

Design and Implementation of an FPGA-based Core for Gapped
BLAST Sequence Alignment with the Two-Hit Method

Server Kasap, Khaled Benkrid and Ying Liu

The University of Edinburgh, School of Electronics and Engineering,
Mayfield Road, Edinburgh EH9 3JL, Scotland, UK

(s.kasap,k.benkrid,y.liu)@ed.ac.uk

Abstract--This paper presents the design and
implementation of the first FPGA-based core for Gapped
BLAST sequence alignment with the two-hit method, ever
reported in the literature. Gapped BLAST with two hit is
a heuristic biological sequence alignment algorithm which
is very widely used in the Bioinformatics and
Computational Biology world. The architecture of the core
is parameterized in terms of sequence lengths, match
scores, gap penalties and cut-off, and threshold values. It
is composed of various blocks each of which performs one
step of the algorithm in parallel. This results in high
performance and efficient FPGA implementations, which
easily outperform equivalent software implementations by
one order of magnitude or more. Furthermore, the core
was captured in an FPGA-platform-independent
language, namely the Handel-C language, to which no
specific resource inference or placement constraints were
applied. Hence, the core can be ported to different FPGA
families and architectures.

Index Terms—FPGA, Gapped BLAST, Sequence
Alignment, Two-Hit method

I. Introduction

Biological sequence alignment is a widespread
operation in the world of Bioinformatics and
Computational biology (BCB) where sequence
databases are searched to find similar sequences to a
query sequence, by aligning each subject sequence in
the database to the query sequence [1]. The main aim of
this operation is to obtain information about a newly
discovered biological sequence (i.e. Protein, DNA or
RNA) from other known sequences (stored in the
database). For instance, if a new sequence is similar to a
known sequence representing a cancerous gene, then
information pertained to the functionality of the new
sequence can be inferred, which is useful in early
disease diagnosis and drug engineering. Besides this,
study of evolutionary development and history of
species can be done through biological sequence
alignment [1] [2].
Biological sequence alignment is a computationally
intensive operation and with exponentially growing
sequence databases (see Figure 1) this task cannot be
achieved by desktop computer systems within realistic
execution times. Hence, there is a need for faster
computing platforms to cope with this growth.
Recently, Field Programmable Gate Arrays (FPGAs)
have been proposed as a high performance

reconfigurable hardware platform for sequence
alignment algorithms [3] [4] [5]. Indeed, FPGAs are
capable of providing high speed-ups compared to
general purpose processors with the convenience of
reprogrammability, which makes them an attractive
platform to accelerate biocomputing applications.

Figure 1. Exponential growth of biological sequence databases over

years [1]

There are various biological sequence alignment
algorithms some of which are exhaustive and give
optimal alignments (e.g. Needleman-Wunsch [6],
Smith-Waterman [7]) and some of which are heuristic
and give sub-optimal alignments (e.g. FASTA[8],
BLAST[9]). In this paper, we concentrate on Basic
Local Alignment Search Tool (BLAST) which is a local
alignment algorithm. Although it is heuristic, in the
sense that it produces local alignments which are not
always optimal, it is much faster than ordinary
exhaustive dynamic programming algorithms. The
design and implementation of a variant of BLAST,
namely Gapped BLAST with two-hit method [10], is
presented in this paper. The design is captured in the
Handel-C language [13] which is a FPGA-platform-
independent language, making our design portable
across a number of FPGA architectures (e.g. Xilinx,
Altera). The remainder of this paper will first present
essential background information on the general
BLAST algorithm. Then, the design and
implementation of our FPGA core for Gapped BLAST
with the two-hit method will be detailed. After that,
comparative timing performance evaluation of our core
against equivalent desktop software is presented.
Finally, conclusions are laid out with plans for future
work.

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

II. Background

Biological sequences evolve through mutation,
selection and random genetic drift [11]. Mutation, in
particular manifests itself through 3 main processes
which are as follows:
• Substitution of residues: Residue A in the sequence

is substituted by another residue B.
• Insertion of residues: New residues are inserted into

the sequence.
• Deletion of residues: Existing residues in the

sequence are deleted.
Insertions and deletions result in gaps which are taken
into consideration when aligning biological sequences.
The degree of alignment of biological sequences is
measured by a score which is obtained by the
summation of score terms of each aligned pair of
residues with possible gap penalty terms. Score terms
for each aligned residue pair are obtained from
probabilistic models which are stored in score or
substitution matrices such as BLOSUM50 [1]. The
latter is a 20x20 matrix for protein sequence residues.
On the other hand, gap penalties depend on the length
of the gap and are independent of gap residues. There
are two main types of gap penalties:
• Linear gap penalty: The cost of a gap of length

g is given by following linear function:

