
 

 

 

 

Abstract—Because most of the procedures in defect inspection 

process of TFT-LCD module assembly are examined manually 

through human vision, cycle time estimation for this particular 

process is complicated and usually deviated from actual 

observations considerably in practice. Hence, this study would 

like to apply the approaches of Bayesian network, linear 

discriminant analysis, and logistic regression to develop reliable 

prediction models for defect inspection cycle time. Potential 

explanatory variables like work-in-process, throughput, yield, 

and number of product mixes are considered for model 

construction. Applicability of these approaches is validated 

through an empirical study of TFT-LCD factory. From the 

perspective of prediction accuracy and flexibility, findings of 

this study suggest that logistic regression is a better choice for 

cycle time estimation than Bayesian network and discriminant 

analysis. 

 
Index Terms—Cycle time prediction, Bayesian networks, 

Discriminant analysis, Logistic regression 

 

I. INTRODUCTION 

Reliable cycle time estimation is critical for manufacturers 

to schedule production and to respond to customer‟s inquiry 

about order delivery. However, the task of forecasting is 

challenging due to the complexities of production processes. 

For example in the TFT-LCD (Thin Film Transistor Liquid 

Crystal Display) industry, manufacturing of TFT-LCD panel 

has to go through three main processes: array, cell, and 

module assembly. In the array process, transistors are 

fabricated on a glass substrate and then pass to the cell process 

for joining front and back substrates with liquid crystal. At 

last, panel undergoes core procedures including chip on glass, 

printed circuit board (PCB), PCB inspection, silicon 

dispenser, assembly, and defect inspection during the module 

assembly process to complete the final product [7]. Usually 

the accuracy of cycle time is no problem for the processes of 

array and cell because these processes are mostly operated by 

machines and their cycle time information can be retrieved 

from manufacturing execution system directly. But the cycle 

time estimation for module assembly process could be 

troubled because its defect inspection procedure has to be 

visually examined by operators and therefore its cycle time 

information is not available from information systems. With 
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the assistance of instruments, staffs need to use their eyes to 

check the appearance specifications, electrical specifications, 

and exterior specifications of TFT-LCD panels listed in Table 

1 [6]. All of the appearance specifications (active area, bezel, 

connector, flexible print circuit board, label, solder, screw, 

and white sheet) and exterior specifications (dimensions, 

weight, display tolerance, and panel gap for exterior 

specifications) are required to be controlled by visual 

inspection. Even during the electrical examination, operators 

still have to visually detect panel flaws such as bright dots, 

dark dots, adjacent dots, or display non-uniformity (mura) by 

comparing the images produced from pattern generator, video 

board, or luminance colorimeter with the limited samples 

provided by customers [13]. Although research has developed 

several methods to test panel defects through machines 

automatically without manual operations [13][15][18][25], 

most of defect inspections are manually operated  in practice 

to ensure product quality. Consequently, estimation of defect 

inspection cycle time in module assembly process is typically 

evaluated by experienced staff who is responsible for the 

corresponding processes. This kind of guess work is easily 

deviated from actual observations and thus affects on-time 

delivery rate. Hence, how to develop a suitable cycle time 

prediction model for this particular process has been an 

important issue in TFT-LCD industry.  

 

Table 1: Checklist of Defect Inspection Station 

Inspection Specification 

Appearance Active area, Bezel, Connector, Flexible 

print circuit board, Label, Solder, Screw, 

White sheet 

Electrical Adjacent dot defect, Bright dots, Dark 

dots, Display non-uniformity or Mura, 

Total dots defect 

Exterior Display tolerance, Outside dimension 

(vertical), Outside dimension (horizontal), 

Outside dimension (thickness), Panel gap, 

Weight 

Source: Chen [6] 

 

The objective of this study is to apply Bayesian network 

(BN), discriminant analysis (DA), and logistic regression (LR) 

to construct forecasting models for defect inspection cycle 

time in TFT-LCD module assembly process. Here in this 

study, the defect inspection cycle time is a categorical 
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variable because TFT-LCD manufacturers usually report this 

information in a 6-hour block. Comparisons of prediction 

results are also discussed to find out which approach can best 

explain this manually operated process. In fact, approach of 

BN, DA, or LR has its own advantages in forecasting analysis. 

The strength of Bayesian network approach is its learning 

capability of model structure and parameters through 

accumulating data. Besides, BN is able to handle incomplete 

data or different data types by Bayesian methodology. 

Meanwhile, discriminant analysis is a mathematical technique 

that does not involve with any kind of bias. For prediction 

purpose of DA, linear discriminant functions are derived first 

from initial data set with known groups and then are used to 

determine group membership for new observations. On the 

other hand, (ordinal) logistic regression is a class of 

regression models including cumulative logit model, 

proportional odds model, continuation ratio model, etc. 

