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Abstract—We are developing an autonomous mo-
bile robotic system to emulate six degree of freedom
relative spacecraft motion during proximity opera-
tions. A mobile omni-directional base robot provides
x, y, and yaw planar motion with moderate accuracy
through six independently driven motors. With a six
degree of freedom micro-positioning Stewart platform
on top of the moving base, six degree of freedom
spacecraft motion can be emulated with high accu-
racy. This paper presents our approach to dynamic
modeling, control, and simulation for the overall sys-
tem. Compared with other simulations that intro-
duced significant simplifications, we believe that our
rigorous modeling approach is crucial for the high fi-
delity hardware in-the-loop emulation.
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1 Introduction

We in the Department of Aerospace Engineering at Texas
A&M University are developing an autonomous mo-
bile robotic system to emulate six degree of freedom
(DOF) relative spacecraft motion during proximity oper-
ations [1], [2]. The base uses an active split offset castor
(ASOC) drive train to achieve omni-directional planar
motion with desired tracking position errors in the ±1cm
range and heading angle error in the ±0.5◦ range. With
six independently controlled wheels, we achieve a nomi-
nally uniform motor torque distribution and reduce the
total disturbances with system control redundancy. A
CAD (Computer-aided Design) sketch of our one-third
scale model prototype is shown in Fig. 1.
A micro-positioning Stewart platform is mounted on the
full-size moving base, as shown in Fig. 2. For the Stew-
art platform, the base plate and top plate are connected
by six extensible legs; the parallel nature provides higher
stiffness, higher loading capacities, and higher frequency
compared with typical serial positioning devices. A com-
plete dynamic model and a robust adaptive controller for
the Stewart platform have been developed using a novel
automatic differentiation method in [3] and [4]. The novel
modeling approach makes it easy to modify the model
assumptions and eliminate complicated derivative calcu-
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Figure 1: Base robot prototype

Figure 2: Platform on the base

lations. The robust adaptive control law guarantees that
the tracking errors are asymptotically stable under even
large parameter errors and slow-changing or constant ex-
ternal disturbances.
This paper focuses on modeling and control issues for
the mobile base as well as the overall system simulation.
Section 2 presents a dynamic model for the mobile base
using a Lagrangian approach. Two control laws for the
base are compared. One uses an input-output feedback
method to design a dynamic control law. The other uses
a kinematic control method. In Section 3, the overall sys-
tem simulation approach is described and the simulation
results are shown. Conclusions are presented in Section 4.
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2 Dynamics and Control of the Moving
Base

Using ASOCs to provide true omni-directional mobility
was introduced by H.Yu [5]. While kinematics and imple-
mentation have been discussed in [5], no dynamic models
have been studied for mobile robots driven by ASOCs. In
fact, there have been many papers written about solving
the problem of dynamic model formulation under non-
holonomic constraints using the kinematic model, but
only a few papers addressing the integration of the non-
holonomic kinematic controller with the dynamics of the
mobile robot [6]. “Perfect velocity tracking” is always
assumed in the available papers, which may not be the
truth in reality [7]. This chapter formulates a rigorous ap-
proach to track the reference path while taking account
of the system dynamics. The mobile base we propose in
this chapter not only achieves true omni-directional mo-
tion without wheel reorientation, but also achieves higher
precision control with higher loading capacity compared
with the models discussed in [6], [7], [8]. Furthermore,
our modeling and control approaches are very general and
applicable to a significant class of similar systems.

2.1 Kinematic Equations

A top view representation of the entire base assembly
with the frame definitions is shown in Fig. 3. The three
vertex points of the triangular base are all pivot points,
each of which is connected to a castor. The castor is con-
nected to two wheels through shafts. Each castor is free
to rotate about its pivot point and each wheel is indepen-
dently driven by a mounted motor.
Kinematic equations are derived as follows. Knowing
the velocity of the mass center of the triangular base
together with the measured castor angles, and utilizing
non-slippage constraints for the six wheels (the wheels
roll without slip and also can not have side slip), the ve-
locity of each wheel and shaft is uniquely defined. The
velocity of the triangular base includes its translational
velocity vb = [ẋ, ẏ, 0]T and rotational velocity ψ̇ about its
center of mass, where x and y are the base positions in
the inertial frame and ψ is the rotational angle between
the base body frame and the inertial frame.
The velocity of the ith pivot point is computed by

vpi
= vb + BI[−ψ̇Rsin(φi), ψ̇Rcos(φi), 0]T (1)

where φ is the angle between b̂1 and the line connecting
base center of mass to the ith pivot point, and for the
symmetric base, φ1 = 0◦, φ2 = 120◦, and φ3 = 240◦; BI
is the direction cosine matrix that transforms components
of a vector in the B frame {b̂1, b̂2, b̂3} to the same vector
with components in the inertial frame with the form

