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Abstract--This paper presents the design and 
implementation of the first FPGA-based core for Gapped 
BLAST sequence alignment with the two-hit method, ever 
reported in the literature. Gapped BLAST with two hit is 
a heuristic biological sequence alignment algorithm which 
is very widely used in the Bioinformatics and 
Computational Biology world. The architecture of the core 
is parameterized in terms of sequence lengths, match 
scores, gap penalties and cut-off, and threshold values. It 
is composed of various blocks each of which performs one 
step of the algorithm in parallel. This results in high 
performance and efficient FPGA implementations, which 
easily outperform equivalent software implementations by 
one order of magnitude or more. Furthermore, the core 
was captured in an FPGA-platform-independent 
language, namely the Handel-C language, to which no 
specific resource inference or placement constraints were 
applied. Hence, the core can be ported to different FPGA 
families and architectures. 
 

Index Terms—FPGA, Gapped BLAST, Sequence 
Alignment, Two-Hit method  
 

I. Introduction 

 
Biological sequence alignment is a widespread 
operation in the world of Bioinformatics and 
Computational biology (BCB) where sequence 
databases are searched to find similar sequences to a 
query sequence, by aligning each subject sequence in 
the database to the query sequence [1]. The main aim of 
this operation is to obtain information about a newly 
discovered biological sequence (i.e. Protein, DNA or 
RNA) from other known sequences (stored in the 
database). For instance, if a new sequence is similar to a 
known sequence representing a cancerous gene, then 
information pertained to the functionality of the new 
sequence can be inferred, which is useful in early 
disease diagnosis and drug engineering. Besides this, 
study of   evolutionary development and history of 
species can be done through biological sequence 
alignment [1] [2]. 
Biological sequence alignment is a computationally 
intensive operation and with exponentially growing 
sequence databases (see Figure 1) this task cannot be 
achieved by desktop computer systems within realistic 
execution times. Hence, there is a need for faster 
computing platforms to cope with this growth. 
Recently, Field Programmable Gate Arrays (FPGAs) 
have been proposed as a high performance 

reconfigurable hardware platform for sequence 
alignment algorithms [3] [4] [5]. Indeed, FPGAs are 
capable of providing high speed-ups compared to 
general purpose processors with the convenience of 
reprogrammability, which makes them an attractive 
platform to accelerate biocomputing applications.      

 
Figure 1. Exponential growth of biological sequence databases over 

years [1] 
 

There are various biological sequence alignment 
algorithms some of which are exhaustive and give 
optimal alignments (e.g. Needleman-Wunsch [6], 
Smith-Waterman [7]) and some of which are heuristic 
and give sub-optimal alignments (e.g. FASTA[8], 
BLAST[9]). In this paper, we concentrate on Basic 
Local Alignment Search Tool (BLAST) which is a local 
alignment algorithm. Although it is heuristic, in the 
sense that it produces local alignments which are not 
always optimal, it is much faster than ordinary 
exhaustive dynamic programming algorithms. The 
design and implementation of a variant of BLAST, 
namely Gapped BLAST with two-hit method [10], is 
presented in this paper. The design is captured in the 
Handel-C language [13] which is a FPGA-platform-
independent language, making our design portable 
across a number of FPGA architectures (e.g. Xilinx, 
Altera). The remainder of this paper will first present 
essential background information on the general 
BLAST algorithm. Then, the design and 
implementation of our FPGA core for Gapped BLAST 
with the two-hit method will be detailed. After that, 
comparative timing performance evaluation of our core 
against equivalent desktop software is presented. 
Finally, conclusions are laid out with plans for future 
work. 
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II. Background 

Biological sequences evolve through mutation, 
selection and random genetic drift [11]. Mutation, in 
particular manifests itself through 3 main processes 
which are as follows: 
• Substitution of residues: Residue A in the sequence 

is substituted by another residue B. 
• Insertion of residues: New residues are inserted into 

the sequence. 
• Deletion of residues: Existing residues in the 

sequence are deleted. 
Insertions and deletions result in gaps which are taken 
into consideration when aligning biological sequences. 
The degree of alignment of biological sequences is 
measured by a score which is obtained by the 
summation of score terms of each aligned pair of 
residues with possible gap penalty terms. Score terms 
for each aligned residue pair are obtained from 
probabilistic models which are stored in score or 
substitution matrices such as BLOSUM50 [1]. The 
latter is a 20x20 matrix for protein sequence residues. 
On the other hand, gap penalties depend on the length 
of the gap and are independent of gap residues. There 
are two main types of gap penalties: 
• Linear gap penalty: The cost of a gap of length 

g is given by following linear function: 
 

