering phase are calculated for each 
region and not for each point; In the other hand, the 
neighboring vectors in RA+-Blocks structure are more likely 
to be in the same physical page or consecutives pages. 
Therefore, the CPU time is reduced compared to the 
VA-File.  

Finally, we illustrate the performance of RA+-Blocks on 
both real and random image database. RA+-Blocks 
outperforms VA-File and RA-Blocks in high dimensional 
data space and in large image databases. This is one of the 
best solution to solve the problem of the “dimensionality 
curse” and to index a very large image databases, currently 
employed in different area such as geographic information 
systems (GIS), medical imaging systems, documents 
systems, military, biomedicine… 

V. CONCLUSION 
In this paper, we propose a new indexing method based on 

the filtering approach, to enhance the nearest neighbor 
search in multimedia databases. The RA+-Blocks 
outperforms other current methods especially with large 
amount of data or with very high dimensionality. With 
RA+-Blocks method, the partitioning strategy of data space 
reduces the K-NN search time by eliminating the empty and 
not very dense regions. This strategy of subdivision 
guarantees that the entire index structure has almost 100% 
storage utilization, and reduces the size of the RA+-Blocks 
index structure. In addition, RA+-Blocks index generated a 
very small approximations file which can be kept in the main 
memory in most cases; then the system doesn't have to access 
the disk. Another advantage of this technique is the optimal 
use of the disk pages since the close points are often stored 
either in the same, or on neighboring disk pages. 

Our method outperforms both RA-Blocks and VA-File 
especially in large multimedia databases and even for a very 
high dimensionality. 

Among further works, we propose to introduce, 
“relevance feedback” to interactively refine the search or to 
fit the user's special preferences. 
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