
 
 

 

  
Abstract— A numerical scheme for bubble trajectories 

including their collisions is developed. An Eulerian-Lagrangian 
computational scheme is used to study the bubble trajectories. 
The 2D averaged Navier stokes equations are solved. The 
SIMPLEC algorithm is used to relate the pressure to velocity. A 
one-way coupling is assumed and the effects of the bubbles on 
carrier flow are neglected. The bubble equation of motion 
includes the drag, buoyancy, pressure gradient, Saffman lift 
and bubble volume change forces. The variation of the bubble 
radius is modelled using the Rayleigh-Plesset equation. The 
Kraichnan model is used to simulate the instantaneous 
turbulence fluctuation velocities. The hard sphere collision 
model is used to model the bubble collisions and the effects of 
bubble rotations are neglected.  Trajectories of micro-bubbles 
in the near wall region are investigated, and the rate of 
collisions and bubble settling are studied. The results are 
compared with other simulations and good agreement is 
observed. 
 

Index Terms—CFD, Two phase flow, Bubble, Collision.  
 

I. INTRODUCTION 
Bubble dynamics has been the subject of intensive 

theoretical and experimental studies since Lord Raleigh 
(1917) found the well-known analytic solution of this 
problem for inviscid liquids. Plesset developed Rayleigh 
works and obtained a famous equation for bubble radius, 
known as Rayleigh – Plesset (RP) equation [1]. The RP 
equation described the dynamics of a spherical void or gas 
bubble in viscous liquids and is also used as a first 
approximation in more complex problem such as cavitation 
near solid boundaries. 

Bubbly flow could be analyzed as two fluids in the 
Eulerian/Eulerian approach, or as a continuum phase and 
another bubble phase in the Eulerian/Lagrangian or trajectory 
approach. The bubble equation of motion is solved 
simultaneously with the RP equation to determine its 
trajectory (Eulerian/Lagrangian method).  

Meyer et al. developed a computer code to model bubble 
trajectory, consisting of a numerical solution to the RP 
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equation coupled to a set of trajectory equations [2]. Using 
the code, trajectories and growths were computed for bubble 
of varying initial sizes.  

Hsiao and Pauley completed a Reynolds-averaged 
Navier-Stokes computation of a tip vortex flow from a 
finite-span hydrofoil [3]. The Rayleigh-Plesset equation for 
bubble growth was coupled with Johnson and Hsieh’s [4] 
trajectory equation to track single microbubbles through the 
steady-state flow field and thereby infer cavitation inception.  

Farrell developed an Eulerian/Lagrangian computational 
procedure for the prediction of the cavitation inception [5]. 
The trajectories were computed using Newton’s second law 
with models for various forces acting on the bubble. The 
growth was modeled using RP equation.  

Raoufi et al. used the Eulerian/Lagrangian approach to 
simulate micro bubble trajectory in a gate slot of dam [6]. 

 In works mentioned above, collision of bubbles was 
ignored. Since direct simulation of particle, droplet and 
bubble collisions is associated with significant increase in the 
computational cost, many models for collision were proposed 
in the literature. Dukowicz simulated droplets collision by 
using the representative particle technique [7].  O'Rourke 
proposed an algorithm for collisions in sprays that is widely 
used in commercial CFD codes [8].  O'Rourke's method was 
based on a stochastic estimatation of collisions.  Sommerfeld 
and Zivkovic simulated particle motion in pneumatic 
conveying using particle-particle and particle-wall collision 
models [9].  

Tsuji et al. provided a discrete particle simulation of a 
two-dimensional fluidized bed using a soft sphere model [10]. 
In the soft-sphere model, the collisions between particles and 
between particle and wall were evaluated using Hooke’s 
linear spring and dashpot models. Their model was further 
modified by Hoomans et al. who developed a new hard 
sphere collision model, which was used by a number of 
researchers [11].  Goldschmidt et al. [12] and Lu et al. [13] 
studied solid particles and bubbles in fluidized bed using 
discrete hard-sphere model. This model was used to simulate 
flows in three-phase bubble column by Zhang and Ahmadi 
[14].  