Unlike other logit models that need to alter ordinal variables 

into dichotomization of ordered responses, ordinal LR can 

perform logistic regression on an ordinal response variable 

without further transformations. Because there is lack of 

research addressing BN, DA, and LR simultaneously for 

cycle time prediction of defect inspection process, this paper 

would like to investigate the applicability of these approaches 

in TFT-LCD industry. One major difference between this 

study and other simulation research is that all of our models 

are based on the data collected from manufacturing execution 

system without making any further parameter assumptions. 

Hence in the next section, the potential explanatory variables 

of defect inspection cycle time are explored first. 

Methodology of BN, DA, and LR for this study is then 

discussed in section III. To evaluate the practicability of our 

proposed approaches, a TFT-LCD panel factory was selected 

as our case study. Results of prediction analyses from this 

sample factory are later analyzed in section IV. Finally, 

conclusions about the applicability of BN, DA, and LR for 

defect inspection cycle time in TFT-LCD industry are 

discussed. 

II. EXPLANATORY VARIABLES OF CYCLE TIME 

Because there are not many literatures addressing the issue 

of defect inspection cycle time, this study tried to survey the 

potential predictors of defect inspection cycle time through 

investigating the factors that affect production processes in 

the electronics industry. The relationships among cycle time, 

work-in-process (WIP), and throughput was first documented 

in 1961 by John Little. According to Little‟s Law, the ratio of 

WIP to cycle time equals throughput at a given WIP level. 

Buzacott [3] also indicated that WIP and cycle time are 

convex increasing functions of throughput. Srivarsan and 

Kempf [22] stated a useful approach for throughput time 

modeling in a semiconductor wafer fabrication factory, where 

throughput time of a process is defined as the sum of the step 

throughput times over all the steps that constitute that process. 

Predictors such as process time, transport time, variable 

availability of resource, machine and operator dedications, 

non-product lots, batching and setups, WIP management 

policies, lots on hold and rework lots were used to estimate 

factory throughput time. To compute the expected lot cycle 

time, Zargar [26] constructed an equation that is composed of 

machine setup time, number of wafers in a lot, process time, 

rework time, and probability that a wafer fails as the potential 

factors. Lee et al. [17] introduced a planning model with the 

consideration of cycle time and production capacity in 

semiconductor wafer fabrication. The objective of this linear 

programming model is to satisfy the given demand while 

maintaining proper level of WIP inventory. Under the 

capacitated loading procedure, their model has to find the 

behaviors of cycle time and the level of WIP, which satisfies 

the due dates of the demand under the capacity constraints. 

Results suggested that capacity, WIP, and cycle time were 

highly correlated in the planning of wafer production. Raddon 

and Grigsby [20] developed a forecasting model for 

throughput time, where throughput time is defined as the 

cumulative time for completion of a work cycle including wait 

time and processing time. According to their model analysis, 

utilization over availability, theoretical throughput time, 

number of tools, and number of steps in line were considered 

as possible predictors of throughput time. 

Additionally, recent study from Chen, George, and Tardif 

[5] introduced a two-segment piecewise linear function with 

explanatory variable WIP to predict cycle time. In addition, a 

data driven discrete event simulation model was discussed by 

Sivakumar and Chong [21]. This model is used to control 

input variables for cycle time reduction in semiconductor 

backend manufacturing system, where variables include 

maintenance schedules, yield, rework, units per hour, batch 

process time, down time, shift pattern, set-up time matrix and 

product mix variety. Meanwhile, a cycle time estimation 

model for design stage, resource planning stage, and 

manufacturing stage of printed circuit board was developed 

by Haberle and Graves [8]. According to their findings, 

possible factors affecting the design phase cycle time include 

redesign, in-circuit test, and board type. In the stage of 

resource planning, board type, number of signal layers, and 

part lead form are the potential drivers of cycle time 

estimation. To access the cycle time of manufacturing stage, 

board function and number of layers were used as the 

predictor variables. Moreover, Hung and Chang [10] found 

out that the hours of a small time period, number of machine 

in work station, the total workload arrival to work station, the 

queue amount of work station, the capacity of work station, 

and the loading rate of work station are highly correlated to 

the flow time prediction. Haller, Peikert, and Thoma [9] 

presented a methodology to manage cycle time by closely 

monitoring and limiting the WIP. Findings suggested that 

yield, product qualification, and equipment qualification 

could be directly influenced by cycle time. Beeg [2] described 

a successfully implemented method to predict future wafer 

fab cycle time under different job loading situations. In his 

study, variables such as equipment uptime, equipment 

utilization, number of process steps running in the work 

center, process speed, theoretical fastest cycle time per step, 

current cycle time per step, number of tools, and number of 

processed wafers were applied for cycle time estimation. 

