

HIDE+: A Logic Based Hardware Development
Environment

AbdSamad BenKrid*, IEEE Member, Khaled Benkrid**, Senior IEEE Member

*School of computer science, The Queen’s University of Belfast, Malone Road, BT 7 1NN, Northern Ireland, UK
**School of Engineering and Electronics, The University of Edinburgh, Mayfield Road, EH9 3JL, Scotland, UK

Abstract— With the advent of System-On-Chip (SOC)
technology, there is a pressing need to enhance the quality of
design tools available and increase the level of abstraction at
which hardware is designed, implemented and programmed.
This would reduce the gap between what is currently
achievable technologically, and what hardware engineers are
capable to produce given time to market constraints.
Hardware development should hence become easier and less
time consuming, without scarifying the implementation
efficiency. Towards this goal, we present in this paper a
simple structural high-level hardware language called
HIDE+, particularly suitable for the rapid generation of
highly parameterised, and highly efficient, hardware cores.
We detail the syntax and semantics of HIDE+ and illustrate
how highly scaleable, parameterised and optimised
architectures can be described and automatically generated
from it, using a small set of constructors. HIDE+ offers a
much more abstract way of describing hardware than is
possible with traditional hardware description languages
such as VHDL or Verilog. Although less abstract and
extensive than other electronic system language environments,
HIDE+ does not compromise on hardware efficiency. It can
thus be of great use to SOC design as an Intellectual Property
(IP) development environment.

I. Introduction

Recently, semi-conductor technology has made spectacular
advances leading to high-density fabrication and the
incorporation of hybrid technologies on a single chip [1].
Nevertheless, the design productivity of engineers has not
kept pace with these advances [2]. To close this gap and meet
the stringent time-to-market and other constraints, there is a
pressing need for higher quality hardware design tools and
associated methodologies and design flows. To this end,
researchers have recently introduced various System Level
Design Languages (SLDLs) to raise the design abstraction
level e.g. by focusing on system behaviour rather than low-
level implementation details [3][4][5]. However, researchers
recognise that the key to cope with the complexities involved
with System-On-chip (SOC) design remains the reuse of
Intellectual Property (IP) cores. Nonetheless, the use of third-
party IP is fraught with problems to cost of ownership, lack of
proper documentation, and maintenance issues. Moreover, IP

cores integration, especially if these come from different
providers, is not straightforward and increase the overall
design time remarkably due to lack of standards [6]. Hence,
the development of hardware design environment for IP cores
generation, perhaps for in-house use, is one way to address the
above problems.

Towards this end, we describe in this paper a high level
Prolog-based hardware design environment, called HIDE+,
specifically for the design of highly optimised DSP hardware
architectures. The programming environment is built upon the
success of a hardware description environment, developed by
the authors, called HIDE [7]. Since its first publication, two
major versions of HIDE have been developed to date. The
details of these can be found in [8-9].

The remainder of the paper is organised as follows. Section 2
gives a brief overview of the HIDE environment on which
HIDE+ builds. The rationale behind the development of
HIDE+ is then given in section 3. Section 4 details the bases
of the HIDE+ language, its structure and development
environment, and illustrates this in the context of a number of
DSP architectures. Conclusions will be drawn at the end.

II. Overview of the HIDE Environment

Figure 1 presents a block outline of the HIDE environment
[9]. The environment has two libraries: the Basic Component
Library (BCL) and the Object Description Library (ODL).
The BCL contains netlist code for a large set of basic building
blocks e.g. 1-2 bit adders, used to build more complex
architectures. These are pre-designed by the architecture
builder. The ODL on the other hand contains a header
description of each of the BCL elements. The header
description has the following format:

is_basic_block (name, control_list, ports_list,…)

where name denotes the name of the block and
control_list/ports_list the list of its control/data ports. The
headers are used by the HIDE engine when assembling their
associated components. The application developer describes
his/her architecture using the HIDE constructors given in [9].
The architecture description is then translated by the HIDE
parser into a hardware configuration, which is then

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

synthesised into EDIF or VHDL format. The details of the
translation can be found in [9].