BI =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ (2)
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Figure 3: Top view of the base

R is the distance from the base center of the mass to
the pivot point. The inertial velocity of the pivot point
is expressed in the castor C frame {ĉ1, ĉ2, ĉ3} as vci

=
[vc1 , vc2 , 0] using

vci = ICvpi (3)

where

IC =

⎡
⎣ cos(ψ + θi) sin(ψ + θi) 0
− sin(ψ + θi) cos(ψ + θi) 0

0 0 1

⎤
⎦ (4)

and θi is the rotational angle between the ith castor C
frame and the base B frame. Angular velocity of the
castor with respect to the inertial frame is

ωi = θ̇i + ψ̇ (5)

Using the no side slip constraints, the angular velocity
can also be expressed as

ωi = vc2/ρ; (6)

where ρ is the distance from the pivot point to the center
of the wheels along ĉ1 direction.
The velocities of the two wheels are

vw1 = vc1 − dωi (7)
vw2 = vc1 + dωi (8)

where d is the distance from the pivot point to the cen-
ter of the wheels along ĉ2 direction.The velocities of the
shafts are solved for in the same way.

2.2 Dynamic Equations

For the mobile base, the system energy includes the
kinetic energy of the triangular base, three castors,
six shafts and six wheels. Since we ignore the vertical
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motions in this paper, no potential energy is involved.
The same approach developed below will be used in
the future to derive a three dimensional model, which
includes the potential energy change because of the floor
irregularities.
Twelve generalized coordinates q =
[x, y, ψ, θ1, θ2, θ3,Π1,Π2,Π3,Π4,Π5,Π6]T are chosen
for the base system, which includes two translational
and one angular position of the triangular base, three
angular positions of the castors, and six angular positions
of the wheels, respectively. The corresponding twelve
generalized velocities are not independent. Firstly, since
Eqs. 5 and 6 describe the same quantity, we have the
first set of constraints

wi − vc2/ρ = 0 (9)

Secondly, using the rolling without slip constraints for
the wheels, we have

RwΠ̇1 − vw1 = 0 (10)
RwΠ̇2 − vw2 = 0 (11)

Eqs. 12, 13, and 14 provide three constraints for each
set of the castors, leading to nine kinematic constraints
in total. Since these non-slippage constraints are non-
holonomic, we need to use Lagrangian multipliers to for-
mulate the equations of motion (EOM) using twelve co-
ordinates with nine constraint equations without reduc-
ing the system to minimal order by substituting the con-
strained relationships.

2.3 Dynamics and Control Law

Since we ignore the system small vertical motions in this
chapter, no potential energy is involved. The energy of
the mobile base is the summation of the kinetic energy
of the triangular base, three castors, six shafts and six
wheels. The same approach developed below will be used
in the future to derive a three dimensional model, which
includes the potential energy change because of the floor
irregularities.
Twelve generalized coordinates

q = [x, y, ψ, θ1, θ2, θ3,Π1,Π2,Π3,Π4,Π5,Π6]T

are chosen for the base system, which includes two trans-
lational and one angular position of the triangular base,
three angular positions of the castors, and six angular
positions of the wheels, respectively. The corresponding
twelve generalized velocities are not independent. Firstly,
since Eqs. 5 and 6 describe the same quantity, we have
the first set of constraints

wi − vc2/ρ = 0 (12)

Secondly, using the rolling without slip constraints for
the wheels, we have

RwΠ̇1 − vw1 = 0 (13)
RwΠ̇2 − vw2 = 0 (14)

where Rw is the radius of the wheels. Equations 12, 13,
and 14 provide three constraints for each castor, leading
to nine kinematic constraints in total. Since these
non-slippage constraints are non-holonomic, we need to
use Lagrangian multipliers to formulate the equations
of motion (EOM) using twelve coordinates with nine
constraints, while not trying to reduce the system to
a minimal order representation by substituting the
constraint relationships.