Finally, Backus et al. [1] mentioned that factors like WIP at 

specific operations, lot priority, and product type can be used 

to build up a predictive model for cycle time in semiconductor 

manufacturing. From the above literature review, possible 
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drivers of cycle time estimation in different situations of 

electronics manufacturing processes are summarized. These 

variables were referred as the potential explanatory variables 

of defect inspection cycle time for the BN, DA, and LR 

models used in this study.  

III. PREDICTION MODELS 

Before explaining the details of prediction models applied 

in this paper, selection of predictor variables is discussed first. 

Due to the manually operated nature of defect inspection in 

TFT-LCD panel manufacturing, cycle times of individual 

inspection procedures are generally short and operator- 

dependent. The checklist shown in Table 1 also indicates data 

complexity and unavailability in defect inspection station. To 

resolve this situation, variable selections started with the 

consideration for those data that can be retrieved from 

manufacturing execution systems. Because the production 

stations before defect inspection are mostly conducted by 

machines, their data can be collected from systems and thus 

their corresponding variables became the candidates of cycle 

time predictors. In addition, if we assumed that there are no 

significant differences among the outputs of operators in 

defect inspection station, the characteristics of products like 

volume and complexity before entering the defect inspection 

station may affect the performance of inspection. As a result, 

variables like WIP (W), throughput (T), yield (Y), and 

number of product mixes (P) are considered as the predictors 

of defect inspection cycle time (CT) according to the 

literature review in previous section and the on-site interviews 

with the experienced staffs of TFT-LCD factories. Here, 

weekly data was collected in order to be consistent with the 

interval of scheduling and planning in TFT-LCD plants. 

Based on the selected predictors, methodology of Bayesian 

network, discriminant analysis, and logistic regression was 

used to develop prediction models of defect inspection cycle 

time. Test observations were also collected to examine 

predictive accuracy. Brief introduction of these approaches 

are described as follows. 

A. Bayesian Network 

A Bayesian network is a form of probabilistic graphical 

model that has many advantages that other techniques do not 

have. For example, the uncertain graphical representation of 

BN model can be validated through observed knowledge. 

Even if the prior beliefs regarding conditional probabilities 

are unreliable, their information can be updated through the 

collection of new data. As some of the cycle time estimation 

methods may need detailed information or assumptions on 

corresponding procedures and parameters, BN approach on 

the other hand can handle these problems through parameter 

learning or structural learning from accumulating data. 

Because we do not have strong prior knowledge regarding 

model structure or conditional probabilities, approach of 

Bayesian network may demonstrate its strength under the 

situations of this study.  

To construct a BN model for prediction, qualitative and 

quantitative configurations have to be specified first. At the 

qualitative stage of BN construction, we have to outline a 

directed acyclic graph with nodes and directed arcs, where 

nodes denote variables of interests and directed arcs between 

nodes imply conditional dependences among variables. 

Although variable in BN can be continuous, this study only 

considers the discrete variables. Because WIP, throughput, 

yield and product mixes are the explanatory variables in this 

study, direct arcs are drawn from these predictor nodes to the 

node of cycle time in the qualitative graph of BN model as 

shown in Figure 1, where symbol W, T, Y, P, and CT denote 

WIP, throughput, yield, number of product mixes, and cycle 

time respectively. Even if these conditional relationships are 

assumed, structural learning of BN can be adopted for further 

refinements of graphical representation. Here in this study, 

algorithm of necessary path condition [23] was applied to 

perform the updating mechanism of qualitative specification. 

Further removal or addition of directed arcs may happen 

through the processes of structural learning. 

 

 

Figure 1: Prior BN Model for Cycle Time Estimation 

 

At the quantitative level of Bayesian network construction, 

conditional probability distributions are used to encode 

beliefs among variables or uncertain events of variables. 

Since there is no prior knowledge regarding the 

characteristics of conditional probabilities, this study applied 

expectation-maximization algorithm [16] to approximate the 

conditional probability distributions based on the collected 

observations. This approximation approach can avoid the bias 

of subjective judgment. After completing the qualitative and 

quantitative configurations of Bayesian network model, this 

study utilized the probability updating algorithm from Jensen, 

Lauritzen, and Olesen [12] to make inferences. In the 

following discussion of Bayesian network application,  the 

conditional probabilities of explanatory variables given the 

evidences of cycle time and  the conditional mean of cycle 

time given the evidences of explanatory variables were 

analyzed to understand the behavior of defect inspection cycle 

time. Additionally, the final updated BN model can be also 

used to make predictions through computing the posterior 

probabilities of cycle time given the evidence of explanatory 

variables. Staff can report the prediction results of defect 

inspection cycle time through either the perspective of 

posterior probability distribution or the viewpoint of posterior 

expected value. 