Fig. 1 Overall HIDE environment

HIDE+ inherits from HIDE its programming environment.
However, the HIDE+ syntax is different from HIDE’s in order
to overcome some of the latter’s limitations, as will be
explained in the following sections.

III. HIDE+ Rationale

As stated in [9], the current version of HIDE is more suited to
the description and synthesis of regular hardware
architectures. However, many parallel hardware architectures
are irregular. In that case, the HIDE simple block placement
based on horizontal and vertical constructors is not
appropriate. Furthermore, HIDE’s control mechanism is basic
and does not allow for the description of complex clocking
schemes for instance. It also implicitly assumes integer data
processing i.e. fractional numbers with rounding and
truncation are not supported. Finally, HIDE does not separate
between block connectivity and placement, as placement is
implicitly assumed in HIDE’s constructors e.g. horizontal,
vertical.

The above limitations led us to develop a new notation, which
builds on the advantages of HIDE, which are:
• The use of Prolog as the base development language,

which allows for easy and smart coding of design rules for
instance

• The use of a VHDL/EDIF generator engine which takes a
high level abstract syntax tree as input

• Use of hardware skeletons as a hierarchical way to
develop efficient hardware at increasingly abstract levels,
while eliminating the aforementioned limitations of HIDE.

The following section describes the bases of HIDE+.

IV. Bases of HIDE+

To implement an architecture using HIDE+, the following
three aspects need to be considered:
• Architecture Description to instantiate the architecture

components, and specify their composition and
interconnection

• Architecture Control to feed the architecture components
with the appropriate control signals (e.g. clocking)

• Architecture Constraints to apply placement, routing, and
timing constraints on the generated hardware configuration.

This approach allows a highly modular development
environment. The following explains each of the above
aspects in turn.

A. HIDE+ Architecture Description

The basic component in a HIDE+ configuration description is
a block. The latter can be either a basic block or a compound
block. However, unlike in HIDE, HIDE+’s does not group the
block’s ports into four sides regardless of their types [8].
Instead, HIDE+ considers a basic block as an operation or a
control node to be included in a data and control flow graph
representation of a compound block or architecture. The block
is fed with a set of input data and control signals and generates
output data through output ports, which would then be input
data or control signals for other nodes in the graph.
Fig. 2 depicts a diagram of the block abstraction in HIDE+.
The block ports are divided into two groups:
• Inputs: data inputs and carry-in input
• Outputs: data outputs and carry-out output
The blocks’ control ports are treated separately by the
architecture control engine (see section C below).

Block

Carry Outs

Carry Ins

Outputs Inputs

Control

Fig. 2 HIDE+ block abstraction

All of the properties of a port are grouped into one
constructor:

port(Type, Name), for a single port
or

port(Type, Name(Dim)), for a bus
where Name denotes the name of the port and Type its type
(e.g. in for input, out for output). The number of the port wires
can be any non-zero positive integer and is represented by
Dim.

A.1. Block Interconnection
Fig. 3 gives the HIDE+ constructors used to build a compound
block from elementary sub-blocks. When connecting two
blocks (Block1 and Block2), the flow of data can be:
• from the outputs of Block1 to the inputs of Block2. The serie

(or s_seq when replicating the same block) constructor is
used to annotate this connection

• from the outputs of Block2 to the inputs of Block1, or even
from outputs of Block1 back to its inputs. This feedback
connection is specified using the loop constructor

• from the carry-out of Block1 to the carry-in of Block2. The
two blocks are aligned in parallel without connecting their

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

data ports. The parallel_with_carry (or p_seq_with_carry
when replicating the same block) constructor is used to
annotate this connection

• from the carry-out of Block1 to the carry-in of Block2 along
with connecting the data ports of the two blocks. The
serie_with_carry (or s_seq_with_carry when replicating
the same block) constructor is used to annotate this
connection

On the other hand, the constructor parallel (or p_seq when
replicating the same block) is used to align the data ports of
sub-blocks in parallel (so they can be grouped under one
entity) without connecting their data ports and carry logic
inputs outputs.

As in HIDE [8], the network connection constructor (nc([])) is
used in conjunction with the above constructors if the user
wants to connect the blocks’ ports explicitly rather than
relying on the automatic ports matching [8]. However, in
HIDE+, the nc([]) constructor also handles buses instead of
just single wire ports.

