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Neural Network NARMA Control of a Gyroscopic
Inverted Pendulum

F. Chetouane and S. Darenfed

Abstract— The objective herein is to demonstrate the
feasibility of a real-time digital control of an inverted
pendulum for modeling and control, with emphasis on
nonlinear auto regressive moving average based nalr
network (NARMA). The plant of interest is a novel
Gyroscopic Inverted Pendulum (GIP) device that is
nonlinear and open-loop unstable. The GIP balancea
pendulum on its free knife-edge base using a flywké
driven by DC motor fixated on the top. In this
application, an indirect data-based technique is tieen,
where a model of the plant is identified on the bas of
input-output data and then used in the model-based
design of a NARMA controller. The plant under digtal
PID control with I-adaptation provides initial stability at
the beginning of a single layer NARMA neural netwok
training. NARMA models of increasing complexity ae
used successively to generate input-output data fahe
training of multilayered NARMA models. In using a
NARMA neural network the control laws are nonlinear
and online adaptation of the model is possible toapture
un-modeled or time-varying dynamics. Such an
environment provides for experimentation, data
collection, system identification and real time comol
strategy implementation.

Index Terms— Closed loop identification, feedback
linearization, gyroscopic inverted pendulum, neural network
NARMA control, real-time.

M

performance, when operated about the point whecal lo
linearity holds. The resulting system performanaeder a
standard PID controller with fixed gains, is rediigghen the
controller operates over a wide region about thatpof
tuning. One approach to alleviate this problentoisise a
nonlinear controller to improve consistency in terrof
performance over a range about the point of tunifige
inverted pendulum (IP) remains an interesting plamontrol
engineers in terms of nonlinear behaviour couplédth its

I. INTRODUCTION
ost practical systems exhibit nonlinear behavidimre
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three-term PID control system provides satisfactor

physical simplicity along with complete instability It is
widely accepted as an adequate model of a humadista
still. Moreover, various types of IPs are comnroacademia
for the study of controller design, e.g. LQG, PHDzzy Logic
(FL), Genetic Algorithms (GA) and Artificial Neural
Networks (ANN) etc, alone or in combination. Mogttbe
pendulums developed so far, have restoring forcggpjied
somehow at the fulcrum. Various linearization téghas can
be used to account for nonlinearities, such asatine
compensators based on Jacobian linearization. &@lpil
approximate linearization was used effectively &sign a
controller for an inverted pendulum [1]. Some authbave
considered an alternative control action consistirigan
oscillatory vertical force applied to the pendulpiwot [2].
The stabilizing effect of a fast vertical osciltaii applied to
the pendulum base is known from the early work of
Stephenson [3]. Another control alternative is dasa the
application of a rotational torque to the pendulbase, as
proposed in [4]. Recently hybrid LQG-Neural Conteohas
been studied in [5]. IPs with higher degrees cédi@m are the
plant of choice for control of MIMO systems [6]]]T8], [9].
Humans manage to balance the pendulums intuitivajy,
applying actuation at the fulcrum, and their comgtéed
counterparts. But applying actuation at the top tloé
pendulum is a novel idea, as this is somehow mipstdb
creatures walk and balance in everyday life. Ofigmerson
spreads their arms and rotates them rapidly tonbala
themselves and keep from falling. There is alwgysoaess of
learning various techniques based on previous Galsgo
balance the pendulum in vertical position. In thiespnted
c\,/ase, the GIP’s fulcrum is kept in a groove so tha only
free to move on either side. Also the restoringqter is
applied through a DC motor-flywheel fixated at top. It is a
freestanding pendulum where it is swung arounduleum
to achieve stability (see Figure 1). The GIP hashmiess
actuating power makingdtweak system. The torque depends
on the gyroscopic movement of the flywheel, whére DC
motor has to be run in a min-max voltage limit (M0 This
configuration makes the GIP an interesting and hotemt for
the design of new class of controllers.