Penalty (g) = -g*d

• Affine gap penalty: A constant penalty is given
for opening a new gap while a linear and
smaller penalty is given for subsequent gap
extensions. The cost function of the affine gap
penalty is hence given by the following affine
equation:

Penalty (g) = -d-(g-1)*e

BLAST stands for Basic Local Alignment Tool. It is

developed on the ideas of FASTA.BLAST is used for
searching both protein and DNA sequence databases for
sequence similarities. It is a heuristic local alignment
algorithm which approximates the dynamic
programming Smith-Waterman algorithm. Since it is a
heuristic algorithm, the local alignment it produces is
not always optimal. However, it is much faster than the
Smith-Waterman algorithm. As a result, BLAST and its
variants are some of the most widely used sequence
search tools.
The central idea of the BLAST algorithm is that a
statistically significant alignment is likely to contain a
high-scoring pair of aligned words. BLAST first finds
these high scoring pairs of aligned words and then
extends them to the real alignment. These words are k-
residues long where k is different for DNA and protein
sequences. The default k values for DNA and protein
sequences are 11 and 3 respectively. There are 3 basic
steps of BLAST:

• Pre-processing the query sequence: All k-long
words in the query sequence are extracted. Then,
words that are similar to these are found. We call
the overall results the k-words.

• Scanning the subject sequences: All the subject
sequences in the database are scanned one by
one for matches with the obtained k-words.

• Extension of the matches: All matches in the
subject sequences are extended to form local
alignments between the query sequence and
related subject sequences in the database.

In subsections II.A-II.C, all basic steps of the BLAST
algorithm mentioned above will be explained in more
detail.
It is worth mentioning at this stage that the
aforementioned basic steps belong to the original
BLAST algorithm. However, several variants of the
original algorithm have been devised over the years
with the aim of increasing its sensitivity while keeping
run-times at minimum. All of these variants include the
3 basic steps of the original algorithm, with the addition
of new steps. In this paper, we discuss two of these
variants, namely BLAST with two-hit method, and
Gapped BLAST, which are in subsections II.D and II.E
respectively.

A. Step 1: Pre-processing the Query Sequence
An example protein sequence which has 9 residues (or
amino acids) is shown below:

LVNRKPVVP

In this first step, we take the query sequence and chop it
into overlapping k-words as illustrated below for the
query sequence shown above, with k = 3:

Word 0: LVN

Word 1: VNR

Word 2: NRK

Word 3: RKP

Word 4: KPV

Word 5: PVV

Word 6: VVP

As it can be seen, there are 7 words extracted from the
query sequence which are 3 residues long. In general,
the number of words extracted equals (m-k) + 1 where
m is the number of residues in the query sequence.
After this, words similar to each of these extracted
words are found through the usage of specific scoring
matrix. An example scoring matrix for protein residues
(Blosum50) is shown below in figure 2.

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

Figure 2. The Blosum50 scoring matrix

Words which score at least threshold value T with the
scoring matrix when aligned with the words extracted
from the query sequence are regarded to be similar to
these extracted words. Similar words for each extracted
word are found and then recorded with the location
address of the corresponding extracted word in the
query sequence tagged to them. This process is
illustrated below with the first extracted word shown
above (i.e. LVN) using the Blosum50 scoring matrix for
the case where T is 12:

 Word 0: L V N
 4 + 4 + 6 = 14
Query word 1: L V N

 Word 0: L V N
 2 + 4 + 6 = 12
Query word 2: M V N

 Word 0: L V N
 4 + 4 + 1 = 9
Query word 3: L V S

Query word 1 and query word 2 score 14 and 12
respectively when aligned with the first extracted word
(LVN) from the query sequence. Since score values are
over or equal to 12, query word 1 and query word 2 are
recorded with the location address of the first extracted
word in the query sequence, which is 0. However, query
word 3 is discarded since it scores less than 12 when
aligned with the extracted word. All recorded similar
words are used in step 2 of the BLAST algorithm.

B. Step 2: Scanning the subject sequences
In this step, all subject sequences in the database are
scanned one by one to find the possible exact matches
of the query words which were recorded in step 1. Each
match is referred to as hit or hotspot. Each hit is
recorded in a list for the third step of the BLAST
algorithm with the identity of the corresponding query
word and the location address where the hit occurred in

the subject sequence. Considering the fact that current
databases contains tens of thousands of subject
sequences and that each subject sequence comprises
hundreds/thousands of residues, it is obvious that this
sequence database scanning process is a massively time
consuming task.