 1 2…… N

Serie Composition

C= serie([B1, B2,…., BN])

=

B2

BN

B1

C= s_seq([N, B])

Carry CompositionParallel Composition

B

B

B

= C

C= p_seq([N,B])

B2

B1

BN

=
C

C= parallel([B1, B2,…., BN])

Loop Composition

C= loop([B, nc([(1,2])])

B

C

=

B

B

B

C

C =

C= serie_with_carry([D1,D2,…., DN])

=

DN

D1

D2

D2

C

C= parallel_with_carry([D1,D2,…, DN])

=
C

D1

D2

D3

DN

N

1

Di

Carry out

Carry In

Fig. 3 HIDE+ basic constructors

Note that the above constructors have been derived after a
rigorous exploration of a high number of DSP architectures,
with the aim of allowing hardware designers to describe their
architectures precisely and concisely.

A.2. Types of Blocks
In HIDE+, a hardware block can be:
• Purely Combinatorial: where the block is not clocked
• Non-combinatorial: where the block is clocked. Three

cases are then possible:
 The block is clocked with the architecture’s master clock
 The block is clocked with a clock rate N times lower than
the master clock rate. Then, if this clock frequency is
already available on the chip, it can feed directly the
block's clock input. Otherwise, the block needs to be
enabled every N cycles of the Master clock. In the latter
case, the clock Enable signal is generated automatically
by the HIDE+ using a simple counter of period N
 The block is clocked with a clock rate N times higher
than the master clock rate. Then, the block’s clock input

should be driven by HIDE+ from dedicated chip logic
(e.g. DCM block in Xilinx FPGAs [10]).

To portray the above three cases, a ClkType attribute is
attached to every block constructor. It is equal to:

• “~”: when the block is combinatorial
• “N”: when the block is clocked with a clock rate of N-

scale the master clock rate.

A.3. Rounding off
As shown in [11], to limit the unnecessary growth of hardware
architectures’ internal wordlength, rounding off and/or
truncation are often carried out. The operation of rounding off
a binary number B (=bn-1bn-2…b0b-1b-2b-3..b-(m-1)) at the order I
consists of adding the bit b-(I+1) to the binary number BT
(=bn-1bn-2…b0, b-1b-2b-3…b-I). Unlike the truncation operation, the
implementation of the rounding operation normally requires
dedicated logic: an adder (rounder) to add the carry bit b-(I+1) to
the number BT. However, this dedicated logic might not be
needed if the operand to be rounded happens to be an input to
an adder/subtractor in the architecture as the adder/subtractor
own logic can be used to implement the rounding off
operation of one operand (by feeding its b-(I+1) bit to the carry-
in input of the adder), hence precluding the need for dedicated
rounder hardware. Nonetheless, if both operands of an
adder/subtractor need to be rounded off, the rounding bit of
the second operand has to be delayed to feed the carry in of a
next available adder/subtractor in the architecture, otherwise a
dedicated rounder needs be inferred (see Fig 4, for an example
of adder tree). HIDE+ automatically generates the necessary
rounders and the rounding delays networks as well as feeding
the carry in with the operands’ rounding bits. To support this
operation, the attribute round(I) (where I denotes the
precision) is added to the relevant HIDE+’s arithmetic block
header description.

+ - + +

- +

+ +

+ +

Rounder

Rounder

+ +- - -

Rounding bit delay

Rounding bit propagation

Fig. 4 Rounding-off scheme illustration in a 5-operand adder
tree

It is worth noting that the rounding precisions of the operands
don’t have to be equal. As such, a block Left and Right
rounding attributes need to be added. However, throughout
this paper, we limit the presentation to a uniform rounding for
the sake of simplicity.
B. HIDE+ Library Structure

The HIDE+ library contains a range of components with
different levels of abstractions (e.g. from a 1-bit section of a

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

multiplier to a fully parameterised multiplier unit). The library
is built hierarchically as illustrated in Fig. 5.

Fixed Basic
Component

Library

Parameterised skeletons

Parameterised Basic
Components Library

Fig. 5 A layered model of the HIDE+ library

The following sub-sections detail each layer in turn.

