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Abstract— With the advent of System-On-Chip (SOC) 
technology, there is a pressing need to enhance the quality of 
design tools available and increase the level of abstraction at 
which hardware is designed, implemented and programmed. 
This would reduce the gap between what is currently 
achievable technologically, and what hardware engineers are 
capable to produce given time to market constraints.   
Hardware development should hence become easier and less 
time consuming, without scarifying the implementation 
efficiency. Towards this goal, we present in this paper a 
simple structural high-level hardware language called 
HIDE+, particularly suitable for the rapid generation of 
highly parameterised, and highly efficient, hardware cores. 
We detail the syntax and semantics of HIDE+ and illustrate 
how highly scaleable, parameterised and optimised 
architectures can be described and automatically generated 
from it, using a small set of constructors. HIDE+ offers a 
much more abstract way of describing hardware than is 
possible with traditional hardware description languages 
such as VHDL or Verilog. Although less abstract and 
extensive than other electronic system language environments, 
HIDE+ does not compromise on hardware efficiency. It can 
thus be of great use to SOC design as an Intellectual Property 
(IP) development environment.  
 

I. Introduction 
 
Recently, semi-conductor technology has made spectacular 
advances leading to high-density fabrication and the 
incorporation of hybrid technologies on a single chip [1]. 
Nevertheless, the design productivity of engineers has not 
kept pace with these advances [2]. To close this gap and meet 
the stringent time-to-market and other constraints, there is a 
pressing need for higher quality hardware design tools and 
associated methodologies and design flows. To this end, 
researchers have recently introduced various System Level 
Design Languages (SLDLs) to raise the design abstraction 
level e.g. by focusing on system behaviour rather than low-
level implementation details [3][4][5]. However, researchers 
recognise that the key to cope with the complexities involved 
with System-On-chip (SOC) design remains the reuse of 
Intellectual Property (IP) cores. Nonetheless, the use of third-
party IP is fraught with problems to cost of ownership, lack of 
proper documentation, and maintenance issues. Moreover, IP 

cores integration, especially if these come from different 
providers, is not straightforward and increase the overall 
design time remarkably due to lack of standards [6]. Hence, 
the development of hardware design environment for IP cores 
generation, perhaps for in-house use, is one way to address the 
above problems. 
 
Towards this end, we describe in this paper a high level 
Prolog-based hardware design environment, called HIDE+, 
specifically for the design of highly optimised DSP hardware 
architectures. The programming environment is built upon the 
success of a hardware description environment, developed by 
the authors, called HIDE [7]. Since its first publication, two 
major versions of HIDE have been developed to date. The 
details of these can be found in [8-9].   
 
The remainder of the paper is organised as follows. Section 2 
gives a brief overview of the HIDE environment on which 
HIDE+ builds. The rationale behind the development of 
HIDE+ is then given in section 3. Section 4 details the bases 
of the HIDE+ language, its structure and development 
environment, and illustrates this in the context of a number of 
DSP architectures. Conclusions will be drawn at the end. 
 

II.   Overview of the HIDE Environment 
 
Figure 1 presents a block outline of the HIDE environment 
[9]. The environment has two libraries: the Basic Component 
Library (BCL) and the Object Description Library (ODL). 
The BCL contains netlist code for a large set of basic building 
blocks e.g. 1-2 bit adders, used to build more complex 
architectures. These are pre-designed by the architecture 
builder. The ODL on the other hand contains a header 
description of each of the BCL elements. The header 
description has the following format: 
 

is_basic_block (name, control_list, ports_list,…) 
 
where name denotes the name of the block and 
control_list/ports_list the list of its control/data ports. The 
headers are used by the HIDE engine when assembling their 
associated components. The application developer describes 
his/her architecture using the HIDE constructors given in [9]. 
The architecture description is then translated by the HIDE 
parser into a hardware configuration, which is then 
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synthesised into EDIF or VHDL format. The details of the 
translation can be found in [9]. 
 

 
Fig. 1 Overall HIDE environment 

 
HIDE+ inherits from HIDE its programming environment. 
However, the HIDE+ syntax is different from HIDE’s in order 
to overcome some of the latter’s limitations, as will be 
explained in the following sections. 
 

III.   HIDE+ Rationale 
 
As stated in [9], the current version of HIDE is more suited to 
the description and synthesis of regular hardware 
architectures. However, many parallel hardware architectures 
are irregular. In that case, the HIDE simple block placement 
based on horizontal and vertical constructors is not 
appropriate. Furthermore, HIDE’s control mechanism is basic 
and does not allow for the description of complex clocking 
schemes for instance. It also implicitly assumes integer data 
processing i.e. fractional numbers with rounding and 
truncation are not supported. Finally, HIDE does not separate 
between block connectivity and placement, as placement is 
implicitly assumed in HIDE’s constructors e.g. horizontal, 
vertical. 
 
The above limitations led us to develop a new notation, which 
builds on the advantages of HIDE, which are: 
•   The use of Prolog as the base development language, 

which allows for easy and smart coding of design rules for 
instance 

•   The use of a VHDL/EDIF generator engine which takes a 
high level abstract syntax tree as input 

•   Use of hardware skeletons as a hierarchical way to 
develop efficient hardware at increasingly abstract levels, 
while eliminating the aforementioned limitations of HIDE. 

 
The following section describes the bases of HIDE+. 
 

IV.  Bases of HIDE+  
 
To implement an architecture using HIDE+, the following 
three aspects need to be considered: 
• Architecture Description to instantiate the architecture 

components, and specify their composition and 
interconnection  

• Architecture Control to feed the architecture components 
with the appropriate control signals (e.g. clocking)  

• Architecture Constraints to apply placement, routing, and 
timing constraints on the generated hardware configuration.  
 