C. Step 3: Extension of the matches
In this last step of the basic BLAST algorithm, we
utilize the list of matches (hits) obtained in step 2 to
form local alignments between the query sequence and
the subject sequences in the database. Each entry in the
list of hits contains the location address of a match in
the subject sequence and the location address of the
corresponding query word in the query sequence.
Starting from these 2 location addresses, each of the hits
in the list is extended on the query and corresponding
subject sequence in both directions without allowing
any gaps. In this extension, pairs of residues along the
query and subject sequence are scored with a scoring
matrix (e.g. Blasoum50). This process is illustrated in
figure 3 with the following subject sequence:

GVCRRPLKC

Figure 3. Step 3: Extension of matches

In figure 3, the red box shows a hit where query word
RRP is matched in the subject sequence. The query
word RRP is similar to RKP word in the query
sequence. The green box in figure 3 shows the
extension which started from the edges of the red box.
As the extension proceeds in a 1 residue pair at a time
in both directions and without allowing for any gaps,
pairs of residues along the extension are scored using a
scoring matrix (BLOSUM50 in our case). These score
terms are added up after each extension step and the
extension is terminated when this total score falls a
certain cut-off distance below the best total score
obtained so far. Then, the extension goes back to its
state which yielded the highest total score. As a result of
this extension step, the related subject sequence is
locally aligned to the query sequence (without gaps).

D. BLAST with two-hit method
The third step of the BLAST algorithm, i.e. the
extension of the matches on the query and subject
sequences, generally accounts for a very high
percentage of the BLAST algorithm’s execution time.
Hence, the two-hit method was devised to reduce the

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

time spent in this extension step. The central idea of the
two-hit method is to start extension only when there are
two non-overlapping hits on the same diagonal within
distance A of each other. This is illustrated in figure 4
where only two non-overlapping hits on the same
diagonal line which are close enough to each other are
extended.

Figure 4. Ungapped extension of two close hits on the sane diagonal

lines [10]

In other words, if the distance between any two non-
overlapping hits on the subject sequence is equal to the
distance between the locations of the corresponding
query words in the query sequence, then ungapped
extension is triggered in both directions starting from
both hits. The rest of the process is the same as
explained in subsection II.C and the result is a local
ungapped alignment of the query and subject sequences.
This process is illustrated in figure 5 where A is equal
to 5.

Figure 5. Extension with the two-hit method

In figure 5, the red boxes show two non-overlapping
hits on the query and subject sequences within a
distance of 4. Since the distance between the query
words in the query sequence is equal to the distance
between the two hits on the subject sequence, and since
this distance between the two hits is less than 5, and
bigger than 2, ungapped extension is started from the
edges of the left and right hand sides of the red boxes
respectively (see the green box in figure 5).
To maintain the sensitivity of the general algorithm, the
threshold value T used in the query pre-processing step
of the algorithm is reduced. Hence, the number of query
words recorded in this step will increase. As a result,
while scanning the subject sequences in step 2 we will
potentially find more hits than before. However, only a
small fraction of these hits will have an associated

second hit. Therefore, ungapped extension will be
triggered less frequently compared to the case in the
original BLAST algorithm. The total execution time of
BLAST is thus reduced.

E. Gapped BLAST
Gapped BLAST is an advancement of BLAST with the
two-hit method, which is faster and gives better
alignments and alignment scores. In addition to the
steps outlined above, gapped alignment is triggered in
gapped BLAST if local ungapped alignment obtained as
a result of ungapped extension has a sufficiently high
score. If this is the case, the central pair of the local
ungapped alignment is used as a seed from which the
gapped alignment is run both backwards and forwards,
as illustrated in figure 6. The gapped alignment
algorithm utilized in Gapped BLAST is a modified
version of the Needleman-Wunsch algorithm where the
alignment is pruned when alignment scores fall a
certain cut-off distance below the best score so far. The
Needleman-Wunsch algorithm with linear and affine
gap models is explained in subsections II.F and II.G
below, respectively. The necessary modifications of the
original Needleman-Wunsch algorithm needed in the
Gapped BLAST algorithm are explained in subsection
II.H.

Figure 6. Gapped alignment started from the central pair of the local

ungapped alignments in both directions [10]

F. The Needleman-Wunsch algorithm with the
Linear Gap Model

The Needleman-Wunsch algorithm is a dynamic
programming algorithm which finds optimal global
gapped alignment between two sequences [6]. In
Gapped BLAST, however, it is used for local alignment
purposes, after a slight modification as will be
explained in subsection II.H below. In this section, we
will present the original Needleman-Wunsch algorithm
where a linear gap model is assumed.
Assuming we have two sequences X = x1x2….xM and Y
= y1y2…..yN, whose lengths are M and N respectively, a
dynamic programming score matrix F is built where
each cell F (i, j) represents the best alignment between
x1x2….xi segment of X and y1y2…..yj segment of Y.