B.1. Fixed Basic Components Library
At the bottom level lays the fixed Basic Components Library
(BCL). This groups the basic building blocks that implement
the widely used operations in DSP applications, such addition,
multiplication, delay, etc but at one bit level. These blocks are
described in VHDL and EDIF format 2.0. This layer
implemented by the architecture builder constitutes the
nucleus of any HIDE+ constructed block. The properties of
this layer’s blocks are stored in the Object Description Library
(ODL) (see section II) so that the user can instantiate them
when composing DSP operators.

Most of this layer’s components have three varieties:
combinatorial, clocked with the master clock or a dedicated
clock, or instead at each N cycles of the master clock so the
clock enable is used.

B.2. Parameterised Basic Components Library
This layer delivers the basic DSP operations (e.g. N bits
buffers, adders, etc). The blocks are fully parameterised, and
composed solely from the fixed BCL components. The
following gives examples from this layer’s components.

• Line Buffer
Buffer units are often used in order to synchronise the supply
of data. A buffer unit of size Size words and I/O wordlength
WL is obtained by invoking the following constructor:

lb(Size, WL, ClkType)

• Multi-Lines Buffer
A Multi-Lines buffer is used to generate parallel data outputs
from a serial stream of samples as shown in Fig. 6. This
configuration can be generated by invoking the following
constructor:

ser2Par(NumOfPorts, WL, Size, ClkType, Flag)

where NumOfPorts specifies the number of lines to be
buffered each of Size words length. Flag is a Boolean variable
that specifies whether the input sample should also be forked
to the output or not.

Δ Δ ΔΔ

D0D1DK-2

DK-1

DK-1

Fig. 6 A serial to parallel converter: ser2Par(K)

• Truncation
Truncating an input of InWl bits to Prec-bits precision is
obtained by invoking the following constructor:

truncator(InWl, Prec)

• Adder/Subtractor
This performs a weighted addition/subtraction since the
operands of an addition/subtraction might need to be shifted
before addition/subtraction [8] (see Fig. 7). The required
constructor for the adder is:

adder(OutWl, LeftOff, RightOff, ClkType, Round)

+/-
In2(W2,RightOff)

In1(W1, LeftOff)

Out(OutWl)

Fig. 7 A weighted adder/subtractor

• Counter
This block is useful in generating a regular periodic sequence.
It is created by calling the following constructor:

 counter(UpOrDown, Step, InitSate, Period, ClkType, TypeOfOut)

where:
UpOrDown: specifies if it is an upward or downward counter
Step: specifies the step-size of the counting
InitState: specifies the initial value of the counter
Period: specifies the period of the counter
TypeOfOut: a Boolean flag that specifies if the combinatorial
output of the counter should also be available at the output.

• LUT
This is useful to configure FPGAs’ Lookup-Tables. For
instance, a 6-input LUT can be invoked by calling the
constructor:

lut6(INIT)

where INIT specifies the function of the LUT.

B.3. Parameterised Skeletons Library
This layer contains higher level units called skeletons. A
skeleton is a mapped-to-structure, to which the user can
supply not only fixed and parameterised BCL components but
even other skeletons, as parameters. Skeletons embed
optimisation rules for logic use reduction and speed
enhancement. An example of such rules computes the
minimum wordlength needed at every node of an architecture
[12]. This minimum wordlength depends on the dynamic
range of the node’s operands as well as the node operation
itself. For instance, the following constructor is inherently

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

called inside a coefficient-multiplier skeleton code to
determine the minimum wordlength necessary at its output:

 nodeDynamic(Coeff, Scale, InValue, OutValue, OutWl)

where Coeff denotes the multiplier operand’s coefficient
value, Scale any scaling applied to the multiplicand, InValue
is a 2-tuple (Min, Max) representing the dynamic range of the
input, OutValue is a 2-tuple representing the dynamic range
of the output and OutWl is the minimum wordlength necessary
to cover the output’s dynamic range. Similarly, the following
constructor is invoked to find the minimum wordlength at the
output of a generic node:

nodeDynamic(Op, Scale, InValue, OutValue, OutWl)

where Op can be either add (for an addition), sub (for a
subtraction), max (for a maximum) or min (for a minimum),
Scale is a tuple representing any weighting applied on the
operands and InValue is a list of tuples representing the
dynamic ranges of the operands. The outValue represents the
InValue attribute of the subsequent node in the architecture.
Hence the above constructors can be applied iteratively
through all of the architecture’s nodes.