The final EOM is formulated as

M(q)q̈ +N(q, q̇)q̇ +G(q) = B(q)u + CTλ (15)

The kinematic constraints are not dependent on time and
can be expressed as

Cq̇ = 0 (16)

where q̇ is the generalized velocity and M(q) is the
12 × 12 symmetric, bounded, positive definite mass ma-
trix; N(q, q̇)q̇ represents the centripetal and Coriolis
torque, G(q) is the gravity torque, B(q) is the matrix
that transforms the input u to the generalized force, C
is the 9× 12 constraint matrix, λ is the Lagrangian mul-
tiplier, and CT λ is the constraint force. It has been
proven that these kind of non-holonomic dynamic sys-
tems can not achieve asymptotical stability using smooth
time-invariant state feedback [9]. The stabilization meth-
ods proposed so far include discontinuous time-invariant
stabilization, time-varying stabilization, and hybrid feed-
back [10].
To simplify the controller for real-time application, null
space formulation is used to find a solution [8]. Choose
S(q) to be a 12 × 3 matrix, which is formed by three
smooth and linearly independent vector fields spanning
the null space of C, leading to

STCT = 0 (17)

According to Eqs. 16 and 17, since the constrained gen-
eralized velocity is always in the null space of C which
is characterized by Eq. 16, a vector v(t) ∈ R3 can be
constructed such that

q̇ = S(q)v (18)

Notice that the choice of S and v is not unique. In gen-
eral, v is an abstract variable and may not have any phys-
ical meaning.
Differentiating Eq. 18, substituting it into Eq. 15, and
pre-multiplying the resulted equation by ST, we get the
transformed EOM

STMSv̇ + (STMṠ + STNS)v + STG = STBu (19)

The new system state space equation is

ẋ =
[
Sv
0

]
+

[
0
I

]
τ (20)
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when the state-space vector is chosen as x = [qT,vT]T,
and the control input is

τ = (STMS)−1
(
STBu− (STMṠ + STNS)v − STG

)
.

(21)
Since for our 6-DOF motion emulation, the requirement
for the mobile base robot is to provide a satisfactory tra-
jectory that can extend the planar workspace of the upper
high precision Stewart platform, a Lyapunov method is
used to design such an input-output feedback control law
that guarantees the position and orientation errors of the
mobile base are asymptotically stable and is simpler to
apply than either discontinuous or time-varying control.
The output equation is defined as

Y = h(q) = [x; y;ψ] (22)

Using Eq. 18, the output velocity equation is expressed
as

Ẏ =
∂h

∂q
Sv = JSv = φv (23)

where J = ∂h
∂q , and φ is the decoupling matrix. The

necessary and sufficient condition for the input-output
linearization is that the decoupling matrix has full rank.
For our case, the determinant of φ is 1, thus it never
becomes singular. Using the Lyapunov method, we de-
sign a control law for τ to track reference position Yr(t)
and reference velocity Ẏr(t). The Lyapunov function is
defined as

V = 1/2 (Yr −Y)T
K1 (Yr −Y)+1/2

(
Ẏr − Ẏ

)T

K2

(
Ẏr − Ẏ

)
(24)

It is easy to prove that using the control law in Eq. 25,
the output tracking errors are asymptotically stable

τ = (JS)−1(Ÿr +K1e +K2ė− JṠv +K3ε) (25)
e = Yr − Y
ė = Ẏr − Ẏ

ε̇ = e

The input torques from the six motors are solved for us-
ing Eq. 21. Notice that B is a 12× 6 matrix for this re-
dundantly controlled system. The pseudoinverse is used
for the inverse of STB, yielding a minimal motor control
effort.

2.4 Simulation Results

Firstly, as one of the criteria to validate the dynamic
model, we numerically solve the EOM when there is no
external input and then check whether the system kine-
matic energy remains constant or not. Theoretically, the
energy should be constant. To avoid the constraint drift
during integration, we utilize a constraint stabilization
method which was first proposed in [11]. Dynamic re-
sponse when the center of the base is doing a pure rotat-
ing motion has been validated through the simulation.

The relative errors for the energy change δe, no side slip
constraint δpr and rolling without slip constraint δns, are
calculated as follows and are shown in Figs. 4, 5, and 6.