Penalty (g) = -g*d 
 

• Affine gap penalty: A constant penalty is given 
for opening a new gap while a linear and 
smaller penalty is given for subsequent gap 
extensions. The cost function of the affine gap 
penalty is hence given by the following affine 
equation: 

 
Penalty (g) = -d-(g-1)*e 

 
BLAST stands for Basic Local Alignment Tool. It is 

developed on the ideas of FASTA.BLAST is used for 
searching both protein and DNA sequence databases for 
sequence similarities. It is a heuristic local alignment 
algorithm which approximates the dynamic 
programming Smith-Waterman algorithm. Since it is a 
heuristic algorithm, the local alignment it produces is 
not always optimal. However, it is much faster than the 
Smith-Waterman algorithm. As a result, BLAST and its 
variants are some of the most widely used sequence 
search tools. 
The central idea of the BLAST algorithm is that a 
statistically significant alignment is likely to contain a 
high-scoring pair of aligned words. BLAST first finds 
these high scoring pairs of aligned words and then 
extends them to the real alignment. These words are k-
residues long where k is different for DNA and protein 
sequences. The default k values for DNA and protein 
sequences are 11 and 3 respectively. There are 3 basic 
steps of BLAST: 

• Pre-processing the query sequence: All k-long 
words in the query sequence are extracted. Then, 
words that are similar to these are found. We call 
the overall results the k-words. 

• Scanning the subject sequences: All the subject 
sequences in the database are scanned one by 
one for matches with the obtained k-words. 

• Extension of the matches: All matches in the 
subject sequences are extended to form local 
alignments between the query sequence and 
related subject sequences in the database. 

In subsections II.A-II.C, all basic steps of the BLAST 
algorithm mentioned above will be explained in more 
detail. 
It is worth mentioning at this stage that the 
aforementioned basic steps belong to the original 
BLAST algorithm. However, several variants of the 
original algorithm have been devised over the years 
with the aim of increasing its sensitivity while keeping 
run-times at minimum. All of these variants include the 
3 basic steps of the original algorithm, with the addition 
of new steps. In this paper, we discuss two of these 
variants, namely   BLAST with two-hit method, and 
Gapped BLAST, which are  in subsections II.D and II.E 
respectively. 

A. Step 1: Pre-processing the Query Sequence 
An example protein sequence which has 9 residues (or 
amino acids) is shown below: 
 

LVNRKPVVP 
 
In this first step, we take the query sequence and chop it 
into overlapping k-words as illustrated below for the 
query sequence shown above, with k = 3: 

 
Word 0: LVN 

Word 1: VNR 

Word 2: NRK 

Word 3: RKP 

Word 4: KPV 

Word 5: PVV 

Word 6: VVP 

As it can be seen, there are 7 words extracted from the 
query sequence which are 3 residues long. In general, 
the number of words extracted equals (m-k) + 1 where 
m is the number of residues in the query sequence. 
After this, words similar to each of these extracted 
words are found through the usage of specific scoring 
matrix. An example scoring matrix for protein residues 
(Blosum50) is shown below in figure 2.  
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Figure 2. The Blosum50 scoring matrix 

 
Words which score at least threshold value T with the 
scoring matrix when aligned with the words extracted 
from the query sequence are regarded to be similar to 
these extracted words. Similar words for each extracted 
word are found and then recorded with the location 
address of the corresponding extracted word in the 
query sequence tagged to them. This process is 
illustrated below with the first extracted word shown 
above (i.e. LVN) using the Blosum50 scoring matrix for 
the case where T is 12:          
 
         Word 0: L    V   N 
                        4 + 4 + 6 = 14  
Query word 1: L   V   N      
 
          Word 0: L    V    N 
                        2 + 4 + 6 = 12 
Query word 2: M   V    N      
 
          Word 0: L    V    N 
                        4 + 4 + 1 = 9 
Query word 3: L   V    S      
 
Query word 1 and query word 2 score 14 and 12 
respectively when aligned with the first extracted word 
(LVN) from the query sequence. Since score values are 
over or equal to 12, query word 1 and query word 2 are 
recorded with the location address of the first extracted 
word in the query sequence, which is 0. However, query 
word 3 is discarded since it scores less than 12 when 
aligned with the extracted word. All recorded similar 
words are used in step 2 of the BLAST algorithm. 
 