In modeling a DC motor connected to a load viaadtsthe
general approach is to neglect the nonlinear effend build a
linear transfer function representation for theuiroutput
relationship of the DC motor and the load it driv@his
assumption is satisfactorily accurate as far aveatonal
control problems are concerned. However, when ti& D
motor driven flywheel operates at various speedbkratates
in two directions, the assumption that the nonlireftects on
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the system are negligible resulted in poor congesformance
for the GIP. Indeed, efforts to use a transfer fimncbased
approach to design a classical PID controller teduh poor
stability. The remainder of this manuscript is arigad as
follow: in the next section the nonlinear dynami¢sGIP is
given. In section Ill, approximate linearizatiom¥eedback is
considered in the context of a NARMA based methogipl A
closed loop identification scheme is presented alner
NARMA controllers of increasing complexity are syesized
in section IV. Experimental results are given ictimn V,
followed by concluding remarks.

Fig. 1. The GIP is a free standing pendulum. Theréim is a single
punctual contact at the base. A V-shaped grooesvalbne degree of
freedom. No bearings are used.

Il. GIPDYNAMICAL MODEL

A. Nonlinear Dynamical Model

The GIP variables are defined as follows: anguésitfpn
from vertical (6), motor’s current ), motor’s input voltage
(u), flywheel angular positiond ), motor-flywheel system

electric resistance, the torque constant and thatiofn
coefficient of the DC motor. Pendulum parameterie a
my,Jpandl, corresponding respectively to the mass, the

moment of inertia around fulcrum, and the effectigegth
between fulcrum and centre of gravity. The moméimertia
of the flywheel isJ; .

Equations (1) to (3) describe the motor-flywheedtegn.
Equation (4) describes the non-linear gravitatisoedue that
tends to destabilize the pendulum (gravitationalll)pu
Equation (5) describes the net torque that govérasGIP
precession. The above equations lead to the twan mai
equations governing the dynamic of the GIP:

CECSEAts

2

J Tf+mp|pgsin(¢9) =J, zt—f

From equation (6) one can notice thaippears after three
derivation ofa . The later variable has the same order
dynamic as the outpd (equation 7). Therefore, the relative
degree of the system @=3. Information about relative
degree is useful to determine the structure opthat neural
network model. The total number of state varialilem (6)
and (7) is five. This number represents the ordeh® GIP
system.

LJ;
K
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B. Approximate Linearization via Feedback: an indirect

data-based approach

The idea of using feedback to enhance system ligdsas
motivated the search for feedback compensatorsaliake
the dynamic behaviour of the closed-loop systerolese as
possible to that of a linear reference model. Maoaktching
problems can be tackled by eitheodel or data-based
techniques, according to whether the availablergegm of

generated torqueT( ), and the gravitational torque acting onthe plant is a mathematical model or just a sét®f{real or

GIP’s center of gravity T, ). The gravitational acceleration is

(g). The GIP model is given by the following equaton

L9 Rizu-k 39 1)
dt dt
d?a | da .
Ji ——+b— =Kii 2
gz )
T; =Ki 3)
Tg:mpglpsin(e) 4)
_ . d?8
T Tg_det_Z (5)

simulated) data. Data-based techniques may beifiddsas
direct orindirect. Indirect data-based technique is a two-step
methodology, where a model of the plant is idesdifon the
basis of input-output data and then used in theetroased
design of a suitable compensator. Direct data-bassin
techniques attempt to provide a suitable tuning thod
compensator parameters, without explicitly ideiridy a
model of the plant. An indirect data-based apprascised in
this work.

The NARMA model is an exact description of the
input-output behaviour of a finite dimensional rineér
discrete time plant in a neighbourhood of an eluilim
point. It often leads to mathematically intractablenlinear
control equations and is therefore approximatedABMA
models for tractability. Though adequate for most

Where L, R,K,and b are respectively, the inductance, thetPplications [10], [11], [12], the ARMA model is lgn

accurate for non-affine plants with small input miigdes. To
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relax this restriction, NARMA-L2 was recently inthoced as

approximations of NARMA models with inputs largéran Form (11) allows solving for the control input tHaings
permitted with ARMA models [13]. They are nonlinegith  the system output to follow the reference trajgctarhe
respect to past outputs but linear with respe¢héocurrent resulting theoretical controller is:

input and therefore suitable for control design.