The following gives illustrative examples of skeletons:
• Reduction Tree skeleton
A reduction tree skeleton reduces a set of operands into one
result. Fig. 8 gives an example of 2-input node tree structure.

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op
Op

Op

Op

Op

sgnN, scalingN

sgn1, scaling1
sgn2, scaling2

Fig. 8 A reduction tree skeleton

To generate an instance of this skeleton, the following
constructor is provided:

tree(Op, NodeSz,TreeSz, Round, ClkType, OrdOfPip, InpVal,
BoundWL, OutVal, OutWl, SgnOfOp, Scaling)

where Op specifies the tree operation (i.e. add, max or min),
NodeSz/TreeSz the node/tree number of inputs, OrdOfPip the
tree pipelining depth, BoundWL the upper bound wordlength
set by the user if any, and SgnOfOp/Scaling the sign/scaling of
operands.
This constructor embeds rules to generate the final hardware
configuration with the required wordlength at every node of
the architecture as well as the rounding, clocking and
pipelining.
• Reduction Chain Skeleton

A reduction chain skeleton reduces a set of operands into one
result. Fig. 9 gives an example of 2-input node chain structure.

Op

sgn1,
scaling1

sgn2,
scaling2

0 Op Op Op Op

sgnN,
scalingN

Fig. 9 A 2-input node reduction chain skeleton

To generate an instance of this skeleton, the following
constructor is provided:

chain(Op, NodeSz,TreeSz, Round, ClkType, OrdOfPip, InpVal,
BoundWL, OutVal, OutWl, SgnOfOp, Scaling)

• 1-D FIR Filter Structures
The following explains how general and symmetric FIR filters
are described in HIDE+.

a) General FIR filter
The architectures of a general FIR filter have mainly two
forms: direct and inverse [13].

1. Direct Form Filter Structure
Fig. 10 shows the direct form of a 1-D FIR filter.

Δ ΔΔXK-1

Adder Tree
Out

se
r2

Pa
r

pa
rM

lt

X0

h0 h1 hK-1

Fig. 10 Direct form structure of a K-taps FIR filter

Its HIDE+ description is as follows:

where FltCoefList/Coefs_Wl gives the filter’s coefficient
values/wordlength, Mlts_OrdPip specifies the pipelining order
of each multiplier, and B2_OutVal is a 2-tuple list of the
dynamic ranges at the multipliers’ outputs.

Op = add
B1 = ser2Par(K-1, InWl, 1,ClkType, true),
// parMlt is implemented using parallel constructor
B2=parMlt(FltCoefsList,Coefs_Wl,ClkType,Mlts_OrdPip,InVal,
B2_OutVal, B2_Wl),
B3 = p_seq(K, truncator(B2_OutWl, Prec)),
B4 = tree(Op, NodeSz, K, Round,ClkType,OrdOfPip, B2_Out_Val,
BoundWl, OutVal,OutWl, SgnOfOp, Scaling),
Constructor=serie([B1,B2,B3,B4]),!.

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

2. Inverse Form Filter Structure
Fig. 11 shows the inverse form structure of the 1-D FIR filter.

h0hK-1 hK-2

X

+

O
ut+ + +0

pa
rM

lt

Adder Chain
Fig. 11 Inverse form structure of a K-taps FIR filter

Its HIDE+ description is as follows:

b) Symmetric FIR Filter
The architectures of a symmetric FIR filter have mainly two
forms: direct and inverse.