B. Step 2: Scanning the subject sequences 
In this step, all subject sequences in the database are 
scanned one by one to find the possible exact matches 
of the query words which were recorded in step 1. Each 
match is referred to as hit or hotspot. Each hit is 
recorded in a list for the third step of the BLAST 
algorithm with the identity of the corresponding query 
word and the location address where the hit occurred in 

the subject sequence. Considering the fact that current 
databases contains tens of thousands of subject 
sequences and that each subject sequence comprises 
hundreds/thousands of residues, it is obvious that this 
sequence database scanning process is a massively time 
consuming task.  
 

C. Step 3: Extension of the matches 
In this last step of the basic BLAST algorithm, we 
utilize the list of matches (hits) obtained in step 2 to 
form local alignments between the query sequence and 
the subject sequences in the database. Each entry in the 
list of hits contains the location address of a match in 
the subject sequence and the location address of the   
corresponding query word in the query sequence. 
Starting from these 2 location addresses, each of the hits 
in the list is extended on the query and corresponding 
subject sequence in both directions without allowing 
any gaps. In this extension, pairs of residues along the 
query and subject sequence are scored with a scoring 
matrix (e.g. Blasoum50).  This process is illustrated in 
figure 3 with the following subject sequence: 
 

GVCRRPLKC 
  

 
Figure 3.  Step 3: Extension of matches 

 
In figure 3, the red box shows a hit where query word 
RRP is matched in the subject sequence. The query 
word RRP is similar to RKP word in the query 
sequence. The green box in figure 3 shows the 
extension which started from the edges of the red box.  
As the extension proceeds in a 1 residue pair at a time 
in both directions and without allowing for any gaps, 
pairs of residues along the extension are scored using a 
scoring matrix (BLOSUM50 in our case).  These score 
terms are added up after each extension step and the 
extension is terminated when this total score falls a 
certain cut-off distance below the best total score 
obtained so far. Then, the extension goes back to its 
state which yielded the highest total score. As a result of 
this extension step, the related subject sequence is 
locally aligned to the query sequence (without gaps).  
 

D. BLAST with two-hit method 
The third step of the BLAST algorithm, i.e. the 
extension of the matches on the query and subject 
sequences, generally accounts for a very high 
percentage of the BLAST algorithm’s execution time. 
Hence, the two-hit method was devised to reduce the 
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time spent in this extension step. The central idea of the 
two-hit method is to start extension only when there are 
two non-overlapping hits on the same diagonal within 
distance A of each other. This is illustrated in figure 4 
where only two non-overlapping hits on the same 
diagonal line which are close enough to each other are 
extended.   
 

 
Figure 4.  Ungapped extension of two close hits on the sane diagonal 

lines [10] 
 
In other words, if the distance between any two non-
overlapping hits on the subject sequence is equal to the 
distance between the locations of the corresponding 
query words in the query sequence, then ungapped 
extension is triggered in both directions starting from 
both hits. The rest of the process is the same as 
explained in subsection II.C and the result is a local 
ungapped alignment of the query and subject sequences. 
This process is illustrated in figure 5 where A is equal 
to 5.  

 
Figure 5. Extension with the two-hit method 

 
In figure 5, the red boxes show two non-overlapping 
hits on the query and subject sequences within a 
distance of 4. Since the distance between the query 
words in the query sequence is equal to the distance 
between the two hits on the subject sequence, and since 
this distance between the two hits is less than 5, and 
bigger than 2, ungapped extension is started from the 
edges of the left and right hand sides of the red boxes 
respectively (see the green box in figure 5). 
To maintain the sensitivity of the general algorithm, the 
threshold value T used in the query pre-processing step 
of the algorithm is reduced. Hence, the number of query 
words recorded in this step will increase. As a result, 
while scanning the subject sequences in step 2 we will 
potentially find more hits than before. However, only a 
small fraction of these hits will have an associated 

second hit. Therefore, ungapped extension will be 
triggered less frequently compared to the case in the 
original BLAST algorithm.  The total execution time of 
BLAST is thus reduced. 

E. Gapped BLAST 
Gapped BLAST is an advancement of BLAST with the 
two-hit method, which is faster and gives better 
alignments and alignment scores. In addition to the 
steps outlined above, gapped alignment is triggered in 
gapped BLAST if local ungapped alignment obtained as 
a result of ungapped extension has a sufficiently high 
score. If this is the case, the central pair of the local 
ungapped alignment is used as a seed from which the 
gapped alignment is run both backwards and forwards, 
as illustrated in figure 6. The gapped alignment 
algorithm utilized in Gapped BLAST is a modified 
version of the Needleman-Wunsch algorithm where the 
alignment is pruned when alignment scores fall a 
certain cut-off distance below the best score so far. The 
Needleman-Wunsch algorithm with linear and affine 
gap models is explained in subsections II.F and II.G 
below, respectively. The necessary modifications of the 
original Needleman-Wunsch algorithm needed in the 
Gapped BLAST algorithm are explained in subsection 
II.H. 
 