In this study, an Eulerian–Lagrangian method for 
liquid–gas flows in channel is developed. The channel had a 
length of 1 m with a width of 0.2 m. Velocity of flow in the 
channel is considered 20 m/s. In this model, the liquid is the 
continuous phase and the bubbles are treated as the dispersed 
discrete phase. The micro bubbles are assumed to remain 
spherical and their size variations are modelled using the 
Rayleigh-Plesset equation. The volume-averaged, 
incompressible Navier–Stokes equation is solved for the 
liquid phase. The Kraichnan model is used to simulate the 
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instantaneous velocity fluctuations. 
 The bubble motions are simulated by the Lagrangian 

trajectory analysis procedure. For dilute bubble volume 
fractions, the effects of bubbles on the carrier fluid are 
neglected and a one-way coupling is used.  Forces acting on 
the bubble include drag, buoyancy, pressure gradient, 
Saffman lift and volume variation. Bubble–bubble collisions 
are included in the analysis using a hard sphere collision 
model along the line of Hoomans et al. [11].  A test case is 
used to validate the bubbles collision algorithm. The 
analytical and numerical results are compared and good 
agreement was found. A number of micro-bubble are 
released in the near wall region ( 400 << +y ) and their 
trajectories include their collisions are investigated.  Rate of 
collision and settling of bubbles are studied.   

 

II. FLOW SIMULATION 
Since the flow is turbulent, it is important to use an 

appropriate turbulence model for evaluating the mean flow 
field.  Reynolds stress transport model (RSTM) of Launder et 
al. [15] is used in this study.  This model accounts for the 
evolution of individual turbulence stress components, and is 
well suited for evaluating anisotropic turbulence stresses that 
are needed for the present study. 

A. Mean-flow model 
For an incompressible fluid flow, the equation of 

continuity and balance of momentum for the mean motion are 
given as: 
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Where iu  is the mean velocity, ix is the position, t is the 

time, p is the mean pressure, ρ is the constant mass density, 
ν is the kinematic viscosity, and 

jiij uuR ′′= is the Reynolds 

stress tensor.  Here, iii uuu −=′  is the velocity fluctuation 
component. 

The RSTM provides transport equations for evaluation of 
the turbulence stresses. i.e, 
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Here the turbulence production is defined as, 
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Where P is the fluctuation kinetic energy production. In 

Equation (2) tv  is the turbulence (eddy) viscosity; and 

6.0,8.1,0.1 21 === CCkσ  are empirical constants. 
The transport equation for the turbulence dissipation 

rate,ε , is given as: 
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Here iuiuk ′′=
2

1  is the fluctuation kinetic energy. The 

values of constants are [15]: 
 

92.12,44.11,3.1 === εεεσ CC                                       (5) 
 

B. Velocity Fluctuations 
In this study, the Gaussian random field model developed 

by Kraichnan [16] is used to simulate a homogenous and 
isotropic pseudo-turbulent flow field.  Maxey used the 
technique earlier to study the gravitational settling of small 
particles in a randomly fluctuating flow field [17], and Fan 
and Ahmadi [18] used Kraichnan model to study the 
turbulent diffusivity of ellipsoidal particles.  The expression 
for the instantaneous velocity field is given by: 
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where nnn k)p(k ×= ζ  and nnn k)q(k ×= ξ .The 

components of vector ζ and ξ and the frequency ω are 
independent zero mean unit variance Gaussian random 
variables, while each component of k is picked from a 
population of zero mean Gaussian random numbers with a 
standard deviation of 1/2.  Here, N is the number of the terms 
considered in the series.  It was shown by Fan and Ahmadi 
that the velocity correlation of the digitally simulated field 
obtained with N = 100 are in good agreement with the 
theoretical expression [18].  Equation (6) is in 
non-dimensional form with the dimensionless quantities 
given by: 
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Where l0 and u0 denote the characteristics length and 

velocity scales of turbulence. 
Normal component of turbulence fluctuations near a wall 

has a profound effect on the settling rate of bubbles.  
Therefore, its magnitude must be correctly evaluated for 
small values of y.  The following expression for the normal 
velocity fluctuation is used [18]:  
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Where v′  the corrected velocity fluctuation in y direction 

and  
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C. Lagrangian approach for bubble motion 
The motion equation of a spherical particle in a fluid has 

been derived by Maxey and Riley [19].  For a spherical 
bubble with radius R, the equation of motion is given as, 
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Here terms with the subscript b are related to the bubble 

and those without a subscript are related to carrying fluid. 
U and bU are fluid and bubble velocity, respectively. bV and 

bA  are the bubble volume and projected area, which are 
equal to 23/4 Rπ and 2Rπ respectively. The bubble drag 
coefficient DC  in equation (10) can be determined by using 
the empirical equation of Langmuir and Blodgett [20]: 
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The physical meaning of each term in the right hand side of 

equation (10) is as follows. The first term is the buoyancy 
force. The second term is due to the pressure gradient in the 
fluid surrounding the particle. The third term is the drag force. 
The fourth term is the force to accelerate the virtual “added 
mass” corresponding fluid. The fifth term is the force due to 
the bubble volume variation, and the last term is the Saffman 
shear lift force. By dividing both sides of equation (10) 
to bVρ , the equation for bubble motion becomes: 
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Where ( )bUU

rr
−  is relative velocity between bubble and 

fluid which is computed at the centre of bubble.  
 