1. Direct Form Symmetric Structure
Fig. 12 shows the direct form of a 1-D symmetric FIR filter.

Δ Δ Δ

ΔΔΔ

Adder Tree

+ + + Δ

h0 h1 hK

ser2Par

parAdd

parMlt

X

Fig. 12 Direct form structure of a (2K+1)-taps FIR filter

The HIDE+ description of a 1-D L-tap direct symmetric filter
is:

2. Inverse Form Symmetric Structure
Fig. 13 shows the inverse symmetric form of the 1-D FIR r.

Δ Δ

Δ

In

0

Kh0h 1h 2Kh −

ΔOut

parMlt
adder Chain

Fig. 13 Inverse form structure of a (2K+1)-taps symmetric
FIR filter

The HIDE+ description of a 1-D L-tap inverse symmetric
filter is:

• 2-D FIR Filter structure
Fig. 14 shows the architecture of a (KxM) taps 2-D FIR filter.
The 2-D FIR filter is implemented by means of K 1-D FIRs
(each one having M taps) and “K-1” row delays. Each row
delay holds a whole image raw (e.g., N pixels for an NxN
image).

Op = add
B1 = nc([(1,1),(1,2),…,(1,K)]),
B2=parMlt(FltCoefsList, Coefs_Wl, ClkType, Mlt_OrdPip, InVal,
B2_OutVal, B2_Wl),
B3 = p_seq(K, truncator(B2_Wl, Prec)),
B4 = chain(Op, NodeSz, K, Round, ClkType, OrdOfPip, B2_OutVal,
BoundWl, OutVal, OutWL, SgnOfOp, Scaling),
Constructor = serie([B1,B2,B3,B4]),!.

Op = add
B1 = ser2Par(L-1, InWl, 1, ClkType, true),
B2 = generate_nc_for_symmetric filter,
// parAdd is implemented using parallel constructor
B3=parAdder(InVal, ClkType, B3_OutVal),
 ((even(L), Half is L/2); (Half is L//2+1)),!,
B4 = p_seq(Half, truncator(B3_Wl,Prec))
B5=parMlt(FltCoefsList, Coef_Wl, ClkType, Mlts_OrdPip,
B4_OutVal, B5_OutVal, B5_Wl),
B6 = tree(Op, NodeSz, Half, Round, ClkType, OrdOfPip,
B5_OutVal, BoundWL, OutVal, OutWl, SgnOfOp, Scaling),
Constructor = serie([B1,B2,B3,B4,B5,B6]),!.

Op = add
B1 = nc([(1,1),(1,2),…,(1,L)]),
B2 = parMlt(FltCoefsList, Coef_Wl, ClkType, Mlts_OrdPip, InVal,
B2_OutVal, B2_Wl),
B3 = p_seq(L, truncator(B2_Wl, Prec))
B4 = chain (Op, NodeSz, L, Round, ClkType, OrdOfPip,
B2_OutVal, BoundWl, OutVal, OutWL, SgnOfOp, Scaling),
Constructor = serie([B1,B2,B3, B4]),!.

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

Li
ne

Bu

ffe
r

A
ccum

ulator

Image X Input by rows

O
ut

[X0]

[XK-1]

[XK-2]

[Xi] 1-D Horizontal Filter Row j

1-D Horizontal Filter Row L-1

1-D Horizontal Filter Row 1

1-D Horizontal Filter Row 0

Li
ne

B

uf
fe

r
Li

ne

Bu
ffe

r

Fig. 14 (KxM)-tap 2-D FIR filter architecture

The following presents the main HIDE+ constructor calls to
implement a 2-D KxM FIR filter:

where FirStructures instantiates one of the 1-D FIR structures
shown in the previous section.

Note that this skeleton architecture has been used to
implement a generic image algebra neighbourhood operation
core set [8], simply by replacing the multiplier by the required
local operator (e.g. addition) and the adder by the global
operator (e.g. maximum, minimum). The implementation
configuration delivers the same performance as when
optimised carefully by hand [14].

C. HIDE+’s Architecture Control

In addition to the provision of regular counter constructor (see
section B.2), HIDE+ is able to generate the logic for any
periodic pattern output. This logic consists of LUTs
associated with flip flops where the flip-flops’ outputs are fed
back into the LUT inputs. Fig. 15 shows, for example, the
required logic for implementing the periodic sequence
[0,1,0,0].

O
ut

0

0
0

1 FF

Clk

LUT2
Fig. 15 Implementation of a [0,1,0,0] periodic sequence

generators.