 
Figure 6. Gapped alignment started from the central pair of the local 

ungapped alignments in both directions [10] 
 

F. The Needleman-Wunsch algorithm with the 
Linear Gap Model 

The Needleman-Wunsch algorithm is a dynamic 
programming algorithm which finds optimal global 
gapped alignment between two sequences [6]. In 
Gapped BLAST, however, it is used for local alignment 
purposes, after a slight modification as will be 
explained in subsection II.H below. In this section, we 
will present the original Needleman-Wunsch algorithm 
where a linear gap model is assumed. 
Assuming we have two sequences X = x1x2….xM and Y 
= y1y2…..yN, whose lengths are M and N respectively, a 
dynamic programming score matrix F is built where 
each cell F (i, j) represents the best alignment between 
x1x2….xi segment of X and y1y2…..yj segment of Y. 
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The boundary cells of Matrix F are set by the following 
set of equations: 
 

F (0, 0) = 0   (1) 
 

 F (i, 0) = -i*d where i=1, 2….M (2) 
 

F (0, j) = -j*d where j=1, 2….N (3) 
 
The following equation is used to compute the values of 
each of the remaining cells of matrix F: 

(4)

              
                                                                                                                                                                        

Here, we aim to find best alignment between x1x2….xi 
and y1y2…..yj given the best alignment between 
x1x2….xi-1 and y1y2…..yj-1  (i.e. F(i-1, j-1)), between  
x1x2….xi-1 and  y1y2…..yj  (i.e. F(i-1, j)) and between 
x1x2….xi and  y1y2…..yj-1 (i.e. F(i, j-1)). There are three 
alternatives: 
• An alignment between xi and yj: In this case, the 

new score F(i, j) is F(i-1, j-1) + s(xi, yj) where 
s(xi, yj) is the scoring matrix score for xi and yj.  

• An alignment between xi and a gap in Y: In this 
case, the new score F(i, j) is F (i-1, j)-d where d 
is the gap penalty. 

•  An alignment between a gap in X and yj: In this 
case, the new score F(i, j) is F (i, j-1)-d where d 
is the gap penalty. 

One of these three alternatives (see figure 7) yields the 
largest score and is the best alignment between 
x1x2….xi and y1y2…..yj.  

 

 
Figure 7.  Illustration of the Needleman-Wunsch dynamic 

programming equations 
 
Note that a pointer to the cell from which F (i, j) was 
derived (i.e. above, left, above-left) is stored in each 
cell. Once the value of the last cell of matrix F (i.e. F 
(M, N)) is computed, the best global alignment between 
X and Y is obtained by tracking back from this cell, 
using the aforementioned pointers, and applying the 
following procedure: 
• If cell (i, j) was derived from cell (i-1, j-1), the 

pair of symbols xi and yj is added to the front of 
the current alignment. 

• If cell (i, j) was derived from cell (i-1, j), xi and a 
gap in Y are added to the front of the current 
alignment. 

• If cell (i, j) was derived from cell (i, j-1), a gap in 
X and yj are added to the front of the current 
alignment. 

This is illustrated in figure 8 for 2 protein sequences. In 
this figure, the trace-back starts from F(M, N) = F(7, 
10) and moves backward to the cell from which the 
current cell was derived until F(0, 0) is reached, while 
applying the aforementioned procedure at every step of 
the trace-back. The resulting global alignment of these 2 
sequences can be seen at the bottom of figure 8.   

 
Figure 8.  Illustration of the Needleman-Wunsch algorithm 

 

G. The Needleman-Wunsch algorithm with the 
Affine Gap Model 

The Needleman-Wunsch algorithm with the affine gap 
model is similar to the one with the linear gap model. 
However, in this case, we have three new matrixes 
namely Iz, Ix and IY to compute. The following equations 
are used to compute the values of Iz, Ix and IY where d is 
the penalty associated with the gap opening and e is 
penalty associated with the gap extension: 

(5)

 
(6)

 
 

(7)
 

 
The values of the dynamic programming matrix cells 
F(i, j) are equal to the maximum of IZ (i, j), IX (i, j) and 
IY (i, j) as shown in equation 8.  
 

(8)

 
 

Note that the pointer to the above-left cell is stored in 
the cell if F(i, j) is set to equal IZ (i, j) whereas the 
pointer to the left cell is stored if F(i, j) is set to equal 
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Ix(i, j). Finally, the pointer to the above cell is stored if 
F(i, j) is set to equal IY(i, j). 