B. Discriminant Analysis 

Discriminant analysis is a classic statistical method that can 

be used to assign observations into mutually exclusive and 

exhaustive groups based on a set of measurable attributes. DA 

technique is appropriate when dependent variable is 

categorical. Although there are different methods to conduct 

DA, this study adopted the approach of linear discriminant 

analysis to distinguish between three or more groups. In order 
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to perform such analysis, this research assumed that groups 

can be separated by a linear combination of explanatory 

variables and all groups have the same covariance matrix. 

According to the objectives of this study, cycle time of defect 

inspection is defined as the group variable. Besides, 

explanatory variables include WIP, throughput, yield and 

product mixes. Because defect inspection cycle time is a 

categorical variable, discriminant analysis is suitable for this 

study. 

The procedures of DA can be demonstrated from the 

simplest form with two-group only. A standardized linear 

discriminant function D defined in (1) has to be calculated 

first to distinguish between two groups: 






p

j

jj zrD
1

, (1) 

where subscript j denotes the j-th predictor variable, p is the 

number of predictor variables, rj is the standardized 

regression coefficient, and zi  is the standardized explanatory 

variables. The assignment of an observation in DA depends 

on whether its D score is larger than 0 or not. Although we can 

apply D to assign objects into groups, classification functions 

Si defined in (2) are often considered for situation with three 

or more groups: 






p

j
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1

, (2) 

where subscript i denotes the i-th group, ci is a constant term 

for the i-th group; xj is the observed value of the j-th variable 

for the respective case, and wij is the discriminant weight of 

the j-th variable for the i-th group. Detailed derivations of wij 

and ci can be referred by [24]. Each case belongs to the group 

for which it has the highest classification score. In addition, 

we can also have the posterior probability of an observation 

belonging to each class by computing the corresponding 

Mahalanobis distances. The posterior probability that a case 

belongs to a certain class is basically proportional to the 

Mahalanobis distance from that group centroid. This study 

would examine how well the current classification functions 

predict group category of observations through the 

classification matrix, where the numbers of correctly 

classified cases and misclassified cases are reported. Based 

on the above information, this study finally predicts the group 

membership of test observations by evaluating their 

corresponding posterior probabilities. 

C. Logistic Regression 

Like discriminant analysis, logistic regression is a useful 

classification tool for analyzing data that includes categorical 

response variables. Logistic regression is somehow more 

preferable than discriminant analysis because it is less 

affected by the basic regression assumptions like multivariate 

normality and equal variance-covariance matrices across 

groups. As the response variable of this study could have 

more than 2 groups, proportional odds model [19] was 

applied to make classification. This approach assumes that the 

effect of predictors has to be constant across all possible 

cut-offs for the ordered responses. Suppose that we have I 

groups and that )(xi  denote response probabilities at value 

for a set of predictor variables x, where i = 1, 2, …, I-1. We 

also define the cumulative probabilities Fi(x) as 

)|()( xx iYPFi  , (3) 

where Y is the response variable. Then the cumulative logit 

function logit(Fi(x)) and proportional odds model Li(x) can be 

formed as follows: 
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where i  is the intercept and iβ is the vector of regression 

coefficients that is approximated by maximum likelihood 

approach. Deviance and Pearson goodness-of-fit statistics are 

also calculated to test model fitness. If the p-values of the 

above tests are larger than the significance level, the 

proportional odds model can be used to classify test 

observations. McCullagh [19] has detailed discussion about 

the proportional odds model.  

IV. EMPIRICAL ANALYSIS 

In this section, the application of Bayesian network, 

discriminant analysis, and logistic regression is illustrated by 

using each method to construct cycle time prediction models 

for the defect inspection process in a TFT-LCD panel 

manufacturing plant. According to the methodology 

described in section III, a total of 91 weekly data regarding 

cycle time, WIP, throughput, yield, and number of product 

mixes was retrieved from the manufacturing execution 

systems of sample factory. The final 13 observations (one 

season‟s data) were used as the test sample to compare the 

prediction accuracy of respective model. Response variable 

(defect inspection cycle time) is classified into 4 groups: (1) 

less than 6 hours, (2) between 6 hours and 12 hours, (3) 

between 12 hours and 18 hours, and (4) more than 18 hours. 