The equivalent HIDE+ constructor is:

B=loop([serie([lut2(4),FF])])

More complex controllers are implemented via Finite State
Machine (FSM) structures. These are automatically generated
using high level HIDE+ constructors as explained below.

Fig. 16 shows the general structure of an FSM [15]. The
current state(value) of the machine is stored in the state
memory (a set of n flip-flops or a memory). The machine’s
next state is a function of the current state and the inputs. The
outputs in Mealy FSMs are a function of the current state and
the inputs while in the Moore FSMs, outputs are a function of
the current state only.

Next
State Logic

Combinatorial
Logic

Sequential
Logic

Flip Flops, Mem
Current State

Q

QSET

CLR

S

R
Next

Output Logic

Combinatorial
Logic

Current

State

O
ut

pu
ts

Inputs
(Mealy State Machine Only)

Fig .16 FSM Block Diagram

Usually, FSM are described by state diagrams. State diagrams
are then converted into state and output tables from which the
structure of the next state and output circuits can be derived.
The current version of HIDE+ does not allow the designer to
draw the state diagram graphically. Instead, he/she can set the
next state function by invoking the following constructor:

stateTable[(In,CurrentState,NextState),….]

The designer can set the output function by calling:

outTable[(In,CurrentState,outVal)], in Mealy FSMs

or

outTable[(CurrentState,outVal)], in Moore FSMs

where In, CurrentState, NextState, and outVal can be given in
decimal or binary representation.

Subsequently, the FSM block’s architecture is generated by
invoking the following constructor:

genFSM(Type,StateTable,OutTable,EncType)

Op = add
B1 = ser2Par(K, InWl, RowSz,ClkType, true),
// parFlt is implemented using parallel constructor
B2 = parFlt(RowFlt, FirStructures, B2_OutVal, B2_OutWl),
B3 = tree(Op, NodeSz, M, Round,ClkType,OrdOfPip, B2_OutVal,
BoundWl, OutWl, ones(1,M),ones(1,M)),
Constructor=serie([B1,B2,B3]),!.

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

where Type indicates the type of the FSM and EncType
specifies the FSM’ states encoding: Binary, Gray Code, or
oneHot. The genFSM function implements the Quine
McLusky algorithm needed to minimise the combinatorial
logic [15]. Finally, a drive_controls constructor [7], connects
the output of the above FSM block to the relevant block(s) in
the sought architecture.

D. HIDE+ Architecture Constraint

In addition to mapping constraints applied on the BCL
components, designers can attach placement and timing
constraints to the designed hardware architecture. Currently,
these are automatically passed to back-end synthesis tools. In
the future, HIDE+ will include rules for automatic time-driven
floorplanning.

V. Implementation Results

HIDE+ has been used to implement a wide range of real word
applications on actual FPGA Hardware [8][9][14]. The results
show that HIDE+ can deliver the same performance as the
best handcrafted designs, with the added parameterisability
and scalability features. This section gives a sample of these
results through a Daubechies-8 FIR filter [16] implementation
on Xilinx XCVE50-8 FPGA [17]. The filter is an instance of a
HIDE+ core which was written with various optimisations
embedded into it, including automatic minimum word length
and precision inference, and efficient FPGA hardware
mapping. Table 1 below gives the performance achieved by
implementing the low Daubechies-8 FIR filter using the
structures of figure 10 and 11, using both HIDE+ and a
handcrafted schematic-entry design of the same filter. The
filter coefficients have been represented in 8 bits and 2
fractional precision were allocated
to the internal wordlength.

 Area (Slices) Speed (MHz)
Fig. 10 architecture 147 ~167
Fig. 11 architecture 113 ~159

Table 1. Performance of a low Daubechies-8 FIR filter
implementation on Xilinx XCVE50-8 FPGA using schematic

entry and HIDE+ tool

As can be seen from the table, the HIDE+ core delivers the
same performance as a handcrafted schematic-entry design.