H. Modified Needleman-Wunsch algorithm  
The Needleman-Wunsch algorithm presented above is 
used for finding global gapped alignments between two 
sequences. Gapped BLAST however requires some 
modifications to the original Needleman-Wunsch 
algorithm. First, no computations are done for the 
dynamic programming matrix cells which are adjacent 
to cells whose F(i, j) values are a certain cut-off value 
below the highest cell value computed so far. Second, 
the trace-back procedure may start at any cell which has 
the highest value F(i, j) among all the cells, rather than 
bottom rightmost cell. In this way, we have a local 
gapped alignment at the end of the trace-back 
procedure.  
 

III. Hardware Implementation of Gapped 
BLAST with the Two-Hit Method 

Figure 9 shows a hardware architecture which 
implements gapped BLAST algorithm with the two-hit 
method. Each block in the architecture implements one 
step of the algorithm as described in the above sections, 
except for the pre-processing query sequence step 
which is implemented by high level application 
software running on the host computer. The architecture 
consists of 8 HitFinderTwoHit blocks, 2 
UngappedExtender blocks and 1 GappedExtender block 
all of which are running in parallel.  There are also 8 
32K x 5 bits subject sequence memories each of which 
holds a number of subject sequences. Note that each 
subject sequence memory belongs to one 
HitFinderTwoHit block. Each HitFinderTwoHit block 
is composed of 5 HitFinder blocks and 1 

TwoHitMethod block. Each HitFinder block 
implements step 2 outlined in subsection II.B and scans 
its assigned subject sequence memory to find exact 
matches of the query words in the subject sequences. 
Each TwoHitMethod block performs the two-hit method 
procedure on hits coming from the 5 HitFinder blocks 
which are in the same HitFinderTwoHit block as the 
TwoHitMethod block. Besides these, each 
UngappedExtender block implements step 3 mentioned 
in subsection II.C and extends the two hits found by its 
4 allocated TwoHitMethod blocks without allowing 
gaps, in order to obtain local ungapped alignments. 
Finally, a single GappedExtender block implements the 
modified Needleman-Wunsch algorithm to produce 
local gapped alignments from local ungapped 
alignments obtained in 2 UngappedExtender blocks.  
The high level application software and all of the blocks 
which constitute the architecture shown in figure 9 are 
detailed in the following subsections.   

A. High Level Application Software 

Figure 10 shows the organization of our Gapped 
BLAST FPGA implementation. Application software 
running on the host has many duties, the most important 
of which is the query sequence pre-processing as 
explained in section II.A. In brief, the application 
software finds 3 letter long query words which score at 
least a threshold value T when aligned with words 
extracted from the query sequence. Then, the location 
address of each of these query words in the query 
sequence is placed at a vacant position in an upper word 
list and a lower word list pair depending on  the 2 most 
significant  letters and 2 least significant letters of the 
query word, respectively. Note that there are 5 upper 
word and lower word list pairs. 
 

 
Figure 9.  Hardware architecture for the Gapped BLAST algorithm with the two-hit method 
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As it can be seen in figure 10, there are various FPGA 
configuration bit files for different threshold and cut-off 
value parameters. The first task of the application 
software is to pick the proper bit file, depending on the 
user-supplied algorithm parameters, from a database of 
FPGA configurations and load it on to the FPGA chip. 
Afterwards, the application software runs the hardware 
configuration in 4 modes. In mode 1, the application 
software sends one of the 5 upper word and lower word 
list pairs to each of the 5 HitFinder blocks in every 
HitFinderTwoHit block. In mode 2, a number of subject 
sequences are sent to the 8 available subject sequence 
memories on FPGA, depending on the subject sequence 
lengths. In mode 3, the application software sends a 
query sequence to the FPGA to be stored in memories 
within the 2 UngappedExtender blocks and the single 
GappedExtender block. Finally, the execution of the 
hardware configuration is launched in mode 4. After 
some time, the FPGA starts sending the high scoring 
subject sequences to host with their alignment scores to 
be printed onto the screen. By repeating these steps 
several times for different subject sequences, we can 
align a query sequence to all subject sequences in a 
sequence database. Note that each iteration is called as 
“pass”. 

 
Figure 10.  Organization of our Gapped BLAST system 

 

B.  

A.  