This categorization is consistent with the on-site requirements 

of cycle time reporting. Although the other predictor variables 

are metric data, approach of discrete BN model has to 

transform these predictors into categorical variables. Based 

on the specification defined by plant engineers, each 

explanatory variable is further categorized in to 4 conditions: 

(1) low, (2) medium-low, (3) medium-high, and (4) high. On 

the other hand, analysis of discriminant analysis and logistic 

regression still uses the metric data of predictor variables 

without transformations. After discussing the prediction 

model for each approach, comparisons among these models 

are also analyzed for model recommendation of defect 

inspection cycle time.  

A. Bayesian Network 

One of the advantages from BN approach is its capability to 

learn model structure or parameters even if we have no prior 

knowledge regarding our problem. Hence, algorithm of 

necessary path condition was applied to learn graphical model 

of BN. Result of structural learning is depicted in Figure 2, 

where all of original arcs are still remained in the updated 

model except an addition directed arc from “Product Mix” to 

“Yield”. This not only implies that our initial dependent 

assumptions regarding cycle time and predictor variables are 

consistent with actual observations, but also indicates that 

there is a conditional dependent relationship existing between 
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“Product Mix” and “Yield” from observed data. This slightly 

adjusted graphical model is later used for statistical inference 

and cycle time prediction. 

 

 

Figure 2: Posterior BN Model 

 

In addition to the structural learning of BN model, 

expectation-maximization algorithm was also applied to 

perform parameter learning for updating prior conditional 

probabilities. Posterior probabilities of P(Cycle Time | WIP, 

Throughput, Yield, Product Mix), P(Yield | Product Mix), 

P(WIP), P(Product Mix), and P(Throughput) were calculated 

after parameter learning. Their posterior marginal probability 

distributions are shown in Table 2, where cells in table 

demonstrate the results of probabilities P(Variable = i | 

Observed Data), where i = 1, 2, 3, 4 for the response variable 

and i = “Low”, “Medium-Low”, “Medium-High”, and “High” 

for the predictor variables. Here we can see that the posterior 

marginal probabilities of cycle time = 1, 2, 3, 4 given 

observed data are 0.34, 0.37, 0.16 and 0.13 respectively. It 

means that around 70% of defect inspection cycle time is less 

than 12 hours in this TFT-LCD factory. Meanwhile, more 

than 50% of the WIP happened in the condition of 

“Medium-Low”, which is significantly higher than the other 

conditions of WIP. For the explanatory variables of 

Throughput and Yield, around 70% of the conditions occur in 

“Medium-Low” or “Medium-High”. On the other hand, the 

posterior probabilities of Product Mix = “Low”, “Medium- 

Low”, “Medium-High”, and “High” are 0.20, 0.35, 0.23, and 

0.22 respectively. It indicates that the distribution of Product 

Mix is spread out more evenly than the ones of other 

predictors. These posterior marginal probabilities can help us 

understand the likely distributions of variables from the view 

point of Bayesian approach. 

 

Table 2: Posterior Marginal Probability Distributions 

 1 2 3 4 

Cycle Time 0.34 0.37 0.16 0.13 

 
Low 

Medium- 

Low 

Medium- 

High 
High 

WIP 0.22 0.54 0.15 0.09 

Throughput 0.19 0.37 0.32 0.12 

Yield 0.14 0.33 0.40 0.13 

Product Mix 0.20 0.35 0.23 0.22 

 

Based on the results of structural learning and parameter 

learning, conditional probabilities given evidence can be used 

to make statistical inference in BN model. Here we start with 

the examination of expected cycle time given the evidence of 

observed individual predictor variable. To compute the 

probability given evidence, updating algorithm from Jensen, 

Lauritzen, and Olesen [12] was adopted to perform this task. 

Table 3 summarizes the computation result of cycle time 

expectation E[CT | Evidence, Ψ], where evidence is the 

observed individual predictor variable and Ψ denotes the 

updated BN model after structural learning and parameter 

learning. Let us use the situation of WIP as example to 

examine the behavior of cycle time. When we observed 

evidence of WIP = “Low”, its corresponding expected cycle 

time is 2.13. Meanwhile, expected cycle time reaches its 

highest value 2.58 when WIP is observed as “High”. It implies 

that staff of defect inspection station may report expected 

cycle time somewhere near the upper bound of 12 hours when 

they observed evidence of WIP = “High”. Moreover, all of the 

expected cycle times shown in Table 3 are around category 

“2". It suggests that the expectation of cycle time is more 

likely less than 12 hours but higher than 6 hours given any 

evidence from the individual predictor variable. Information 

of Table 3 can provide the staff of defect inspection station 

with helpful reference if they have limited available data but 

have to report cycle time estimation for customers instantly. 