D. Improved Spherical Bubble Dynamics Model  
The behaviour of spherical bubble in a pressure field is 
usually described by the Rayleigh-Plesset equation [1]: 
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Where R  is the time dependent bubble radius, ρ  is the 

liquid density, vp  is the vapor pressure, gp is the gas 

pressure inside the bubble, p is the ambient pressure local to 
the bubble, μ  is the liquid viscosity, and γ is the surface 
tension. For a perfect gas undergoing a polytrophic 
compression, the following relationship relates the gas 
pressure and the bubble radius: 
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Where 0gp  and 0R  are the initial gas pressure and bubble 

radius respectively and K is the polytropic gas constant. The 
internal process inside the bubble is assumed to be isentropic.  
In equation (13) the bubble grows principally in response to a 
change in the ambient pressure through gaseous expansion 
and increase in the vapor mass within the bubble. A one-way 
coupling analysis is adopted here and the effect of the bubble 
on the liquid is ignored.  Equation (13) does not take into 
account the effect of slip velocity between the bubble and the 
carrier liquid. To account for this slip velocity, an additional 
pressure term ( ) 4/

2
bUU
rr

−ρ  is added to the classical 
Rayleigh-Plesset equation [21]:  
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Virtually all liquids contain some dissolved gas. Indeed it 

is virtually impossible to eliminate this gas from any 
substantial liquid volume. If the nucleation bubble contains 
some gas, then the pressure in the bubble is the sum of the 
partial pressure of this gas,

Gp , and the vapor pressure. Hence 
the equilibrium pressure in the liquid is: 
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Where R  is the time dependent bubble radius, vp is the 

vapour pressure, gp is the gas pressure inside the bubble, 

p is the ambient pressure local to the bubble, γ is the 
surface tension. In the context of cavitation flow, it is 
appropriate to assume that the microbubble of radius 0R  is in 
equilibrium at 0t =  in the fluid at pressure p so that: 
 

0

2
)(0 R

TVppGp
γ

−∞−=                                      (17) 

 

E. Collision model 
Analysis of bubbles collision in this study is based on the 

hard sphere collision model developed by Hoomans et al with 
the following assumptions [11]:  

- Two-dimensional movement is considered.   
- Bubbles are spherical and quasi-rigid. 
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- Collisions are binary and instantaneous with point 
contact. 

- Interaction forces are impulsive and all other forces are 
negligible during collision. 

- The effects of the rotation of bubbles are neglected. 
If a and b are discrete-phase collision pairs, the velocities 

of a and b after a collision are given as: 
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 Where u and v are components of velocity and subscripts 
1 and 2 refer, respectively, to before and after collision: 
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Here, e is the restitution coefficient; μ is the friction 
coefficient, and B and C are collision constants given as: 
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Where aR and bR are, respectively, the radius of particles 

a and b, and aI  and bI  are the corresponding moments of 
inertia given by: 
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The slip and stick conditions during the collision are 

determined according to 
 

Bpyuu ba μ≥− 11        Sliding 
Bpyuu ba μ<− 11        Sticking                                          (22) 

 
In this study, friction coefficients of 0.02 and restitution 

coefficients of 0.2 are used [14].   
 

III. VALIDATION OF COLLISION MODEL 
To validate the algorithm used in the bubbles collision, a 

modified version of a test used by Schmidt and Rutland was 
performed [22]. This test compares the number of collisions 
predicted by a specified collision model with the number of 
collisions obtained from the analytical or mathematical 
expression for the integral of the collision probability. 

The domain for this test consisted of a two-dimensional, 
4×4 grid with solid walls. The width of domain is unit. The 

PN particles uniformly distributed throughout the domain. 
The radiuses of particles were uniformly distributed from the 

interval 0 to m10*5 7− . Likewise, the x-component of the 
particle velocities were sampled uniformly from the interval 
0  to 1 m/s , and the y-component was set to zero. A single 
time step of 410− s was used.  

