
 
 

 

  

Abstract— The objective herein is to demonstrate the 
feasibility of a real-time digital control of an inverted 
pendulum for modeling and control, with emphasis on 
nonlinear auto regressive moving average based neural 
network (NARMA).  The plant of interest is a novel 
Gyroscopic Inverted Pendulum (GIP) device that is 
nonlinear and open-loop unstable. The GIP balances a 
pendulum on its free knife-edge base using a flywheel 
driven by DC motor fixated on the top.  In this 
application, an indirect data-based technique is taken, 
where a model of the plant is identified on the basis of 
input-output data and then used in the model-based 
design of a NARMA controller.  The plant under digital 
PID control with I-adaptation provides initial stab ility at 
the beginning of a single layer NARMA neural network 
training.  NARMA models of increasing complexity are 
used successively to generate input-output data for the 
training of multilayered NARMA models.  In using a 
NARMA neural network the control laws are nonlinear 
and online adaptation of the model is possible to capture 
un-modeled or time-varying dynamics. Such an 
environment provides for experimentation, data 
collection, system identification and real time control 
strategy implementation.  
 

Index Terms— Closed loop identification, feedback 
linearization, gyroscopic inverted pendulum, neural network 
NARMA control, real-time. 

I. INTRODUCTION 

ost practical systems exhibit nonlinear behaviour. The 
three-term PID control system provides satisfactory 

performance, when operated about the point where local 
linearity holds. The resulting system performance, under a 
standard PID controller with fixed gains, is reduced when the 
controller operates over a wide region about the point of 
tuning.  One approach to alleviate this problem is to use a 
nonlinear controller to improve consistency in terms of 
performance over a range about the point of tuning. The 
inverted pendulum (IP) remains an interesting plant to control 
engineers in terms of nonlinear behaviour coupled with its 
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physical simplicity along with complete instability.  It is 
widely accepted as an adequate model of a human standing 
still.   Moreover, various types of IPs are common in academia 
for the study of controller design, e.g. LQG, PID, Fuzzy Logic 
(FL), Genetic Algorithms (GA) and Artificial Neural 
Networks (ANN) etc, alone or in combination. Most of the 
pendulums developed so far, have restoring force(s) applied 
somehow at the fulcrum. Various linearization techniques can 
be used to account for nonlinearities, such as linear 
compensators based on Jacobian linearization. Similarly, 
approximate linearization was used effectively to design a 
controller for an inverted pendulum [1]. Some authors have 
considered an alternative control action consisting of an 
oscillatory vertical force applied to the pendulum pivot [2]. 
The stabilizing effect of a fast vertical oscillation applied to 
the pendulum base is known from the early work of 
Stephenson [3]. Another control alternative is based on the 
application of a rotational torque to the pendulum base, as 
proposed in [4]. Recently hybrid LQG-Neural Controller has 
been studied in [5]. IPs with higher degrees of freedom are the 
plant of choice for control of MIMO systems [6], [7], [8], [9]. 
Humans manage to balance the pendulums intuitively, by 
applying actuation at the fulcrum, and their complicated 
counterparts. But applying actuation at the top of the 
pendulum is a novel idea, as this is somehow most biped 
creatures walk and balance in everyday life. Often a person 
spreads their arms and rotates them rapidly to balance 
themselves and keep from falling. There is always a process of 
learning various techniques based on previous set goals to 
balance the pendulum in vertical position. In the presented 
case, the GIP’s fulcrum is kept in a groove so that it is only 
free to move on either side. Also the restoring torque is 
applied through a DC motor-flywheel fixated at the top. It is a 
freestanding pendulum where it is swung around the fulcrum 
to achieve stability (see Figure 1). The GIP has much less 
actuating power making it a weak system. The torque depends 
on the gyroscopic movement of the flywheel, where the DC 
motor has to be run in a min-max voltage limit (±10 V).  This 
configuration makes the GIP an interesting and novel plant for 
the design of new class of controllers. 