o 2 Yo (Kt d) = f1y()...u(k-D)....]

lIl. NARMA-L2 CONTROL u(k) Iy uk=D.] (12)
The control technique described in this sectiorefereed
to by feedback linearization control or NARMA-L2rdool. It The controller form in (12) can not be realizabteduse

is referred to as feedback linearization when taatpmodel
has a particular form (companion form) and as NARMA
control when the plant model can be approximatedaby

companion form. The first step in using NARMA-L2ntml Reference 5
is to identify the system to be controlled. Onendead model Error
that has been used to represent general discnetertinlinear Controller|
systems is the nonlinear autoregressive moving ageer o Plant
(NARMA) model:
y(k+d) =F[y(k), y(k =1),..., y(k =n+1),u(k), ®)
u(k =1),...,u(k —m+1)]
T
where u(k) is the system inputy(k) is the system output and IL) =
dis the relative degree. The positive integerand n are D
respectively the number of measured values of spund L
outputs. Multilayer neural networks can be usedeatify the Fig. 2. The plant model is determined by two nkuretworks
function F[] Denoting the network mapping by Nme approximating functionfandg respectively. Input and output values
identified model has the form: used for approximation are continuously recordedtdpped delay
’ lines (TDL)
9(k+d) = N[y(K), y(k=1),...,y(k —=n+1),u(k), ) input u(k) computation requires the output signg(k)
u(k =1),...,u(k —m+1)] occurring at the same time. A more practical fosrgiven by

(13). This controller is realizable fat > 2. The controller
where y(k+d) is the estimate ofy(k+d) . The system structure is shown in Figure (2).
output is wusually constrained to follow a reference
trajectoryy, (k+d) . For stable operation of the GIP the +1) = yr (k+d) = fly(k)...,u(k).... ] (13)
reference trajectory is/, (k+d)=6,(k+d)=0,0k=0 . 9y (k)....u(k).....]
Given the reference trajectory and equation (8, dbntrol
input u(k) necessary to maintain the output on its reference
trajectory is:

IV. APPLICATION TOIPNC CONTROL

In this section, the NARMA-L2 control technique is
applied to the control of a GIP plant called theelted
— Pendulum New Class IPNC [15]. The IPNC is availadik
k) = G[y(k), y(k=1),...,y(k—=n+1),y, (k+d), , ;
u(k) [y, yk=D)..... " Dy ) (10) its analog PID controller (see Figure 3). The Ptinteoller
u(k =2,...,u(k = m+1)]

_ ensures stabilization using set-point adaptatiarhrtigue.
The adjustments of the parameters of the neuralamkt This consists in integrating the error value (aifece

approximating G cannot be achieved during plank i€® petween set-point and the actual angular positidn o
control using static back propagation. The dynaofiback pendulum), and in using it to dynamically alter e-point

propagation is slow and computationally demandi@@e given by the user. Figure 4 shows the control maulehe
solution, proposed in [13], [14], is to use a Tayapansion form of a Simulink™.

of F[.] around the input. The model is given by:
The first step is an identification of the plantdet The

y(k+d) = f[y(k),...,y(k=n+D,u(k -1),..., neural network is trained to represent the forvegmamics of
u(k —m+1)] + gl y(k),...,y(k—n+1), (11) the system. Since the GIP is open loop unstable a
u(k =1),...,u(k —m+1)] (k) Proportional-Derivative with set point adaptationasv

implemented based on the analog PID at hand. Tdrerehe
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Simulink model contains two controllers: PID cotiep and
the designed NARMA-L2 controller.