Although this study just demonstrates the situation with only 

one observed predictor, people can compute the expected 

cycle time given the evidence of more than one predictor 

variable for further insight.  

 

Table 3: Expected Cycle Time Given Evidence 

Evidence  WIP 
Through-

put 
Yield 

Product 

Mix 

Low 
μ 2.13 2.33 2.26 1.96 

σ 1.11 1.02 1.07 1.05 
Medium-

Low 

μ 1.86 2.01 1.90 2.04 

σ 0.86 0.94 1.01 1.00 
Medium-

High 

μ 2.44 1.92 2.09 2.19 

σ 1.02 0.98 0.91 0.91 

High 
μ 2.58 2.28 2.28 2.12 

σ 1.07 1.07 1.08 1.02 

μ: mean, σ: standard deviation 

 

Next, the posterior probability of predictor variable given 

the evidence of cycle time, P(Predictor | CT, Ψ), can be also 

used to analyze cycle time behavior from Bayesian 

perspective. Summary of this inference is shown in Table 4. 

For the situation of WIP, posterior probabilities of WIP = 

“Low”, “Medium-Low”, “Medium-High”, and “High” are 

0.25, 0.60, 0.09, and 0.06 respectively when the observed 

evidence of cycle time = 1. It means that the volume of WIP is 

likely in “Medium-Low” level when the observed cycle time 

is less than 6 hours. The above statement is still true when the 

evidence of cycle time is between 6 hours and 18 hours. As 

the observed cycle time increases, Table 4 also indicates that 

the standard deviation (σ) of WIP is getting higher and the 

probability distribution of WIP is more dispersed over the 

possible values of cycle time. However, we are unable to have 

a better understanding of cycle time performance from the 

expected values (μ) of WIP given the evidence of cycle time 

because their differences are not significant. In the mean time, 

the discussion for predictor Throughput is skipped here 
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because its posterior probability distribution given evidence 

of cycle time has similar behavior as WIP.  For the case of 

predictor variable Yield, its posterior probability distribution 

given the evidence of cycle time = „3‟ or „4‟ is slightly more 

centralized than the ones from WIP and Throughput. Besides, 

the posterior probability of Yield = „Medium-High” is as high 

as 50% when the observed cycle time is between 6 to 12 hours. 

Finally, we can also find out that the probability distributions 

of Product Mix given the evidences of cycle time are more 

evenly distributed comparing to the results from WIP, 

Throughput, and Yield,. The information in Table 4 can help 

the staff of defect inspection station to look out the critical 

predictors if they wish to control their defect inspection cycle 

time within reasonable timeframe. 

 

Table 4: Posterior Probability of Predictor Variable Given 

Evidence of Cycle Time 

 
CT < 6 hrs 

6 ~ 12 

hrs 

12 ~ 18 

hrs 
> 18 hrs 

W 

1 0.25 0.16 0.23 0.30 

2 0.60 0.64 0.35 0.29 

3 0.09 0.15 0.23 0.25 

4 0.06 0.05 0.19 0.16 

μ 1.96 2.09 2.37 2.28 

σ 0.75 0.71 1.03 1.06 

T 

1 0.15 0.16 0.33 0.24 

2  0.36. 0.43 0.31 0.31 

3 0.39 0.30 0.23 0.28 

4 0.10 0.11 0.13 0.17 

μ 2.44 2.37 2.17 2.39 

σ 0.85 0.88 1.03 1.03 

Y 

1 0.13 0.11 0.19 0.19 

2 0.44 0.28 0.26 0.30 

3 0.31 0.51 0.38 0.32 

4 0.12 0.10 0.17 0.19 

μ 2.42 2.60 2.54 2.50 

σ 0.85 0.82 0.99 1.00 

P 

1 0.26 0.16 0.17 0.21 

2 0.38 0.33 0.34 0.34 

3 0.15 0.29 0.27 0.21 

4 0.21 0.22 0.22 0.24 

μ 2.31 2.56 2.54 2.48 

σ 1.08 1.00 1.01 1.08 
 

The above discussion used different angles such as 

expected cycle time given evidence and posterior probability 

of predictor variable given evidence of cycle time to examine 

the applicability of BN approach. Because the model after 

structural learning and parameter learning is mainly used to 

make inference, summary of classification accuracy for initial 

data is not addressed here. Prediction quality of BN model 

will be discussed later with other approach through a test 

sample.  