Over a single time step, the number of predicted particle 
collisions was counted in each collision cell and totalled. The 
number of predicted particles collision was then compared to 
the expected number of collisions in each cell, calculated 
from the following analytical or mathematical expression 
[22]: 
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Where, PN , ∀ and M are the number of particles in the 

collision cell, volume of each and number of collision, 
respectively.  The relative error was then calculated using 
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                                              (24)                 
 

Since the collision model is highly stochastic in nature, this 
relative error was averaged over forty independent runs in 
order to minimize random effects. Results are shown in Fig. 
1. A good agreement between the present computation and 
analytical result is achieved.  

 

 
Fig 1: Relative error of collision model compared with the analytical solution 

 

IV. NUMERICAL SOLUTION PROCEDURE  
Since the bubble is considered very small, the interaction 

between bubble and fluid-phase can be ignored. The 
Navier-Stokes equation for incompressible flow is solved.  
The SIMPLEC algorithm is used for coupling the velocity 
and pressure. RSTM model is used to model turbulence. 
Maximum relative error is considered smaller than 0.0005. A 
grid with about 20,000 cells is generated for analyzing the 
flow. The grid independency is checked in order to make sure 
that the grid numbers is sufficient and has enough accuracy.  
The boundary condition of fully developed flow is used for 
the channel inlet and outlet. Fig. 2 illustrates the boundary 
conditions used for numerical simulation. Sticking condition 
for the bubbles is considered in the walls. It is assumed that 
the bubbles are eliminate from the simulation when collide to 
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wall of channel.          
The Gaussian random field model is used to simulate the 

instantaneous fluctuation of velocity. Velocity profile in x 
direction with considering fluctuations at a section of the 
channel is shown in Fig. 3. 

 
 
 

 
Fig. 2: Solution domain and boundary conditions 

 

 
Fig. 3: Instantaneous velocity profile in x-direction by using Kraichnan 

model  
 

The position and velocity of bubbles are obtained using 
Eq. (11).  A fourth-order Runge- Kutta method is used to 
solve this equation. Fluid velocity in centre of bubbles is used 
to find the bubbles slip velocity. In the hard-sphere approach, 
a sequence of binary collisions is processed by using one 
collision at a time. A collision list has to be compiled and a 
corresponding collision time needs to be stored. This requires 
a considerable CPU time. In order to reduce the required 
CPU time, an algorithm is used.  In this algorithm, a new grid 
for discrete phase is generated again. For each bubble, a list 
of neighbor bubble is stored and only bubbles that are in the 
same or neighbour cell are checked for possible collision. For 
this purpose, a 0.5 cm rectangular grid is used for the bubbles. 
Several fluid control volumes are taken to represent an 
elementary volume in the Eulerian coordinate system. Each 
bubble in the fluid control volumes represents a bubble 
control volume. Every bubble within the fluid control 
volumes (bubble i) and its adjacent four fluid control 
volumes are included in a list, so that this collision searching 
is only limited to the bubble i located and its nearest four 
neighbor fluid control volume. After obtaining collisions, the 
shortest collision time of each bubble is determined.  If the 
overall shortest collision time is smaller than the time-step of 
gas-phase, the bubble positions are updated by this shortest 
overall collision time. In the next step, new radius of bubbles 
is obtained by using the Rayleigh-Plesset equation. The mass 
of micro bubbles is considered fixed in the simulation. A 
flow chart of numerical solution procedure is indicated in 
Fig.  4. 
 

V. RESULTS AND DISCUSSION 
Number of 1000 and 1500 micro bubble are released in the 

near wall ( 400 << +y ) and their trajectory with considering 
collision are investigated. Initial velocity of micro bubble is 
20 m/s. Initial radius of micro bubbles is randomly 
considered between 1 and 10 micron.  

 

 
 

Fig. 4: Flow chart of numerical solution  
 
Cavitation occurs by sudden expansion and the volumetric 

oscillation of bubble nuclei in the water due to the ambient 
pressure change. Therefore, Micro bubbles are initial nuclei 
for formation of the hydrodynamic cavitation. These micro 
bubbles convert to cavitation bubble when they reach to the 
low-pressure regions. In these regions, abrupt growth is 
created and bubbles radius enlarges suddenly. Cavitation 
could be predicted with tracing the microbubbles’ trajectory. 
Fig. 5 shows micro bubbles trajectory in length of the 
channel. It is shown that a few of micro bubbles are able to 
separate from boundary points of the channel wall.  If these 
micro bubbles situate in appropriate location and pressure 
decrease enough, they can grow and convert to cavitation 
bubbles. 