Fig. 3. IPNC plant is a GIP with a an analog Ptiteoller

Cortrollir
e DAC ADC N
PD Cartrol -0
5P Mot || GIP Augle 1]
Pufirene
ad Ot

—»@—-"
'_" Plart

NARMA-LD Cartroller

Fig. 4. Simulink identification and control modéte switch allows
shifting to PID controller with integral adaptatiéor data collection
and training. Once training is complete the NARM2-tontroller can
be selected at any time during GIP real time cénifoe ADC and
DAC are from Wincon Quanser real time control lifyra

A switch block allows shifting from one controll¢o
another at any time during GIP operation. Herenteéhod of
closed-loop system identification is used since npla
input—output data are available in the form of Ri@ntrol
signal (GIP input voltage) and angular positionRGlutput
voltage with 120 volts/radian sensor transfer
respectively. It has been shown that for systemsreviboth
the output signal and plant input are measurabiel a
information on the linear regulator that relatesnpinput with
the plant output is available; the estimates testilt from the
direct method and the indirect method are idenfit].

V. EXPERIMENTAL RESULTS

The first set of training data was obtained undBrdédntrol
of the GIP and is shown in Figure 5. Training dadlection

gain)

was achieved at a sampling rate of 5 kHz using L&D
channel for the angular displacement of the pemd@nd 12
bit D/A channel for the control of the flywheel D@otor. A
controller NARMA(5,2,1), consisting of 5 delayedtput
y(k), y(k=1,...,y(k=4) ( 8 angular position), 2 delayed

input u(k),u(k =1) (PID control signal) and a one (1) layer

was trained in batch on data obtained under PIB(P=0.1

and 1=0.71). A recursive Levenberg—Marquardt migation
method is used [17]. It is an intermediate methetivben the
steepest descent and Gauss—Newton, and it has good
convergence properties. The set of data is dividéa a
training set, a testing set and a validation setrder to avoid

over fitting. A mean square error of 1.71E-05 waekieved

after 50 epochs. The identified NARMA(5,2,1) isrhesed

for real-time control of the GIP and the results shown in
Figure 6.

Angular position & Control signal (Volts)

L L L L L
25 3 35 4 4.5
Titne (5ech

L il
1.5 2 5

Fig. 5. PID control signal (+/- 10Volts) and sensanal of the
anaular dsnlacement around the vertic

To improve the performance of the learning congrol
strategy of incremental model complexity is adoptddre
complexity is defined in terms of the number of ded
layersL . Closed loop training data was generated using
NARMA( n, m, L) and then used for the identification of a

Angular position & Control signal (Volts)

EY

SioH

L . L . L
25 3 35 4 45
Time (zec)

1 1 L
] 0.5 1 15 2 5

Fig. 6. NARMA(5,2,1) control signal (+/- 10Voltand sensor signal
of the angular displacement around the vertical.

(Advance online publication: 20 August 2008)



Engineering Letters, 16:3, EL._16 3 01

NARMA( n, m, L+1), consisting ofn delayed output, TABLE |
m delayed input and. +1layers. Figure 7 illustrates the MEAN SQUARE ERROR
improvement in the performance of NARMA(5,2,3) over L 1 2 3 4 5 6

NARMA(5,2,1). In Figure 8, the IPNC-GIP plant isder
PID control for the first 5 seconds then switchewl t ~ MSEX10° 1710 0210 008 0050 0.030 0.021
NARMA(5,2,3) thereafter resulting in a clear impeovent of By increasing the number of layers from 1 to 6&frer was reduced
the steady state error. When shifting controllertiate 5 by 80 times.

seconds, the NARMA controller shows a better vatag

delivery to the DC motor compared to the PID cdidgrand

no oscillations where observed at stable position. ol

0.08
L L L L L L L
05 1 15 2z 25 3 35

Timme (zec)

Fig. 7. NARMA(5,2,3) control signal (+/- 10Voltgind sensor signal . .
of the angular displacement around the vertical. The improvement of performance by reducing MSEvesio

better network generalization for time varying refece
trajectory as shown by Figure 9. The NARMA(5,2,6hiaves
better control of the IPNC-GIP plant when compat@dhe

— ——Reference signal
Angilar displacement of pendulum

0.06 |

0.04

0.02H

-0.02

0k

Angular postion of pendulum

-0.06 |-

-0.08 g
€ NARMAS 2,1) — g NARWAS2,6) — n |
| . 1 i . 1 | . .