B. Discriminant Analysis 

As described in section III, approach of linear discriminant 

function analysis was also applied to predict class 

membership based on a linear combination of the explanatory 

variables. Hence, the linear discriminant functions have to be 

estimated first in DA. Because we have 4 groups for response 

variable, the coefficients of their respective linear 

discriminant functions are shown in Table 5. This result was 

then applied to compute the posterior probability that a case 

belongs to a certain class. Summary of classification for initial 

data (without test sample) is displayed in Table 6. Cases are 

assigned to the group with the highest posterior probability. 

According to the analysis result of Table 6, the linear 

discriminant analysis correctly identified 46 of 78 cycle time 

observations. The overall proportion of correct classification 

is only 59% in this study. The problem of classification 

accuracy is probably caused by the mismatch of group 2, 

where only 13 of 36 observations are accurately classified. 

However, linear discriminant analysis provides with excellent 

hit ratios for the group of “3” and “4”. Hence, staff of defect 

inspection station should be cautious about the classification 

results of linear discriminant analysis if defect inspection 

cycle time generally falls between 6 hours and 12 hours. To 

identify test sample of TFT-LCD plant, this study also 

computed the linear discriminant functions associated with 

each group from the results of Table 5 and identified the new 

case as being of a particular group depending upon which 

discriminant function value is higher. Results of classification 

for test samples are later discussed with the results from other 

approaches. 

 

Table 5: Coefficients of Linear Discriminant Functions for 

Groups 

Group 

Factor 
1 2 3 4 

Constant -5064.3 -5066.4 -4995.7 -4643.4 

WIP 0.0 0.0 0.0 0.0 

Throughput 0.0 0.0 0.0 0.0 

Yield 116.7 116.8 115.8 111.3 

Product Mix -0.5 -0.5 -0.5 -0.5 

 

Table 6: Summary of Classification 

True Group 

Into Group 
1 2 3 4 

1 22 16 0 0 

2 8 13 1 0 

3 0 7 9 0 

4 0 0 0 2 

Subtotal 30 36 10 2 

Num of Correct 22 13 9 2 

Proportion 0.733 0.361 0.900 1.000 

Total 78 

Num of Correct 46 

Proportion 0.590 

 

C. Logistic Regression 

Because the response variable of this study has more than 2 

groups, proportional odds model was adopted to make 

classification. Estimated coefficients, z-values, and p-values 

of proportional odds model for this study are shown in Table 7, 

where const(i) is the estimated intercept of proportional odds 

model for group i, i = 1, 2, 3. There is no need to estimate an 
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intercept for group 4 since the cumulative probability for the 

last response value is 1. All of the regression coefficients are 

approximated by maximum likelihood approach. Here, the 

estimated coefficient for WIP is -0.0007 with a p-value of 0. It 

suggests that there is sufficient evidence to conclude that WIP 

affects cycle time. Similarly, the p-value of Yield is also 

smaller than the significance level 0.05, which implies the 

importance of Yield factor on cycle time. However, there is 

insufficient evidence to conclude that Throughput and 

Product Mix have significant effects upon defect inspection 

cycle time because their respective p-values are 0.271 and 

0.218. Thus, only WIP and Yield are critical predictors of 

defect inspection cycle time in this empirical study. Before 

utilizing this model for classifying test samples, the suitability 

of the proportional odds model should be checked by the 

following goodness-of- fit tests. 

 

Table 7: Logistic Regression Table 

 Coefficient z p-value 

Const(1) -47.3231 -2.28 0.022 

Const(2) -42.4551 -2.07 0.039 

Const(3) -36.4901 -1.82 0.068 

WIP -0.0007 -5.76 0.000 

Throughput 0.0000  1.10 0.271 

Yield 0.5632  2.35 0.019 

Product Mix -0.0047 -1.23 0.218 

 

Table 8 first summarizes the test result of null hypothesis 

that all the coefficients associated with predictors equal zero. 

The test statistic G = 14.713 with a p-value of 0.000 implies 

that there is at least one estimated coefficient that is different 

from zero. Results of Pearson and deviance goodness-of-fit 

tests were also summarized in Table 8. In this study, there is 

insufficient evidence to claim that the proportional odds 

model does not fit the data adequately because the p-values 

for both tests are larger than the significance level 0.05. 

Therefore, the proportional odds model shown in Table 7 is 

appropriate for explaining cycle time estimation and was used 

to compare with other approaches with test observations. 