δe = (E(t)− E(t0)) /E(t0) (26)
δpr = (Cpr(t)− Cpr(t0)) /Cpr(t0) (27)
δns = (Cns(t)− Cns(t0)) /Cns(t0) (28)

where E(t) is the system energy at time t, Cpr(t) = θ̇1 +
ψ̇−vc2/ρ is the first castor no side slip constraint defined
in Eq. 12, and Cns(t) = RwΠ̇1 − vw1 is the first wheel
rolling without slip constraint defined in Eq. 13.

Figure 4: Energy variation history

Figure 5: No side slip constraint

Secondly, the mobile base is commanded to track a con-
stant velocity reference trajectory with initial position
and velocity errors with all the wheels starting in a pulling
position. We compare the tracking results using the dy-
namic controller proposed in Eq. 25 with a kinematic con-
troller.
For the kinematic controller, knowing the reference tra-
jectory of the mass center of the base, the top level
controller generates a commanded base velocity Vc =
Ẏr−K(Y−Yr), where all the symbols are defined as in
Eq. 24 . Through the unique mapping from the base cen-
ter velocities to the wheel velocities, the kinematic con-
troller commands the motors to track the commanded
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Figure 6: Rolling without slip constraint

wheel velocities.
Parameters of Animatics SmartMotor 2315DT [12] are
utilized in the simulation. For the dynamic controller,
we achieve the commanded torque through command-
ing a corresponding quantized motor input voltage. The
kinematic controller runs through a PID loop internal to
each motor to achieve the commanded velocity.
Simulation results are shown in Figs. 7, 8, and 9. We
find that both controllers can achieve satisfactory track-
ing while the dynamic response can be changed through
tuning gains. In addition, the dynamic controller is more
efficient than the kinematic controller in terms of the
control efforts involved, although the dynamic controller
needs more computation time than the kinematic con-
troller. For the kinematic controller, since each wheel
does not have any information about other wheels, they
may fight each other during the motion. We point out
that no friction models are implemented in these simula-
tions.

Figure 7: Tracking errors comparison

3 Overall System Simulation

3.1 System Equations of Motion

Mobile manipulators have received significantly increased
interest in the industrial, military, and public communi-

Figure 8: Current comparison

Figure 9: Voltage comparison

ties for their mobility combined with the manipulator’s
dexterous abilities. But most current work treats the
system without considering dynamic interactions, and
only copes with holonomic constraints, or just considers
the kinematic interactions [13], [14]. Since our final
aim is to do a high fidelity emulation, the previous
simplifications are not acceptable to us at the dynamic
modeling level. We formulate a complete model of the
Stewart platform and a mobile base separately at first.
For each subsystem, a robust controller is designed to
account for the dynamic interaction forces. All the
generalized coordinates with the dynamic interaction
forces are solved simultaneously to generate the true
system dynamic response.
For the 6-DOF Stewart platform system, we choose the
mass center location Rc = [Xm, Ym, Zm]T, three Euler
angles θm = [θ1m , θ2m , θ3m ] of the top plate, and the
position and orientation of the base plate qbm = [x, y, ψ]T

as the generalized coordinates. Let
qm = [Xm, Ym, Zm, θ1m

, θ2m
, θ3m

]T. Note that all of
these coordinates are expressed with respect to the
inertial frame. The moving base is modeled using twelve
generalized coordinates
qb = [xb, yb, ψb, θ1, θ2, θ3,Π1,Π2,Π3,Π4,Π5,Π6]T. Let
qb̄ = [xb, yb, ψb]T and qō =
[θ1, θ2, θ3,Π1,Π2,Π3,Π4,Π5,Π6]T. Since the base
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plate of the Stewart platform and the triangular base of
the mobile robot are rigidly connected, we assume that
qb̄ = qbm

. Thus for the Stewart platform, the dynamic
equations are expressed as[
M1m M12m

M T
12m

M2m

] (
q̈m

q̈b̄

)
+

[
N1

N2

]
=

[
Q1l

Q2l

]
+

[
06×6

Qd

]

(29)
where the mass matrix of the Stewart platform Mm is

Mm =
[
M1m M12m

M T
12m

M2m

]
(30)

Q1l
and Q2l

are the generalized forces generated by the
Stewart platform actuator motors and projected on the
generalized coordinates qm and qb̄, Qd are the interaction
forces/torques projected on the qb̄ coordinates, and N1

and N2 are other nonlinear terms. Details about solving
for the compact form of the mass matrix M can be found
in [3], [4], and [15].
For the mobile moving base, the final organized dynamic
equations, which have the Lagrangian multipliers elimi-
nated by taking the derivatives of Eq. 16 and substituting
Eq. 15 into them, are[