B. HitFinder Block 
Figure 11 shows a simplified inner structure of a 
Hitfinder block. The architecture of this block is 
modified version of one shown in figure 7 of [18].The 
difference is that as opposed to [18],we added the 
positions of the query words in the query sequence  into 
the memory content of the Hit Finder to increase the 
sensitivity of the hit finding process. Furthermore, our 
design implements the two-hit method (detailed in the 

next section) which is not the case with [18]. Lastly, our 
core includes a unit for gapped alignment for the 
purposes of implementing Gapped BLAST in contrast 
to [18] which just implements original BLAST.   
The major aim of this block is to scan each three letter 
long word of the subject sequences in order to find 
exact matches of the query words, as explained in 
subsection II.B. It is comprised of an upper word list 
memory, a lower word list memory, a shift register, a 
FIFO buffer and some control logic. Note that every 
Hitfinder block is assigned to a subject sequence 
memory whose address register (Counter) is unique in 
the HitFinderTwoHit block.   
At every clock cycle, 5-bit long residues of a subject 
sequence are shifted into the shift register (ShiftReg) 
from the assigned subject sequence memory and the 
address register of the subject sequence memory is 
incremented by one. The shift register is 15 bits long 
and hence it can hold 3 subject sequence residues at the 
same time. At every clock cycle, the 10 most significant 
bits and the 10 least significant bits of the shift register 
content are used as addresses for the upper word list 
memory and the lower word list memory respectively 
(see figure 11). If the resulting outputs of these 
memories are valid entries and are equal to each other, 
this means that a three-letter long word of the subject 
sequence which is currently held in the shift register 
matches exactly a query word whose location address in 
query sequence is given in the outputs of the word list 
memories. In this case, we have a hit condition which 
needs to be recorded for the following steps of the 
algorithm. Hence, we register the address of the query 
word in the query sequence and the location address of 
the hit in the subject sequence to a FIFO buffer named 
Hit FIFO with 3 control bits. These entries to   Hit 
FIFO are processed by the TwoHitMethod block 
assigned to the Hitfinder block (see figure 9). 

 

 
Figure 11. Simplified inner structure of the Hitfinder block 
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C. TwoHitMethod Block 

Figure 12 shows a simplified inner structure of the 
TwoHitMethod block. Its aim is to find two non-
overlapping hits on the same diagonal within distance A 
of each other as explained in subsection II.D above. In 
this architecture, there are two FIFOs of the same length 
and same width namely Hit FIFO 1 and Hit FIFO 2 to 
which the same hit entries from the Hit FIFOs of the 5 
Hitfinder blocks (which belong to the same 
HitFinderTwoHit block) are stored one by one in turn 
starting from the Hit FIFO in the first Hitfinder block. 
The processing of hit entries commences when there are 
more than two hit entries in the FIFOs. For instance, the 
ath hit entry of   Hit FIFO 1 and bth hit entry of Hit 
FIFO 2 are taken and the hit addresses of these entries 
are subtracted from each other. If the result is less than 
3, we continue with the processing of the ath hit entry in 
Hit FIFO 1 and (b+1)th hit entry in Hit FIFO 2 in the 
next clock cycle. On the other hand, if the result is 
bigger than threshold value A, we continue with the 
processing of the (a+1)th hit entry in Hit FIFO 1 and 
(a+2)th hit entry in Hit FIFO 2 in the next clock cycle. 
However, if the result of this subtraction is between 3 
and threshold value A inclusive, we subtract the query 
word addresses in the hit entries. If the second 
subtraction result is not equal to the first one, this means 
that the two hits are not on the same diagonal, and 
hence we continue with the processing of the ath hit 
entry in Hit FIFO 1 and (b+1)th hit entry in Hit FIFO 2 
in the next clock cycle. If the two results are the same, 
however, this means that we have two close enough 
non-overlapping hits on the same diagonal which need 
to be recorded for the subsequent steps of the algorithm. 
The two hit cases are recorded to two FIFOs namely 
TwoHit FIFO1 and TwoHit FIFO 2. The address of the 
first hit and the distance between the two hits (Result 2 
in figure 12) are stored in TwoHit FIFO1 with 2 control 
bits, whereas the address of the first query word is 
stored in TwoHit FIFO 2. These two-hit entries to the 
TwoHit FIFOs are subsequently processed by the 
assigned UngappedExtender block.  