In modeling a DC motor connected to a load via a shaft, the 
general approach is to neglect the nonlinear effects and build a 
linear transfer function representation for the input–output 
relationship of the DC motor and the load it drives. This 
assumption is satisfactorily accurate as far as conventional 
control problems are concerned. However, when the DC 
motor driven flywheel operates at various speeds and rotates 
in two directions, the assumption that the nonlinear effects on 
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the system are negligible resulted in poor control performance 
for the GIP. Indeed, efforts to use a transfer function based 
approach to design a classical PID controller resulted in poor 
stability. The remainder of this manuscript is organized as 
follow: in the next section the nonlinear dynamics of GIP is 
given. In section III, approximate linearization via feedback is 
considered in the context of a NARMA based methodology. A 
closed loop identification scheme is presented whereby 
NARMA controllers of increasing complexity are synthesized 
in section IV. Experimental results are given in section V, 
followed by concluding remarks. 

 

II.  GIP DYNAMICAL MODEL 

A. Nonlinear Dynamical Model 

The GIP variables are defined as follows: angular position 
from vertical (θ ), motor’s current (i ), motor’s input voltage 
( u ), flywheel angular position (α ), motor-flywheel system 
generated torque (fT ), and the gravitational torque acting on 

GIP’s center of gravity (gT ). The gravitational acceleration is 

( g ). The GIP model is given by the following equations: 
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Where ,,, KRL and b  are respectively, the inductance, the 

electric resistance, the torque constant and the friction 
coefficient of the DC motor. Pendulum parameter’s are 

pp Jm , and pl  corresponding respectively to the mass, the 

moment of inertia around fulcrum, and the effective length 
between fulcrum and centre of gravity. The moment of inertia 
of the flywheel is fJ . 

Equations (1) to (3) describe the motor-flywheel system. 
Equation (4) describes the non-linear gravitational torque that 
tends to destabilize the pendulum (gravitational pull). 
Equation (5) describes the net torque that governs the GIP 
precession. The above equations lead to the two main 
equations governing the dynamic of the GIP: 
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From equation (6) one can notice that u  appears after three 

derivation ofα . The later variable has the same order 
dynamic as the output θ  (equation 7). Therefore, the relative 
degree of the system is 3=d . Information about relative 
degree is useful to determine the structure of the plant neural 
network model. The total number of state variables from (6) 
and (7) is five. This number represents the order of the GIP 
system. 

B. Approximate Linearization via Feedback: an indirect 
data-based approach 

The idea of using feedback to enhance system linearity has 
motivated the search for feedback compensators able to make 
the dynamic behaviour of the closed-loop system as close as 
possible to that of a linear reference model.  Model matching 
problems can be tackled by either model or data-based 
techniques, according to whether the available description of 
the plant is a mathematical model or just a set of I/O (real or 
simulated) data. Data-based techniques may be classified as 
direct or indirect.  Indirect data-based technique is a two-step 
methodology, where a model of the plant is identified on the 
basis of input-output data and then used in the model-based 
design of a suitable compensator. Direct data-based design 
techniques attempt to provide a suitable tuning of the 
compensator parameters, without explicitly identifying a 
model of the plant. An indirect data-based approach is used in 
this work. 

The NARMA model is an exact description of the 
input-output behaviour of a finite dimensional nonlinear 
discrete time plant in a neighbourhood of an equilibrium 
point. It often leads to mathematically intractable nonlinear 
control equations and is therefore approximated by ARMA 
models for tractability. Though adequate for most 
applications [10], [11], [12], the ARMA model is only 
accurate for non-affine plants with small input magnitudes. To 

 
 
Fig. 1.  The GIP is a free standing pendulum. The fulcrum is a single 
punctual contact at the base. A V-shaped groove allows one degree of 
freedom. No bearings are used. 
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relax this restriction, NARMA-L2 was recently introduced as 
approximations of NARMA models with inputs larger than 
permitted with ARMA models [13]. They are nonlinear with 
respect to past outputs but linear with respect to the current 
input and therefore suitable for control design. 

III.  NARMA-L2  CONTROL 

The control technique described in this section is refereed 
to by feedback linearization control or NARMA-L2 control. It 
is referred to as feedback linearization when the plant model 
has a particular form (companion form) and as NARMA-L2 
control when the plant model can be approximated by a 
companion form. The first step in using NARMA-L2 control 
is to identify the system to be controlled. One standard model 
that has been used to represent general discrete-time nonlinear 
systems is the nonlinear autoregressive moving average 
(NARMA) model: 
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where )(ku is the system input, )(ky is the system output and 

d is the relative degree. The positive integers m and n  are 
respectively the number of measured values of inputs and 
outputs. Multilayer neural networks can be used to identify the 
function F[.]. Denoting the network mapping by N[.] the 
identified model has the form: 
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where )(ˆ dky + is the estimate of )( dky + . The system 

output is usually constrained to follow a reference 
trajectory )( dkyr + . For stable operation of the GIP the 

reference trajectory is 0,0)()( ≥∀=+=+ kdkdky rr θ . 

