
 
 

 

  
Abstract—This paper proposes a robust suppression sliding 

mode controller design for uncertain Duffing-Holmes chaotic 
systems. A form of time-varying second-order differential 
equation is organized to describe the dynamical system. Control 
system performance is proved robust against parametric 
uncertainties and external disturbances. The control input 
involves a discontinuous switching control input which is used 
to deal with the uncertainties and disturbances. Illustrative 
example is given. Input chattering is remarkably eliminated 
and trajectory tracking is effectively achieved. 

Index Terms—Chaos, Duffing-Holmes equation, robustness, 
sliding mode control.  
 

I. INTRODUCTION 

Robust stabilization of uncertain systems is an important 
topic in the field of control. Many approaches account for the 
uncertainties under various hypotheses. Sliding mode control 
(SMC) is one of the popular strategies to deal with uncertain 
control systems [1-6]. The main feature of SMC is that it 
consists of a discontinuous control that drives the control 
system onto a specified sliding surface and maintains the 
system on this surface. When the system trajectory reaches 
the sliding surface, the robustness against parameter 
variations and external disturbances can be obtained. Various 
applications of SMC have been found, such as robotic 
manipulators, aircrafts, DC motors, and so on.  

Chaos exists in many engineering systems such as 
electronic circuits, power converters, chemical systems, and 
so on [7]. A fundamental characteristic of a chaotic system is 
its extreme sensitivity to initial conditions; that is, small 
differences in the initial state can lead to extraordinary 
differences in the system state. Chaos control has been of 
broad interest since the early 1990s. A pioneering work of Ott, 
et al. proposed the well-known OGY control method [8]. 
Soon the OGY method was modified by Shinbort et al. to 
reduce the time required for stabilizing the target orbit [9]. 
Later, the control of chaos in a Bonhoeffer-van de Pol 
oscillator using a feed-forward back-propagating neural 
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network trained on two different control schemes, the OGY 
control algorithm and the Pyragas method of delayed 
continuous feedback control, was proposed [10]. Recently, 
various methods have been proposed to control chaotic 
systems, such as neural network, fuzzy control, adaptive 
control, sliding mode control, etc [10-13].  

In this paper, a systematic robust sliding mode control for 
Duffing-Holmes chaotic system is proposed. The goal is to 
achieve system robustness against parameter variations and 
external disturbances. The control input consists of a 
continuous nominal control part and a discontinuous 
switching control part. The former is the equivalent control 
for the nominal system and latter deals with the parametric 
variation and disturbance. To reduce the high frequency 
chattering in the controller, the boundary layer technique was 
used [14]. Theoretical analysis and numerical simulation 
verify the effectiveness of the proposed method. Further, it is 
worth noting that using the proposed method the input 
chattering does not appear. 

This paper is organized as follows. Section 2 describes the 
robust controller design for Duffing-Holmes chaotic system. 
Section 3 shows simulation results of proposed method. 
Finally, conclusion is given. 

 

II. ROBUST CONTROLLER DESIGN 

Consider the Duffing-Holmes chaotic system. In 1918, 
Duffing introduced a nonlinear oscillator [15], with a cubic 
stiffness term, to describe the hardening spring effect 
observed in many mechanical problems. Later, Duffing’s 
equation has been modified in different manners by many 
researchers, for example, Moon and Holmes. In this paper, to 
be more general we consider a modified Duffing equation of 
the form named Duffing-Holmes [16]. For a Duffing-Holmes 
chaotic system, its dynamic equation can be described as  

 
0)cos( 1

3
21 =−+++ twqxxpxpx &&& , (1) 

 
where 25.01 =p , 12 −=p , 3.0=q , and 11 =w . This 
Duffing-Holmes chaotic system displays obvious chaotic 
behavior as shown in Fig. 1 when no control input is applied. 
In Fig. 1, the initial conditions are 2)0( =x  and 2)0( =x& . 
The sampling time is 0.001 sec. 

In order to solve this problem, first we rewrite the chaotic 
system (1) with a form of time-varying second-order 
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differential equation with uncertainties and disturbances: 
 
 )),()(()()( 21 xtdutbxtaxtax +=++ &&& , (2) 

 
where Rx ∈  denotes the system state, Ru ∈  is the system 
input, and ),( xtd  is the lumped disturbance. Let the upper 
and lower bounds of the uncertain system parameters )(1 ta , 

)(2 ta  and )(tb , and the disturbance )(td  be specified as 
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In the following, a robust suppression method is developed. 
The design procedure is divided into two steps. The first step 
is to define a sliding surface function such that in the sliding 
mode the system behaves equivalently as a linear system. The 
second step is to determine a control law such that the system 
will reach and stay on the sliding surface 0=s . 

First, define the sliding surface function as 
 

 cees += & , (4) 
 

where  
 
 rxe −= . (5) 
 

The symbol e  is the tracking error, r  is the desired path, and 
c  is a positive constant. 