D. UngappedExtender Block 
The UngappedExtender block implements the ungapped 
extension step of the Gapped BLAST algorithm as 
explained in subsection II.C above. Each of the two 
UngappedExtender blocks read Twohit FIFOs of its 4 
assigned TwoHitMethod blocks in turn. When the 
UngappedExtender block detects a two-hit entry in the 
Twohit FIFOs of one TwoHitMethod block, the hit 
address of the first hit, the address of the first query 
word in the query sequence and the distance between 
the two hits are all extracted from that entry to compute 
the start (seed) points of the outward ungapped 
extension in both directions, on both query and related 
subject sequence. Note that first residue pair of the first 
hit and the last residue pair of the second hit are the 
seed points of the outward ungapped extension on the 
query and related subject sequence,. Afterwards, the 
inward ungapped extension starts from one start point to 
the other start point where the residue pairs along the 

extension are scored against a scoring matrix, with the 
intermediate scores accumulated. When the inward 
ungapped extension ends, the outward ungapped 
extension is launched in both directions. Here again, the 
residue pairs along the extension are scored, with the 
intermediate score terms accumulated, and added up 
with the total score obtained from the inward ungapped 
extension. The outward ungapped extension terminates 
either when the currently computed grand total score 
falls a certain cut-off value below the highest grand 
total score obtained so far, or when the extension 
reaches end of the query or subject sequences in either 
direction. In this case, the ungapped extension retracts 
to its previous state which yielded the highest grand 
total score. If this highest grand total score exceeds a 
certain threshold value, the end points of this high 
scoring ungapped extension in both directions on both 
query and subject sequences are registered to two 
UngappedResult FIFOs to be read and processed by the 
single GappedExtender block for the purpose of gapped 
alignment. 

 

 
Figure 12.  Simplified inner structure of TwoHitMethod block  

E. GappedExtender block 
The GappedExtender block implements the gapped 
alignment step using the modified Needleman-Wunsch 
algorithm with the affine gap model. Here, only the 
gapped alignment score is computed. The final 
alignment, i.e. with trace-back, is not done on FPGA 
because of its excessive memory requirement. The 
GappedExtender block reads UngappedResult FIFOs of 
the two UngappedExtender blocks in turn to obtain the 
edge points of the high scoring ungapped alignments 
produced by these two UngappedExtender blocks. 
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These edge points are used to compute the central 
residue pair of the ungapped alignment from which the 
gapped alignment on the query and related subject 
sequence is launched in both directions. Figure 13 
shows one of the two linear systolic arrays in the   
GappedExtender block which run independently in 
parallel to perform the modified Needleman-Wunsch 
algorithm on each side of the seed residue pair. This 
architecture is deducted from the data dependency 
graph of the Needleman-Wunsch algorithm as presented 
in section II above [12]. 
 

 
Figure 13.  Linear systolic array for gapped alignment 

 
The linear systolic array consists of pipelined basic 
processing elements (PE) each of which performs the 
dynamic programming equations presented in 
subsections II.G above. Before the operation of the 
array, the query sequence residues at one side of the 
seed residue pair are shifted through the array. At the 
end of this shift, each PE holds one query residue. 
Following this, the subject sequence residues at the 
same side of the seed residue pair are shifted 
systolically through the array during which each PE 
generates value of one dynamic programming matrix 
cell every clock cycle. However, the direction of the 
cell from which the current result has been derived is 
not saved since trace-back will not be performed in 
hardware. Each PE generates one column of the 
dynamic programming matrix after M cycles where M 
is equal to the number of subject sequence residues. 
However, each PE is one cycle behind its predecessor 
PE due to the fact that computations in PEi+1 depend on 
the computation results in PEi. Figure 14 illustrates the 
execution of the recursive equations of the original 
Needleman-Wunsch algorithm on the linear array 
architecture where diagonal lines cross the matrix cells 
of dynamic programming matrix whose values are 
computed at the tth clock cycle.  
The linear array architecture keeps record of the 
maximum value in the dynamic programming matrix at 
each PE, calculating its maximum-so-far value and 
broadcasting it to the next PE. The gapped extension in 
the linear array architecture terminates when the end of 
the query or subject sequence is reached in either side, 
or when the current result in PE1 is a certain cut-off 
value below its maximum-so-far. Once both of the 
linear array architectures in the GappedExtender block 
terminate, their maximum values are added up to obtain 
the score of the gapped alignment. If this score exceeds 
certain threshold value, the address of the subject 
sequence in the related subject sequence memory is sent 
to the host to allow for the subject sequence to be truly 
aligned with the query sequence by the high level 
application software running on the host.   
 