Given the reference trajectory and equation (8), the control 
input )(ku  necessary to maintain the output on its reference 

trajectory is: 
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The adjustments of the parameters of the neural network 
approximating G cannot be achieved during plant real time 
control using static back propagation. The dynamic of back 
propagation is slow and computationally demanding. One 
solution, proposed in [13], [14], is to use a Taylor expansion 
of F[.] around the input. The model is given by: 
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Form (11) allows solving for the control input that brings 

the system output to follow the reference trajectory. The 
resulting theoretical controller is: 
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The controller form in (12) can not be realizable because 

input )(ku  computation requires the output signal )(ky  

occurring at the same time. A more practical form is given by 
(13). This controller is realizable for 2≥d . The controller 
structure is shown in Figure (2). 
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IV. APPLICATION TO IPNC CONTROL  

In this section, the NARMA-L2 control technique is 
applied to the control of a GIP plant called the Inverted 
Pendulum New Class IPNC [15]. The IPNC is available with 
its analog PID controller (see Figure 3). The PID controller 
ensures stabilization using set-point adaptation technique. 
This consists in integrating the error value (difference 
between set-point and the actual angular position of 
pendulum), and in using it to dynamically alter the set-point 
given by the user. Figure 4 shows the control model in the 
form of a Simulink™. 

 
The first step is an identification of the plant model. The 

neural network is trained to represent the forward dynamics of 
the system. Since the GIP is open loop unstable a 
Proportional-Derivative with set point adaptation was 
implemented based on the analog PID at hand. Therefore, the 

 
 
Fig. 2.  The plant model is determined by two neural networks 
approximating functions f and g respectively. Input and output values 
used for approximation are continuously recorded by tapped delay 
lines (TDL) 
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Simulink model contains two controllers: PID controller and 
the designed NARMA-L2 controller. 

 

 
A switch block allows shifting from one controller to 

another at any time during GIP operation. Here the method of 
closed-loop system identification is used since plant 
input–output data are available in the form of PID control 
signal (GIP input voltage) and angular position (GIP output 
voltage with 120 volts/radian sensor transfer gain) 
respectively. It has been shown that for systems where both 
the output signal and plant input are measurable, and 
information on the linear regulator that relates plant input with 
the plant output is available; the estimates that result from the 
direct method and the indirect method are identical [16]. 

 

V. EXPERIMENTAL RESULTS 

The first set of training data was obtained under PID control 
of the GIP and is shown in Figure 5. Training data collection 

was achieved at a sampling rate of 5 kHz using 16 bit A/D 
channel for the angular displacement of the pendulum and 12 
bit D/A channel for the control of the flywheel DC motor. A 
controller NARMA(5,2,1), consisting of 5 delayed output 

)4(),...,1(),( −− kykyky  ( θ angular position), 2 delayed 

input )1(),( −kuku (PID control signal) and a one (1) layer 

was trained in batch on data obtained under PID (P=6, D=0.1 
and I=0.71). A recursive Levenberg–Marquardt minimization 
method is used [17]. It is an intermediate method between the 
steepest descent and Gauss–Newton, and it has good 
convergence properties. The set of data is divided into a 
training set, a testing set and a validation set in order to avoid 
over fitting. A mean square error of 1.71E-05 was achieved 
after 50 epochs. The identified NARMA(5,2,1) is then used 
for real-time control of the GIP and the results are shown in 
Figure 6. 

 
To improve the performance of the learning controller a 

strategy of incremental model complexity is adopted. Here 
complexity is defined in terms of the number of hidden 
layersL . Closed loop training data was generated using 
NARMA( n , m , L ) and then used for the identification of a 

 
Fig. 6.  NARMA(5,2,1) control signal (+/- 10Volts), and sensor signal 
of the angular displacement around the vertical. 

Fig. 5.  PID control signal (+/- 10Volts) and sensor signal of the 
angular displacement around the vertical. 