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

The boundary cells of Matrix F are set by the following
set of equations:

F (0, 0) = 0 (1)

 F (i, 0) = -i*d where i=1, 2….M (2)

F (0, j) = -j*d where j=1, 2….N (3)

The following equation is used to compute the values of
each of the remaining cells of matrix F:

(4)

Here, we aim to find best alignment between x1x2….xi
and y1y2…..yj given the best alignment between
x1x2….xi-1 and y1y2…..yj-1 (i.e. F(i-1, j-1)), between
x1x2….xi-1 and y1y2…..yj (i.e. F(i-1, j)) and between
x1x2….xi and y1y2…..yj-1 (i.e. F(i, j-1)). There are three
alternatives:
• An alignment between xi and yj: In this case, the

new score F(i, j) is F(i-1, j-1) + s(xi, yj) where
s(xi, yj) is the scoring matrix score for xi and yj.

• An alignment between xi and a gap in Y: In this
case, the new score F(i, j) is F (i-1, j)-d where d
is the gap penalty.

• An alignment between a gap in X and yj: In this
case, the new score F(i, j) is F (i, j-1)-d where d
is the gap penalty.

One of these three alternatives (see figure 7) yields the
largest score and is the best alignment between
x1x2….xi and y1y2…..yj.

Figure 7. Illustration of the Needleman-Wunsch dynamic

programming equations

Note that a pointer to the cell from which F (i, j) was
derived (i.e. above, left, above-left) is stored in each
cell. Once the value of the last cell of matrix F (i.e. F
(M, N)) is computed, the best global alignment between
X and Y is obtained by tracking back from this cell,
using the aforementioned pointers, and applying the
following procedure:
• If cell (i, j) was derived from cell (i-1, j-1), the

pair of symbols xi and yj is added to the front of
the current alignment.

• If cell (i, j) was derived from cell (i-1, j), xi and a
gap in Y are added to the front of the current
alignment.

• If cell (i, j) was derived from cell (i, j-1), a gap in
X and yj are added to the front of the current
alignment.

This is illustrated in figure 8 for 2 protein sequences. In
this figure, the trace-back starts from F(M, N) = F(7,
10) and moves backward to the cell from which the
current cell was derived until F(0, 0) is reached, while
applying the aforementioned procedure at every step of
the trace-back. The resulting global alignment of these 2
sequences can be seen at the bottom of figure 8.

Figure 8. Illustration of the Needleman-Wunsch algorithm

G. The Needleman-Wunsch algorithm with the
Affine Gap Model

The Needleman-Wunsch algorithm with the affine gap
model is similar to the one with the linear gap model.
However, in this case, we have three new matrixes
namely Iz, Ix and IY to compute. The following equations
are used to compute the values of Iz, Ix and IY where d is
the penalty associated with the gap opening and e is
penalty associated with the gap extension:

(5)

(6)

(7)

The values of the dynamic programming matrix cells
F(i, j) are equal to the maximum of IZ (i, j), IX (i, j) and
IY (i, j) as shown in equation 8.

(8)

Note that the pointer to the above-left cell is stored in
the cell if F(i, j) is set to equal IZ (i, j) whereas the
pointer to the left cell is stored if F(i, j) is set to equal

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

Ix(i, j). Finally, the pointer to the above cell is stored if
F(i, j) is set to equal IY(i, j).

H. Modified Needleman-Wunsch algorithm
The Needleman-Wunsch algorithm presented above is
used for finding global gapped alignments between two
sequences. Gapped BLAST however requires some
modifications to the original Needleman-Wunsch
algorithm. First, no computations are done for the
dynamic programming matrix cells which are adjacent
to cells whose F(i, j) values are a certain cut-off value
below the highest cell value computed so far. Second,
the trace-back procedure may start at any cell which has
the highest value F(i, j) among all the cells, rather than
bottom rightmost cell. In this way, we have a local
gapped alignment at the end of the trace-back
procedure.

III. Hardware Implementation of Gapped
BLAST with the Two-Hit Method

Figure 9 shows a hardware architecture which
implements gapped BLAST algorithm with the two-hit
method. Each block in the architecture implements one
step of the algorithm as described in the above sections,
except for the pre-processing query sequence step
which is implemented by high level application
software running on the host computer. The architecture
consists of 8 HitFinderTwoHit blocks, 2
UngappedExtender blocks and 1 GappedExtender block
all of which are running in parallel. There are also 8
32K x 5 bits subject sequence memories each of which
holds a number of subject sequences. Note that each
subject sequence memory belongs to one
HitFinderTwoHit block. Each HitFinderTwoHit block
is composed of 5 HitFinder blocks and 1

TwoHitMethod block. Each HitFinder block
implements step 2 outlined in subsection II.B and scans
its assigned subject sequence memory to find exact
matches of the query words in the subject sequences.
Each TwoHitMethod block performs the two-hit method
procedure on hits coming from the 5 HitFinder blocks
which are in the same HitFinderTwoHit block as the
TwoHitMethod block. Besides these, each
UngappedExtender block implements step 3 mentioned
in subsection II.C and extends the two hits found by its
4 allocated TwoHitMethod blocks without allowing
gaps, in order to obtain local ungapped alignments.
Finally, a single GappedExtender block implements the
modified Needleman-Wunsch algorithm to produce
local gapped alignments from local ungapped
alignments obtained in 2 UngappedExtender blocks.
The high level application software and all of the blocks
which constitute the architecture shown in figure 9 are
detailed in the following subsections.