PE 1   PE 2   PE3    PE 4   PE 5   PE 6   PE 7   PE 8   PE 9   PE 10 

t=1

t=7

t=16t=9t=8  
Figure 14. Illustration of the execution of   the original Needleman-

Wunsch algorithm on the linear systolic array architecture 
 
Note that number of PEs in the linear array architectures 
should be equal to the number of residues in the query 
sequence in order to correctly implement the modified 
Needleman-Wunsch algorithm. However, considering 
the amount of resources in today’s FPGAs, this is 
impossible since there could be hundreds or even 
thousands of residues in the query sequence. To solve 
this problem, the algorithm is partitioned into small 
alignment steps which are mapped onto a fixed size 
linear systolic array as shown in figure 15 [14] [15]. In 
this architecture, the alignment process is performed in 
a number of passes depending on the length of the 
query sequence, where a FIFO is used to store 
intermediate results and subject sequence residues from 
each pass before they are fed back to the input of the 
array for the next pass. In our implementation, each of 
the linear arrays in the GappedExtender block has 4 
processing elements. This could be extended at will, 
resource permitting.  

 
Figure 15.  Partitioning and mapping of the modified Needleman-

Wunsch algorithm on a fixed size systolic array 

IV. Results 

Our Gapped BLAST design was captured in the Handel 
C language to which no specific resource inference or 
placement constraints were applied. Hence, it can be 
directly targeted to a variety of FPGA platforms (e.g.  
Xilinx and Altera FPGAs). The resulting core was 
compiled into EDIF by Agility’s DK5 SP2 suite from 
which FPGA bitstreams were generated using Xilinx 
ISE9.2 tool. 
The hardware implementation of the core was achieved 
on a Celoxica RCHTX FPGA board [17] which has a 
Xilinx Virtex 4 (xc4vlx160ff1148-11) FPGA and off-
chip memory fitted on it. In our implementation, 
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however, the off-chip memory was not used. The 
operation of the core was tested on the Swiss-Prot 
protein sequence database [16] with various query 
protein sequences.  
We have also implemented Gapped BLAST with the 
two-hit method algorithm in C in order compare our 
hardware implementation with a pure software 
implementation. Table 1 presents timing performance 
figures of both hardware and software implementations 
for 9 random query protein sequences of various lengths 
searched in the Swiss-Prot database. The FPGA 
hardware was clocked at 15 MHz. The software 
implementation was executed on an Intel Centrino Duo 
2.2 GHz PC with 2 GB RAM. The same threshold and 
cut-off values were used in both hardware and software 
implementations at every step of the algorithm.  
As it can be seen from table 1, our FPGA 
implementation result in substantial speed-up compared 
to software, ranging from 44x to 20x (the speed-up 
figure depends on the query sequence). The reason 
behind this high speed-up figure of the FPGA 
implementation, despite the huge difference in clock 
frequency, is due to the high level of process 
parallelism on FPGA. 
 
Table 1. Timing performance figures of hardware and software 
implementations for 9 random protein sequences queried in Swiss-
Prot protein sequence database 

 No of 
Residues 
in Query 
Sequence 

No of 
Query 
words 

FPGA 
Execution 
time (sec) 

Software 
execution 
time (sec) 

FPGA 
Speed-
up 

1. Query 
Sequence 111 116 4.45 91.56 20.58 
2. Query 
Sequence 214 98 5.01 131.93 26.34 
3. Query 
Sequence 368 136 4.32 137.42 31.81 
4. Query 
Sequence 459 263 5.88 211.42 35.96 
5. Query 
Sequence 565 137 5.73 181.48 31.67 
6. Query 
Sequence 635 140 5.36 194.45 36.28 
7. Query 
Sequence 746 117 6.83 233.25 34.15 
8. Query 
Sequence 864 240 7.01 311.23 44.40 
9. Query 
Sequence 985 53 5.33 194.12 36.42 

V. Conclusion 

In this paper, the detailed FPGA implementation of the 
Gapped BLAST with two-hit method algorithm has 
been presented. To our knowledge this is the first FPGA 
implementation of this algorithm ever reported in the 
literature. The hardware architecture is composed of 
various blocks each of which performs a specific step of 
the algorithm in parallel. Moreover, the FPGA core is 
parameterized in terms of the sequence lengths, match 
score, gap penalties, cut-off and threshold values. The 
resulting implementation outperforms an equivalent 
desktop-based software implementation by at least one 
order-of magnitude. Furthermore, it was designed in the 
Handel-C language which makes it FPGA-platform-
independent. As a result, the same core can be ported to 
other FPGA architectures from different vendors. 
The work presented in this paper is part of a bigger 
project which seeks to harness the computational 

performance and re-configurability features of FPGAs 
in the field of Bioinformatics and computational 
biology. Future work includes the extension of this 
work to the Position Specific Iterated BLAST (PSI-
BLAST) algorithm, as well as other sequence analysis 
techniques based on Hidden Markov Models. 
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