 
 
Fig. 3.  IPNC plant is a GIP with a an analog PID controller 

 
Fig. 4.  Simulink identification and control model: the switch allows 
shifting to PID controller with integral adaptation for data collection 
and training. Once training is complete the NARMA-L2 controller can 
be selected at any time during GIP real time control. The ADC and 
DAC are from Wincon Quanser real time control library. 
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NARMA( n , m , 1+L ), consisting of n delayed output, 
m delayed input and 1+L layers. Figure 7 illustrates the 
improvement in the performance of NARMA(5,2,3) over 
NARMA(5,2,1). In Figure 8, the IPNC-GIP plant is under 
PID control for the first 5 seconds then switched to 
NARMA(5,2,3) thereafter resulting in a clear improvement of 
the steady state error. When shifting controller at time 5 
seconds, the NARMA controller shows a better voltage 
delivery to the DC motor compared to the PID controller and 
no oscillations where observed at stable position. 

 

 
The mean square error (MSE) method is most commonly 

used for model validation purposes and is shown in Table I. 
MSE was computed using validation data set, not used during 
the training and testing phase. It shows that the increasing 
complexity method consisting in training actual network using 
previous network generated data allows better performance 
when increasing gradually layer numberL . 

 
The improvement of performance by reducing MSE allows 

better network generalization for time varying reference 
trajectory as shown by Figure 9. The NARMA(5,2,6) achieves 
better control of the IPNC-GIP plant when compared to the 
initial 5 seconds control under NARMA(5,2,1). 

VI. CONCLUSION 

Nonlinear identification of a GIP in closed loop has been 
performed and discussed in the paper. The two-directional 
low speed operation of the system magnified the effects of the 
nonlinearities, and the significance of the nonlinear approach 
to the identification problem. The GIP plant introduces a 
novel way of balancing an inverted pendulum by the 
gyroscopic action of a flywheel, and its real time control using 
NARMA-L2 neural network is achieved using 
Matlab-Simulink toolbox [18]. A strategy identifying 
successive models with increasing complexity is 
implemented. The learning controller displays generalisation 
ability since it is trained on fixed set point (zero) yet it is 
capable to keep the GIP under control when presented with a 
varying set point reference signal. 

Experiments were conducted in closed loop under linear 
regulator for initial training data collection. Various 
NARMA-L2 controllers were designed and results were 
graphically and numerically compared at various set point 
conditions. The NARMA approach exhibits a much better 
identification (lower MSE) around the vertical where the 
nonlinearities are more effective (friction and low speed). The 

 
Fig. 9.  Performance and generalization abilities for NARMA with 
increasing complexity. 

TABLE I 
MEAN SQUARE ERROR  

L 1 2 3 4 5 6 

MSE × 105 1.710 0.210 0.085 0.050 0.030 0.021 

By increasing the number of layers from 1 to 6 the error was reduced 
by 80 times. 

 
Fig. 8.  PID control for 5 first seconds followed by NARMA(5,2,3) 
control. 

 
Fig. 7.  NARMA(5,2,3) control signal (+/- 10Volts), and sensor signal 
of the angular displacement around the vertical. 
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overall accuracies of the NARMA-L2 models were compared 
using the MSE criterion. The results show that the learning 
approach is more accurate not only at around zero set point but 
also around the vertical position of the pendulum (±10 
degrees).  

 
The experimental study given in the present paper is 

intended to constitute a basis for the ongoing study on 
adaptive control of mechanical systems using a nonlinear 
approach. The nonlinear nature of neural networks gives them 
an advantage over linear models in the prediction of 
non-linear systems. The initial closed loop identification 
required that the GIP be stabilized using a PID control law. 
The control law removes some of the nonlinearities from the 
plant, so a detuned control law is used which allows the GIP to 
exhibit more of its dynamics. This improves the quality of the 
data used in the system identification of NARMA models. 

 
Further improvements are being considered, namely 

training of more robust non-linear controller using genetic 
algorithm as a network parameter search technique. Designing 
an effective controller for a weak system which can balance 
the GIP in other positions around the vertical position is a 
challenging area of control research. Furthermore, two more 
degrees of freedom can be realized by adding a controlled 
movable neck at the DC motor and pendulum body joint, so 
that the resulting pendulum will have three degrees of 
freedom, making suitable for tackling MIMO systems. 
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