1 2 3 4 5 il 7 3 2 1
Titne (sec)

Angular position & Control Signal (Wolts)

: ; Fig. 9. Performance and generalization abilit@sNARMA with
4 45 5 increasing complexity.

initial 5 seconds control under NARMA(5,2,1).
3
1 6 VI. CONCLUSION
& B Nonlinear identification of a GIP in closed loopsHaeen
§ 2 performed and discussed in the paper. The two-itres
= g low speed operation of the system magnified thecesfof the
‘% P nonlinearities, and the significance of the nordinapproach
%: N to the identification problem. The GIP plant intuogs a
g novel way of balancing an inverted pendulum by the
N gyroscopic action of a flywheel, and its real ticomtrol using
-8 NARMA-L2 neural network is achieved using
-10 U : Matlab-Simulink toolbox [18]. A strategy identifygn
0 2 ¥ 5 5 10 successive models with increasing complexity
Timetshe) implemented. The learning controller displays galigation
Fig.t8. PID control for 5 first seconds followey NARMA(5,2,3) ability since it is trained on fixed set point (@gryet it is
contro.

capable to keep the GIP under control when predenith a
) varying set point reference signal.

The mean square error (MSE) method is most commonly gxperiments were conducted in closed loop undealin
used for model validation purposes and is showhaible |. regulator for initial training data collection. \iams
MSE was computed using validation data set, nad dseing
the training and testing phase. It shows that fleeeasing raphically and numerically compared at various sgint
complexny method consisting in training actualw@k using  onditions. The NARMA approach exhibits a much érett
previous network generated data allows better pedace jjentification (lower MSE) around the vertical whethe

when increasing gradually layer numher nonlinearities are more effective (friction and Ispeed). The

(Advance online publication: 20 August 2008)
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overall accuracies of the NARMA-L2 models were cangul [12] R. Boudreau, S. Darenfed, and E.C. Biden, “Appiaabf time series

: P : and polynomial learning networks to robot trajegterror control,”
using the MSE criterion. The results show thatléening Journal of Robotics and Computer-Integrated Manufacturing, vol. 12,

approach is more accurate not only at around atimasnt but no 1, pp. 73-79, March 1996.
also around the vertical position of the pendulumiO( [13] K.S. Narendra, and S.M. Mukhopadhyay, “Adaptive tomnusing
degrees) neural networks and approximate modellFEE Transactions on

neural networks, vol. 8, no 3, pp. 475-485, May, 1997.
) ) ) [14] K.S. Narendra, and K. Parthasarthy, “Identificatiand control of
The experimental study given in the present pager |  dynamical systems using neural networkEEE Transactions on

intended to constitute a basis for the ongoing \stod neural networks, vol. 1, no 1, pp. 4-27, March, 1990.

dapti trol of hanical t - . " [15] Extra Dimension Technologies (http://www.xdtech.gpnnverted
adapuve control or mechanical systems using a ines Pendulum New Class: operating manual, 2001.

approach. The nonlinear nature of neural netwoikessghem  [16] U. Forssell, and L. Ljung, “Closed-loop identifizat revisited,”
an advantage over linear models in the predictidn o Automatica, vol. 35, pp.1215-1241, 1999.

ih P C [17] J. Lampinen, “Advances in neural network modelirig,”1997 Proc.
non-linear systems. The initial closed loop idecd#ion the Tool environments and development methods for intelligent

required that the GIP be stabilized using a PIDtrobraw. systems, Oulu, Finland, pp. 28-36.

The control law removes some of the nonlineariiiesh the [18] Neural Networks Toolbox User's Guide, Version 3Be Mathworks.
plant, so a detuned control law is used which altve GIP to

exhibit more of its dynamics. This improves thelgyaf the

data used in the system identification of NARMA ralzd

Further improvements are being considered, namely
training of more robust non-linear controller usiggnetic
algorithm as a network parameter search techniesgning
an effective controller for a weak system which balance
the GIP in other positions around the vertical posiis a
challenging area of control research. Furthermove, more
degrees of freedom can be realized by adding aralted
movable neck at the DC motor and pendulum body,jcio
that the resulting pendulum will have three degreés
freedom, making suitable for tackling MIMO systems.
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