A. High Level Application Software

Figure 10 shows the organization of our Gapped
BLAST FPGA implementation. Application software
running on the host has many duties, the most important
of which is the query sequence pre-processing as
explained in section II.A. In brief, the application
software finds 3 letter long query words which score at
least a threshold value T when aligned with words
extracted from the query sequence. Then, the location
address of each of these query words in the query
sequence is placed at a vacant position in an upper word
list and a lower word list pair depending on the 2 most
significant letters and 2 least significant letters of the
query word, respectively. Note that there are 5 upper
word and lower word list pairs.

Figure 9. Hardware architecture for the Gapped BLAST algorithm with the two-hit method

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

As it can be seen in figure 10, there are various FPGA
configuration bit files for different threshold and cut-off
value parameters. The first task of the application
software is to pick the proper bit file, depending on the
user-supplied algorithm parameters, from a database of
FPGA configurations and load it on to the FPGA chip.
Afterwards, the application software runs the hardware
configuration in 4 modes. In mode 1, the application
software sends one of the 5 upper word and lower word
list pairs to each of the 5 HitFinder blocks in every
HitFinderTwoHit block. In mode 2, a number of subject
sequences are sent to the 8 available subject sequence
memories on FPGA, depending on the subject sequence
lengths. In mode 3, the application software sends a
query sequence to the FPGA to be stored in memories
within the 2 UngappedExtender blocks and the single
GappedExtender block. Finally, the execution of the
hardware configuration is launched in mode 4. After
some time, the FPGA starts sending the high scoring
subject sequences to host with their alignment scores to
be printed onto the screen. By repeating these steps
several times for different subject sequences, we can
align a query sequence to all subject sequences in a
sequence database. Note that each iteration is called as
“pass”.

Figure 10. Organization of our Gapped BLAST system

B.

A.

B. HitFinder Block
Figure 11 shows a simplified inner structure of a
Hitfinder block. The architecture of this block is
modified version of one shown in figure 7 of [18].The
difference is that as opposed to [18],we added the
positions of the query words in the query sequence into
the memory content of the Hit Finder to increase the
sensitivity of the hit finding process. Furthermore, our
design implements the two-hit method (detailed in the

next section) which is not the case with [18]. Lastly, our
core includes a unit for gapped alignment for the
purposes of implementing Gapped BLAST in contrast
to [18] which just implements original BLAST.
The major aim of this block is to scan each three letter
long word of the subject sequences in order to find
exact matches of the query words, as explained in
subsection II.B. It is comprised of an upper word list
memory, a lower word list memory, a shift register, a
FIFO buffer and some control logic. Note that every
Hitfinder block is assigned to a subject sequence
memory whose address register (Counter) is unique in
the HitFinderTwoHit block.
At every clock cycle, 5-bit long residues of a subject
sequence are shifted into the shift register (ShiftReg)
from the assigned subject sequence memory and the
address register of the subject sequence memory is
incremented by one. The shift register is 15 bits long
and hence it can hold 3 subject sequence residues at the
same time. At every clock cycle, the 10 most significant
bits and the 10 least significant bits of the shift register
content are used as addresses for the upper word list
memory and the lower word list memory respectively
(see figure 11). If the resulting outputs of these
memories are valid entries and are equal to each other,
this means that a three-letter long word of the subject
sequence which is currently held in the shift register
matches exactly a query word whose location address in
query sequence is given in the outputs of the word list
memories. In this case, we have a hit condition which
needs to be recorded for the following steps of the
algorithm. Hence, we register the address of the query
word in the query sequence and the location address of
the hit in the subject sequence to a FIFO buffer named
Hit FIFO with 3 control bits. These entries to Hit
FIFO are processed by the TwoHitMethod block
assigned to the Hitfinder block (see figure 9).