  

 
Fig. 5: Micro bubbles trajectory in the channel (The initial bubble radius is 

randomly considered between 1 and 10 micron and located randomly in 

400 << +y ) 

 
  The radius of bubble changes along the channel length 

due to pressure changes. Radius variation of a bubble in a 
time interval is indicated in Fig 6. Radius of bubbles is 
affected by pressure gradient and surface tension forces. The 
variation of bubble radius is oscillating. The interaction of 
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surface tension and external pressure causes this oscillating 
variation of radius.  

 
Fig. 6: Radius variation of a micro bubble as function of time (Initial radius 

of bubble is 10μm )   

The dispersion of microbubbles along the channel is 
presented in Fig 7. The initial bubble radius is randomly 
considered between 1 and 10 micron. The bubbles are 
initially located randomly in 400 << +y . The distribution of 
bubbles is similar to turbulent velocity profile. But, this 
distribution changes after a few time steps. This change of 
distribution could be related the change of bubbles’ volume 
and the buoyancy forces.  

The bubbles settle by their weight and velocity fluctuations 
near wall. As indicated in Fig. 8, many the micro bubbles 
collide to wall. Micro bubbles settle in start of movements 
rapidly. Then, the rate of settling of micro bubbles decrease 
gradually. The figure shows comparison of results with 1000 
and 1500 micro bubble for number of settled bubbles. The 
shape of both curves is same and with increasing number of 
bubbles, rate of settling increase, as expected. The velocity 
fluctuations of fluid near wall can cause increasing drag force 
acting on the micro bubbles in y direction, and the bubbles 
may collide to wall and settle. 

Because micro bubbles are very small, the probability of 
their collision in a large domain is low. As indicated in Fig. 9, 
since released micro bubbles are located in the vicinity each 
other first, the rate of collision is more. As indicated in the 
figure, number of collisions does not decrease with 
increasing time gradually. It is shown that the rate of collision 
increase in this time interval sometime. This can occur 
because of random nature of velocity fluctuations. The 
velocity fluctuation can cause aggregation of micro bubbles 
and therefore increasing the rate of collision.  

Comparison of results with 1000 and 1500 micro bubble 
for rate of collision is also shown in the figure. Since the 
bubbles are released from near the wall, 40y0 << + , collision 
of the micro bubbles together may cause settling of the 
bubbles. Therefore, rate of collision also affect on rate 
settling, increasing of rate collision increase settling of 
bubbles. At beginning of simulation, rate of collision is more 
than other times. This may increase rate of settling. 

 

 

 

 

 

 
Fig. 7: The location of moving micro bubbles in different sections of the 

channel 
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Fig. 8: Comparison of number of settled bubbles as function of time in the 

channel for 1000 and 1500 micro bubble 

 

 
Fig. 9: Comparison of collision as function of time in the channel for 1000 and 

1500 micro bubble 

VI. CONCLUSIONS 
 
In this paper, the micro bubbles trajectory with considering 

collisions in the channel, that has simple geometry and low 
computational cost, is studied. The Eulerian – Lagrangian 
approach is used to analyze two-phase flow. A 
two-dimensional is used to simulate flow field. The RSTM is 
used to simulate turbulent stresses. The components of 
instantaneous fluctuation velocity are simulated using the 
Gaussian random field model. Analysis of bubbles collision 
is done using hard sphere collision model. For validation of 
the collision model is used from a test case. The numerical 
results have good agreement with the analytical results. 
Trajectories of micro-bubbles in the near wall region were 
investigated, and the rate of collisions and bubble settling rate 
were studied.  

This method can be used to predict and estimate cavitation 
using micro bubbles trajectory in industrial applications.  

 

APPENDIX 
 
                               Nomenclature 

R :     Bubble radius  

0R :    Bubble initial radius 

R& :     Radius surface velocity 
R&& :     Radius surface acceleration 
Re :   Reynolds number 
t :       Time 
U :     Relative velocity (bubble-fluid) 

fU :   Fluid velocity 

bU :    Bubble velocity 
                                        Greek letters 
v :      Kinematic viscosity   
ρ :      Density   
                                         Subscripts 
f :      Fluid  
b :       Bubble       
G :      Gas  
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