The control input consists of two parts. Let the control 
input u  be 
 
 so uuu += , (6) 

 
where ou  is the continuous nominal control, and su  is the 
discontinuous switching control. The former is the equivalent 
control for the nominal system and the latter deals with the 
parametric variation and disturbances. In order to deal with 
the uncertainties and disturbances in (3), let )(1 tb− , 

)()( 1
1 tatb−  and )()( 2

1 tatb−  be divided into two parts: 

nominal part )ˆ,ˆ,ˆ( 21 ααβ  and uncertain part ),,( 21 ααβ ΔΔΔ , 
i.e., 
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Fig. 1. The phase-plane plot of unforced Duffing-Holmes 
chaotic system with 2)0( =x  and 2)0( =x& . 
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Fig. 2. The time response of control input. 
 

Once the sliding surface function is designed, the next step is 
to design the control law accordingly. The control law ou  
and su  are formulated as 
 
 rcrxxcuo &&&& ββαβα ˆˆˆ)ˆˆ( 21 +++−= . (8) 
 
 )(sgn)( 21 sxDxcrcrxxus +−+Δ+Δ+Δ−= &&&&& βαα  (9) 
 
where 
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System (2) is said to be in “sliding mode” when the sliding 
surface 0≡s  is reached. It can be reached in finite time if 
 

0<ss&  (11) 
 
holds for all time 0>t . 

Taking derivative of (4) yields 
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Fig. 3. The phase-plane plot of controlled Duffing-Holmes 
chaotic system. 
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Fig. 4. The time response of the state. 
 
 

),()()())(()( 21 xtdtbrcrxtaxtacutbs +−−−−+= &&&&& . (12) 
 
Substituting (8)-(10) into the equation of (12) and 
multiplying with s yields 
 

rcsrsxsxcstbss &&&&& ββαβα ˆˆˆ)ˆˆ()[( 21 +++−=   

])( 21 sxDxcrcrxx +−+Δ+Δ+Δ− &&&&& βαα  

)],()()())([( 21 xtdtbrcrxtaxtacs +−−−−+ &&&& , 

[ xxstb 2211 ˆˆ)( αααα Δ−+Δ−≤ &  

]xDxcrcr −−+Δ−+ &&&&ββ̂ [ xtas &)(1−+  

]),()()(2 xtdtbxcrcrxta +−+−− &&&&  

)),(()( xDxtdstb −= , 

0< . (13) 
 

Thus, the control law given by (8)-(10) guarantees the 
reaching and sustaining of the sliding mode. 

In general, the inherent high-frequency chattering of the 
control input may limit the practical application of the 
developed method. We further replace )sgn(s  in (9) by the 

function )(sat
δ
s ,  
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where δ  is the width of the boundary layer. With this 
replacement, the sliding surface function s  with an arbitrary 
initial value will reach and stay within the boundary layer 

δ≤s . 

 

III. SIMULATION RESULTS 

To verify the proposed method, the following uncertain 
Duffing-Holmes chaotic system [16] is considered, 
 
 ufdtwqxxpxpx +++−+−−= )cos( 1

3
21 &&& . (15) 

 

Assume that the parameter uncertainty f and disturbance 

d satisfy xf 1.0≤  and 2.0≤d , respectively. The 

sampling time is 0.001 sec. The initial condition is 
=)0(x 2)0( =x& . The aim here is to control the uncertain 

Duffing-Holmes chaotic system such that system trajectory 
follows a prescribed trajectory )1.1sin( tr = . According to 
(8), (9) and (14), the control law is chosen to be 

 
 rrxxu &&&& 375.2 ++−−= )01.0/(15 ssat− , (15) 
 
where the sliding surface function is ees 3+= & . 

Figures 2 to 6 show the simulation results. It is obvious 
that the proposed robust sliding mode control can effectively 
reduce input chattering as shown in Fig. 2. The trajectory of 
the system in the phase-plane is shown in Fig. 3. The state 
tracking response is shown in Fig. 4. The tracking 
performance is smooth and satisfactory comparing with Fig. 
1. The time response of the error signal converges to zero as 
shown in Fig. 5. Further, as shown in Fig. 6, the sliding 
surface function using the proposed robust SMC does not 
chatter in the sliding mode. 
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Fig. 5. The time response of the trajectory error. 
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Fig. 6. The time response of the sliding surface function. 
 

IV. CONCLUSIONS 

In this paper, a schematic robust suppression sliding mode 
control design for chaotic systems is proposed. The control 
law consists of a continuous nominal control part and a 
discontinuous switching control input. The high frequency 
chattering in the control input is eliminated. System stability 
is assured. The uncertain Duffing-Holmes chaotic system is 
investigated. The advantages of the proposed method are the 
good tracking performance, insensitive to uncertainties, 
simple design procedure, and effectiveness in eliminating the 
input chattering. Therefore, this method can be easily applied 
to many mechanical systems.  
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