M1b
M12b

M T
12b

M2b

] (
q̈b̄

q̈ō

)
+

[
N1b

N2b

]
=

[
Q1b

Q2b

]

+
[
K1Qd

K2Qd

]
(31)

where the mass matrix of the mobile base Mb is

Mb =
[
M1b

M12b

M T
12b

M2b

]
(32)

In Eq. 31

K = CT(CM−1
b CT)−1CM−1

b − I (33)

=
[
K1 K3

K2 K4

]
(34)

Q1b = [K1K3]Qt (35)
Q2b = [K2K4]Qt (36)

K1 is a 9× 3 matrix, K2 is a 3× 3 matrix, K3 is a 9× 9
matrix, and K4 is a 3× 9 matrix; Qt are the generalized
forces resulting from the base motors; C is the constraint
matrix; I is the 12× 12 identity matrix; N1b

and N2b
are

the remaining nonlinear terms. Equations 29 and 31 can
be reformulated as

Mt

⎡
⎢⎢⎣

q̈m

q̈b̄

q̈ō

Qd

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

N1

N2

N1b

N2b

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Q1l

Q2l

Q1b

Q2b

⎤
⎥⎥⎦ (37)

where

Mt =

⎡
⎢⎢⎣

M1m
M12m

06×9 06×3

M T
12m

M2m
03×9 −I3×3

09×6 M1b
M12b

−K1

03×6 M T
12b

M2b
−K2

⎤
⎥⎥⎦ (38)

Equation 37 is the final form to generate the overall sys-
tem dynamic response.

3.2 System Simulation Results

A tracking scenario is designed as

xb = 0.1t (39)

xs = 10−3 sin
(

2Π
0.1

t

)
+ 0.1t (40)

where xb is the reference tracking position for the base
robot along x direction; xs is the reference tracking po-
sition for the Stewart platform along x direction; and
the commanded motions along all the other directions for
both the base robot and the Stewart platform are zero.
In the simulation, the bearing frictions and scrubbing
torques are included in the dynamic model as the dis-
turbances. The bearing frictions Mb are assumed to have
the form

Mb = −c
f
q̇ (41)

where c
f

is the bearing friction coefficient obtained from
experimental data and q̇ is the wheel velocity. Usually
the scrubbing torque is defined as the torque needed to
twist a single wheel around its vertical axis [5]. We use
a simple way to calculate this torque Ms according to a
linear form

Ms = kr + b (42)

where rotation radius r is the distance from the center of
the rotation of the two wheels to the individual wheel, k
and b are the coefficients obtained by fitting experimen-
tal data using the linear equation assumption in Eq. 42.
We also assume that if the rotation radius is larger than
some limit, the scrubbing torque will be zero.
Simulation results are shown in Figs 10, 11, and 12 with
both the Stewart platform control frequency and the base
robot control frequency chosen as 1000Hz. The position
errors and velocity errors satisfy the usual spacecraft ren-
dezvous and docking motion requirements [1], and we val-
idate our control methodology when the frequency of the
Stewart platform becomes as high as 10Hz. We point
out that when the Stewart platform motion is slow, we
can achieve the satisfactory tracking with lower control
frequency, while when the Stewart platform frequency in-
creases, the tracking performance gets worse. A more
advanced robust control method needs to be designed in
the near future to counteract the higher frequency con-
straint forces, which result from the faster relative motion
and are treated as unknown disturbances in the control
law design. In addition, since we already have equations
of motion for the overall system, we may also design a
control law based on the total system dynamic informa-
tion. Although this control law automatically takes into
account the constraint forces effect, it is very complicated
and difficult to be solved. We believe our methodology to
design robust control law for each subsystem in an uncou-
pled fashion is easier to implement, and also more robust
with respect to system uncertainties, compared with de-
signing a gigantic coupled control law based on the full
system dynamic information.
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Figure 10: Stewart platform position errors

Figure 11: Stewart platform velocity errors

4 Summary

We develop a high fidelity dynamic model for a mobile
robotic system. Complete dynamic equations of motion
are formulated and the dynamic interactions between the
manipulator and the moving base are included. The rig-
orous approach we present in this chapter provides us
with a tool to do high fidelity system analysis, control
law verifications, and hardware in the loop emulation.
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