Figure 11. Simplified inner structure of the Hitfinder block

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

C. TwoHitMethod Block

Figure 12 shows a simplified inner structure of the
TwoHitMethod block. Its aim is to find two non-
overlapping hits on the same diagonal within distance A
of each other as explained in subsection II.D above. In
this architecture, there are two FIFOs of the same length
and same width namely Hit FIFO 1 and Hit FIFO 2 to
which the same hit entries from the Hit FIFOs of the 5
Hitfinder blocks (which belong to the same
HitFinderTwoHit block) are stored one by one in turn
starting from the Hit FIFO in the first Hitfinder block.
The processing of hit entries commences when there are
more than two hit entries in the FIFOs. For instance, the
ath hit entry of Hit FIFO 1 and bth hit entry of Hit
FIFO 2 are taken and the hit addresses of these entries
are subtracted from each other. If the result is less than
3, we continue with the processing of the ath hit entry in
Hit FIFO 1 and (b+1)th hit entry in Hit FIFO 2 in the
next clock cycle. On the other hand, if the result is
bigger than threshold value A, we continue with the
processing of the (a+1)th hit entry in Hit FIFO 1 and
(a+2)th hit entry in Hit FIFO 2 in the next clock cycle.
However, if the result of this subtraction is between 3
and threshold value A inclusive, we subtract the query
word addresses in the hit entries. If the second
subtraction result is not equal to the first one, this means
that the two hits are not on the same diagonal, and
hence we continue with the processing of the ath hit
entry in Hit FIFO 1 and (b+1)th hit entry in Hit FIFO 2
in the next clock cycle. If the two results are the same,
however, this means that we have two close enough
non-overlapping hits on the same diagonal which need
to be recorded for the subsequent steps of the algorithm.
The two hit cases are recorded to two FIFOs namely
TwoHit FIFO1 and TwoHit FIFO 2. The address of the
first hit and the distance between the two hits (Result 2
in figure 12) are stored in TwoHit FIFO1 with 2 control
bits, whereas the address of the first query word is
stored in TwoHit FIFO 2. These two-hit entries to the
TwoHit FIFOs are subsequently processed by the
assigned UngappedExtender block.

D. UngappedExtender Block
The UngappedExtender block implements the ungapped
extension step of the Gapped BLAST algorithm as
explained in subsection II.C above. Each of the two
UngappedExtender blocks read Twohit FIFOs of its 4
assigned TwoHitMethod blocks in turn. When the
UngappedExtender block detects a two-hit entry in the
Twohit FIFOs of one TwoHitMethod block, the hit
address of the first hit, the address of the first query
word in the query sequence and the distance between
the two hits are all extracted from that entry to compute
the start (seed) points of the outward ungapped
extension in both directions, on both query and related
subject sequence. Note that first residue pair of the first
hit and the last residue pair of the second hit are the
seed points of the outward ungapped extension on the
query and related subject sequence,. Afterwards, the
inward ungapped extension starts from one start point to
the other start point where the residue pairs along the

extension are scored against a scoring matrix, with the
intermediate scores accumulated. When the inward
ungapped extension ends, the outward ungapped
extension is launched in both directions. Here again, the
residue pairs along the extension are scored, with the
intermediate score terms accumulated, and added up
with the total score obtained from the inward ungapped
extension. The outward ungapped extension terminates
either when the currently computed grand total score
falls a certain cut-off value below the highest grand
total score obtained so far, or when the extension
reaches end of the query or subject sequences in either
direction. In this case, the ungapped extension retracts
to its previous state which yielded the highest grand
total score. If this highest grand total score exceeds a
certain threshold value, the end points of this high
scoring ungapped extension in both directions on both
query and subject sequences are registered to two
UngappedResult FIFOs to be read and processed by the
single GappedExtender block for the purpose of gapped
alignment.

Figure 12. Simplified inner structure of TwoHitMethod block

E. GappedExtender block
The GappedExtender block implements the gapped
alignment step using the modified Needleman-Wunsch
algorithm with the affine gap model. Here, only the
gapped alignment score is computed. The final
alignment, i.e. with trace-back, is not done on FPGA
because of its excessive memory requirement. The
GappedExtender block reads UngappedResult FIFOs of
the two UngappedExtender blocks in turn to obtain the
edge points of the high scoring ungapped alignments
produced by these two UngappedExtender blocks.

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

These edge points are used to compute the central
residue pair of the ungapped alignment from which the
gapped alignment on the query and related subject
sequence is launched in both directions. Figure 13
shows one of the two linear systolic arrays in the
GappedExtender block which run independently in
parallel to perform the modified Needleman-Wunsch
algorithm on each side of the seed residue pair. This
architecture is deducted from the data dependency
graph of the Needleman-Wunsch algorithm as presented
in section II above [12].