 

Table 8: Goodness-of-Fit Tests 

Test G DF p-value 

All slopes 

are zero 
92.058 4 0.000 

Test χ
2
 DF p-value 

Pearson 109.65 266 1.000 

Deviance 113.51 266 1.000 

DF: Degrees of Freedom 

 

D. Comparison of Prediction Accuracy 

Applying the above discussed BN, DA, and LR models, 

one season‟s data is used to evaluate their respective 

prediction quality. Table 9 demonstrates the comparisons of 

cycle time predictions among BN, DA, and LR. From the 

perspective of proportion correct, logistic regression model 

correctly identified 10 of 13 cycle time observations. 

Comparing with the prediction result from DA with only 8 

correctly classified cases, LR yields better prediction result 

than DA. However, the prediction results from BN are 

somehow different than the other approaches. Due to the 

limitation of initial data, posterior probability of cycle time 

given the evidence of WIP, Throughput, Yield, and Product 

Mix from BN model is not sensitive for situations that have 

not occurred in the initial data. As a result, instead of showing 

the classification result from BN approach by assigning object 

to the group with highest posterior probability, the posterior 

means (μ) and standard deviations (σ) given evidences of all 

predictors are displayed in Table 9. Although the accuracy 

percentage is not available for BN model, staff of defect 

inspection station could still report cycle time estimation 

through the information of μ and σ. These statistics can also 

help us computing the values of mean square deviation (MSD) 

and mean absolute deviation (MAD), which are used to 

compare the prediction quality here. According to the results 

from Table 9, LR has the lowest values of MSD and MAD 

among the three prediction models discussed in this study. 

Approach of BN has the second lowest value 0.25 on MSD 

but has the highest score 0.4231 on MAD. Hence, 

proportional odds model best explains the prediction of defect 

inspection cycle time in this TFT-LCD plant based on the data 

of test samples.  

 

Table 9: Comparisons of Cycle Time Predictions among BN, 

DA, and LR 

1
Obs. 

Actual 
BN 

DA LR 
 μ σ 

1 3.0 3.0 0.00 3.0 3 

2 2.0 2.5 1.12 3.0 3 

3 2.0 3.0 0.00 3.0 2 

4 3.0 2.5 1.12 3.0 3 

5 3.0 2.5 1.12 3.0 3 

6 3.0 3.0 0.00 4.0 3 

7 2.0 2.5 1.12 3.0 2 

8 3.0 2.5 1.12 3.0 2 

9 3.0 2.5 1.12 3.0 3 

10 3.0 3.0 0.00 3.0 3 

11 3.0 2.5 1.12 2.0 2 

12 2.0 2.5 1.12 2.0 2 

13 2.0 2.5 1.12 2.0 2 

Proportion Correct
 2

NA 0.6154 0.7692 
3
MSD 0.2500 0.3846 0.2308 

4
MAD 0.4231 0.3846 0.2308 

1
Obs.: Observation; 

2
NA.: Not Available;  

3
MSD: Mean Square Deviation; 

4
MAD: Mean Absolute Deviation 

 

V. CONCLUSIONS 

Because almost all of the procedures in TFT-LCD defect 

inspection process are examined manually through human 

vision, cycle time estimation from the experienced staff is 

generally deviated considerably from actual observation. 

Hence, this paper illustrates how to adopt the approaches of 

Bayesian network, discriminant analysis, and logistic 

regression to construct prediction models for this particular 

process. To validate the applicability of these three models, 
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case study of a TFT-LCD panel factory was conducted. 

According to the comparison results of prediction analysis, 

logistic regression demonstrates its superior prediction ability 

in all corresponding measurements. Although TFT-LCD 

panel manufacturers could still apply any of these three 

models for their cycle time estimation, logistic regression 

seems to be a better tool than the other models based on the 

findings of this study. Besides, logistic regression has two 

more advantages over the discriminant analysis in practical 

application. First, logistic regression is more flexible than 

discriminant analysis when the regression assumptions are not 

met. Second, logistic regression is as straightforward as 

multiple regression because it has similar statistical tests and 

can incorporate metric and nonmetric variables. While 

Bayesian network also has its own advantages like learning 

mechanism and explicit model representation, its prediction 

capability is limited in this empirical test due to the problem 

of insufficient samples. Future research may collect more data 

to further check the prediction results of Bayesian network 

approach. We can also check the application of quadratic 

discriminant function instead of linear discriminant function. 

Additionally, only four predictor variables are considered 

here for model construction, it‟s worthy of note to explore 

more potential variables for defect inspection cycle time. 

Finally, as logistic regression demonstrates its superior 

prediction quality in this study, we may improve the 

prediction accuracy by applying other specialized models of 

logistic regression such as cumulative logit model or 

adjacent-category logits. Manufacturers can also further 

adjust the proposed prediction models to accord with their 

production environments and data availability. 
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