VI. Conclusion

In this paper, we have described the bases of a Prolog-based
structural hardware development environment, called HIDE+,
which allows for very concise and abstract descriptions of
structured hardware architectures, and translates them
automatically into very efficient hardware implementations.
Based on a hierarchical library of hardware building blocks
and a small set of constructors, we have illustrated the use of
HIDE+ in the construction of a number of FIR-based
architectures. These designs proved optimal in the sense that
the same optimisations undertaken by hand were achieved
automatically through the use of HIDE+. The achieved
concise descriptions show clearly the benefit of the modular
structure of the language in facilitating the development of
efficient and reusable designs and IP cores in general (see
section B.3).

The development of in-house Intellectual Property cores has
become vital in the EDA industry, and with current high
density heterogeneous hardware platforms and stringent time-
to-market constraints, HIDE+’s approach to hardware
development can become very appealing. And although the
proposed environment does not include behavioural modelling
currently, and does not allow for concurrent hardware
software co-design, it provides a fully programming
environment for the development of highly parameterisable
and optimised IP cores. Nonetheless, the extension of HIDE+
and its integration to higher level SLDLs are currently being
considered.

VII. References

[1] International Technology Roadmap for Semiconductors

(ITRS), 2005, available at http://public.itrs.net/
[2] David August, Kurt Keutzer, Sharad Malik, Richard

Newton. Programmable ASICs to reduce costs. EE
Times, November 2000.

[3] System C Home page: http://www.systemc.org.
[4] Spec-C Home page: http://www.cecs.uci.edu/~specc/
[5] Celoxica Limited, Handel C information sheets. Available

at http://www.celoxica.com.
[6] Harriet Harvey-Horn. IP Assessment: Issues and

Strategies. Silicon Integration Initiative, August 1999.
[7] K.Alotaibi, “A high level hardware description

environment for FPGA-based image processing
applications,” PhD Thesis, Department of Computer
Science, The Queen’s University of Belfast, 1999.

[8] K. Benkrid, D. Crookes, “From application descriptions
to hardware in seconds: a logic-based approach to
bridging the gap”, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, TVLSI12, vol. 4,
2004, pp. 420–436.

[9] K. Benkrid, S.Belkacemi, A. Benkrid, “HIDE: A
Hardware Intelligent Description Environment”, In
Elsevier's Journal of Microprocessors and Microsystems,
Special Issue on FPGA-based Reconfigurable

 Area (Slices) Speed (MHz)
Fig. 10 architecture 147 ~167
Fig. 11 architecture 113 ~159

(b) HIDE+

(a) SchematicEntry

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

Computing, 30, Vol. 6, pp. 283-300, September 2006.
[10] Virtex-5 Family Overview Platforms, Xilinx Inc., 2007.

Available:
http://direct.xilinx.com/bvdocs/publications/ds100.pdf

[11] A. Benkrid, K. Benkrid, D. Crookes, “A Novel Approach
for Diminishing and Predicting the Error Dynamic Range
in Finite Wordlength FIR Based Architectures”, IEEE
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’03), vol. 2, pp. 581-584,
April 6-10, 2003, Hong Kong

[12] K. Benkrid, K. Benkrid, D. Crookes, “The Optimal
Wordlength Calculation for Forward and Inverse Discrete
Wavelet Transform Architectures”, SPIE Journal of
Optical Engineering, OE, Vol. 43, Issue 2, pp. 455-463,
February, 2004.

[13] Peter Pirsch, “Architectures for Digital Signal
Processing,” John Wiley & Sons, 1999.

[14] A. Benkrid, “Design and Implementation of 2-D Discrete
Wavelet Transforms on FPGAs”, PhD thesis PhD Thesis,
Department of Computer Science, The Queen's
University of Belfast, 2003.

[15] S. Golson, “State Machine Design Techniques for
Verilog and VHDL” Synopsys Journal of High-Level
Design, September 1994, pp. 1-48.

[16] M. Vetterli, M. Kovacevic, Wavelets and Subband
Coding. Prentice Hall, New Jersey, USA, 1995.

[17] Virtex-E Family Datasheet, Xilinx Inc. , 2003. Available:
http://www.xilinx.com/support/documentation/data_sheet
s/ds022-1.pdf

Engineering Letters, 16:3, EL_16_3_27
__

(Advance online publication: 20 August 2008)