Figure 13. Linear systolic array for gapped alignment

The linear systolic array consists of pipelined basic
processing elements (PE) each of which performs the
dynamic programming equations presented in
subsections II.G above. Before the operation of the
array, the query sequence residues at one side of the
seed residue pair are shifted through the array. At the
end of this shift, each PE holds one query residue.
Following this, the subject sequence residues at the
same side of the seed residue pair are shifted
systolically through the array during which each PE
generates value of one dynamic programming matrix
cell every clock cycle. However, the direction of the
cell from which the current result has been derived is
not saved since trace-back will not be performed in
hardware. Each PE generates one column of the
dynamic programming matrix after M cycles where M
is equal to the number of subject sequence residues.
However, each PE is one cycle behind its predecessor
PE due to the fact that computations in PEi+1 depend on
the computation results in PEi. Figure 14 illustrates the
execution of the recursive equations of the original
Needleman-Wunsch algorithm on the linear array
architecture where diagonal lines cross the matrix cells
of dynamic programming matrix whose values are
computed at the tth clock cycle.
The linear array architecture keeps record of the
maximum value in the dynamic programming matrix at
each PE, calculating its maximum-so-far value and
broadcasting it to the next PE. The gapped extension in
the linear array architecture terminates when the end of
the query or subject sequence is reached in either side,
or when the current result in PE1 is a certain cut-off
value below its maximum-so-far. Once both of the
linear array architectures in the GappedExtender block
terminate, their maximum values are added up to obtain
the score of the gapped alignment. If this score exceeds
certain threshold value, the address of the subject
sequence in the related subject sequence memory is sent
to the host to allow for the subject sequence to be truly
aligned with the query sequence by the high level
application software running on the host.

PE 1 PE 2 PE3 PE 4 PE 5 PE 6 PE 7 PE 8 PE 9 PE 10

t=1

t=7

t=16t=9t=8
Figure 14. Illustration of the execution of the original Needleman-

Wunsch algorithm on the linear systolic array architecture

Note that number of PEs in the linear array architectures
should be equal to the number of residues in the query
sequence in order to correctly implement the modified
Needleman-Wunsch algorithm. However, considering
the amount of resources in today’s FPGAs, this is
impossible since there could be hundreds or even
thousands of residues in the query sequence. To solve
this problem, the algorithm is partitioned into small
alignment steps which are mapped onto a fixed size
linear systolic array as shown in figure 15 [14] [15]. In
this architecture, the alignment process is performed in
a number of passes depending on the length of the
query sequence, where a FIFO is used to store
intermediate results and subject sequence residues from
each pass before they are fed back to the input of the
array for the next pass. In our implementation, each of
the linear arrays in the GappedExtender block has 4
processing elements. This could be extended at will,
resource permitting.

Figure 15. Partitioning and mapping of the modified Needleman-

Wunsch algorithm on a fixed size systolic array

IV. Results

Our Gapped BLAST design was captured in the Handel
C language to which no specific resource inference or
placement constraints were applied. Hence, it can be
directly targeted to a variety of FPGA platforms (e.g.
Xilinx and Altera FPGAs). The resulting core was
compiled into EDIF by Agility’s DK5 SP2 suite from
which FPGA bitstreams were generated using Xilinx
ISE9.2 tool.
The hardware implementation of the core was achieved
on a Celoxica RCHTX FPGA board [17] which has a
Xilinx Virtex 4 (xc4vlx160ff1148-11) FPGA and off-
chip memory fitted on it. In our implementation,

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

however, the off-chip memory was not used. The
operation of the core was tested on the Swiss-Prot
protein sequence database [16] with various query
protein sequences.
We have also implemented Gapped BLAST with the
two-hit method algorithm in C in order compare our
hardware implementation with a pure software
implementation. Table 1 presents timing performance
figures of both hardware and software implementations
for 9 random query protein sequences of various lengths
searched in the Swiss-Prot database. The FPGA
hardware was clocked at 15 MHz. The software
implementation was executed on an Intel Centrino Duo
2.2 GHz PC with 2 GB RAM. The same threshold and
cut-off values were used in both hardware and software
implementations at every step of the algorithm.
As it can be seen from table 1, our FPGA
implementation result in substantial speed-up compared
to software, ranging from 44x to 20x (the speed-up
figure depends on the query sequence). The reason
behind this high speed-up figure of the FPGA
implementation, despite the huge difference in clock
frequency, is due to the high level of process
parallelism on FPGA.

Table 1. Timing performance figures of hardware and software
implementations for 9 random protein sequences queried in Swiss-
Prot protein sequence database

 No of
Residues
in Query
Sequence

No of
Query
words

FPGA
Execution
time (sec)

Software
execution
time (sec)

FPGA
Speed-
up

1. Query
Sequence 111 116 4.45 91.56 20.58
2. Query
Sequence 214 98 5.01 131.93 26.34
3. Query
Sequence 368 136 4.32 137.42 31.81
4. Query
Sequence 459 263 5.88 211.42 35.96
5. Query
Sequence 565 137 5.73 181.48 31.67
6. Query
Sequence 635 140 5.36 194.45 36.28
7. Query
Sequence 746 117 6.83 233.25 34.15
8. Query
Sequence 864 240 7.01 311.23 44.40
9. Query
Sequence 985 53 5.33 194.12 36.42

V. Conclusion

In this paper, the detailed FPGA implementation of the
Gapped BLAST with two-hit method algorithm has
been presented. To our knowledge this is the first FPGA
implementation of this algorithm ever reported in the
literature. The hardware architecture is composed of
various blocks each of which performs a specific step of
the algorithm in parallel. Moreover, the FPGA core is
parameterized in terms of the sequence lengths, match
score, gap penalties, cut-off and threshold values. The
resulting implementation outperforms an equivalent
desktop-based software implementation by at least one
order-of magnitude. Furthermore, it was designed in the
Handel-C language which makes it FPGA-platform-
independent. As a result, the same core can be ported to
other FPGA architectures from different vendors.
The work presented in this paper is part of a bigger
project which seeks to harness the computational

performance and re-configurability features of FPGAs
in the field of Bioinformatics and computational
biology. Future work includes the extension of this
work to the Position Specific Iterated BLAST (PSI-
BLAST) algorithm, as well as other sequence analysis
techniques based on Hidden Markov Models.

VI. References

[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G., ‘Biological
Sequence Analysis: Probabilistic Models for Proteins and
Nucleic Acids’, Cambridge University Press, Cambridge UK,
1998

[2] Hein, J. ‘A New Methodology that simultaneously aligns and
reconstructs ancestral sequences for any number of
homologous sequences, when a phylogeny is given’. Journal of
Molecular Biology, 6, pp.649-668, 1989

[3] Hoang, D.T. ‘Searching genetic databases on Splash 2’, in
Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 185-191, 1993.

[4] Gokhale, M. et al. 'Processing in memory: The Terasys
massively parallel PIM array', Computer, 28 (4), pp. 23-31,
April 1995.

[5] TimeLogic Corporation, ‘Decypher Scalable, High
Performance Biocomputing Solutions’,
http://www.timelogic.com

[6] Needleman, S. and Wunsch, C. ‘A general method applicable
to the search for similarities in the amino acid sequence of two
sequences’ Journal of Molecular Biology, 48(3), pp.443-453,
1970

[7] Smith, T.F. and Waterman, M.S. Identification of common
molecular subsequences. J. Mol. Biol., 147, pp.195-197, 1981

[8] Pearson, W.R. and Lipman, D.J. ‘FASTA: Improved tools for
biological sequence comparison’, Proceedings of the National
Academy of Sciences, USA 85, pp. 2444-2448, 1988

[9] Altschul, S. F., Gish, W., Miller, W., Myers, E.W. and Lipman,
D.J. ‘Basic Local Alignment Search Tool’, Journal of
Molecular Biology,215, pp. 403-410, 1990

[10] Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J.,
Zhang, Z., Miller, W., and Lipman, D. J. ‘Gapped BLAST and
PSI-BLAST: a new generation of protein database search
programs’, Nucleic Acid Research, Oxford Journals, 25(17),
pp. 3389-3402, 1997

[11] Harrison G. A., Tanner, J. M., Pilbeam D. R., and Baker, P. T.
'Human Biology: An introduction to human evolution,
variation, growth, and adaptability', Oxford Science
Publications, 1988

[12] Chow, E., Hunkapiller, T., Peterson, J., Waterman, M.S.
‘Biological Information Signal Processor’, Proceedings of
Application-Specific Systems, Architectures, and Processors,
ASAP ASAP’91, pp. 144-160, 1991

[13] The Handel-C Language Reference Manual, Agility Plc,
http://www.agilityds.com

[14] Kung, S. Y. ‘VLSI Array Processors’, Prentice-Hall, 1988
[15] Moldovan, D. I. and Fortes, J. A. B. ‘Partitioning and mapping

of algorithms into fixed size systolic arrays’, IEEE
Transactions on Computers, 35(1), pp. 1-12, January, 1986

[16] Boeckmann, B., et al., ‘The SWISS-PROT protein
knowledgebase and its supplement TrEMBL’ in 2003 Nucleic
Acids Research, Vol.31, pp. 365-370, 2003

[17] RCHTX FPGA Board Reference Manual, Celoxica Plc,
http://www.celoxica.com

[18] Sotiriades, E.,Dollas,’A General Reconfigurable Architecture
for the BLAST Algorithm’, Journal of VLSI Signal Processing
48, 189–208, 2007

Engineering Letters, 16:3, EL_16_3_25
__

(Advance online publication: 20 August 2008)