This approach allows a highly modular development 
environment. The following explains each of the above 
aspects in turn. 
 
A.  HIDE+ Architecture Description 
 
The basic component in a HIDE+ configuration description is 
a block. The latter can be either a basic block or a compound 
block. However, unlike in HIDE, HIDE+’s does not group the 
block’s ports into four sides regardless of their types [8]. 
Instead, HIDE+ considers a basic block as an operation or a 
control node to be included in a data and control flow graph 
representation of a compound block or architecture. The block 
is fed with a set of input data and control signals and generates 
output data through output ports, which would then be input 
data or control signals for other nodes in the graph.  
Fig. 2 depicts a diagram of the block abstraction in HIDE+. 
The block ports are divided into two groups: 
• Inputs: data inputs and carry-in input  
• Outputs: data outputs and carry-out output 
The blocks’ control ports are treated separately by the 
architecture control engine (see section C below). 
 

Block 

Carry Outs 

Carry Ins 

Outputs Inputs

Control

 
Fig. 2  HIDE+ block abstraction 

 
All of the properties of a port are grouped into one 
constructor: 

port( Type, Name), for a single port 
or  

port( Type, Name(Dim)), for a bus 
where Name denotes the name of the port and Type its type 
(e.g. in for input, out for output). The number of the port wires 
can be any non-zero positive integer and is represented by 
Dim.  
 
A.1. Block Interconnection   
Fig. 3 gives the HIDE+ constructors used to build a compound 
block from elementary sub-blocks. When connecting two 
blocks (Block1 and Block2), the flow of data can be: 
• from the outputs of Block1 to the inputs of Block2. The serie 

(or s_seq when replicating the same block) constructor is 
used to annotate this connection 

• from the outputs of Block2 to the inputs of Block1, or even 
from outputs of Block1 back to its inputs. This feedback 
connection is specified using the loop constructor 

• from the carry-out of Block1 to the carry-in of Block2. The 
two blocks are aligned in parallel without connecting their  
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data ports. The parallel_with_carry (or p_seq_with_carry 
when replicating the same block) constructor is used to 
annotate this connection 

• from the carry-out of Block1 to the carry-in of Block2 along 
with connecting the data ports of the two blocks. The 
serie_with_carry (or s_seq_with_carry when replicating 
the same block) constructor is used to annotate this 
connection 

On the other hand, the constructor parallel (or p_seq when 
replicating the same block) is used to align the data ports of 
sub-blocks in parallel (so they can be grouped under one 
entity) without connecting their data ports and carry logic 
inputs outputs.  
 
As in HIDE [8], the network connection constructor (nc([])) is 
used in conjunction with the above constructors if the user 
wants to connect the blocks’ ports explicitly rather than 
relying on the automatic ports matching [8]. However, in 
HIDE+, the nc([]) constructor also handles buses instead of 
just single wire ports. 
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Fig. 3 HIDE+ basic constructors 

 
Note that the above constructors have been derived after a 
rigorous exploration of a high number of DSP architectures, 
with the aim of allowing hardware designers to describe their 
architectures precisely and concisely. 
 
A.2. Types of Blocks 
In HIDE+, a hardware block can be: 
• Purely Combinatorial: where the block is not clocked 
• Non-combinatorial: where the block is clocked. Three 

cases are then possible: 
 The block is clocked with the architecture’s master clock 
 The block is clocked with a clock rate N times lower than 
the master clock rate. Then, if this clock frequency is 
already available on the chip, it can feed directly the 
block's clock input. Otherwise, the block needs to be 
enabled every N cycles of the Master clock. In the latter 
case, the clock Enable signal is generated automatically 
by the HIDE+ using a simple counter of period N 
 The block is clocked with a clock rate N times higher 
than the master clock rate. Then, the block’s clock input 

should be driven by HIDE+ from dedicated chip logic 
(e.g. DCM block in Xilinx FPGAs [10]).  

 
To portray the above three cases, a ClkType attribute is 
attached to every block constructor. It is equal to: 

• “~”: when the block is combinatorial 
• “N”: when the block is clocked with a clock rate of N-

scale the master clock rate.  
 
A.3. Rounding off  
As shown in [11], to limit the unnecessary growth of hardware 
architectures’ internal wordlength, rounding off and/or 
truncation are often carried out. The operation of rounding off 
a binary number B (=bn-1bn-2…b0b-1b-2b-3..b-(m-1)) at the order I 
consists of adding the bit b-(I+1) to the binary number BT  
(=bn-1bn-2…b0, b-1b-2b-3…b-I). Unlike the truncation operation, the 
implementation of the rounding operation normally requires 
dedicated logic: an adder (rounder) to add the carry bit b-(I+1) to 
the number BT. However, this dedicated logic might not be 
needed if the operand to be rounded happens to be an input to 
an adder/subtractor in the architecture as the adder/subtractor 
own logic can be used to implement the rounding off 
operation of one operand (by feeding its b-(I+1) bit to the carry-
in input of the adder), hence precluding the need for dedicated 
rounder hardware. Nonetheless, if both operands of an 
adder/subtractor need to be rounded off, the rounding bit of 
the second operand has to be delayed to feed the carry in of a 
next available adder/subtractor in the architecture, otherwise a 
dedicated rounder needs be inferred (see Fig 4, for an example 
of adder tree). HIDE+ automatically generates the necessary 
rounders and the rounding delays networks as well as feeding 
the carry in with the operands’ rounding bits. To support this 
operation, the attribute round(I) (where I denotes the 
precision) is added to the relevant HIDE+’s arithmetic block 
header description. 

+ - + +

- +

+ +

+ +

Rounder

Rounder

+ +- - -

Rounding bit delay

Rounding bit propagation
 

Fig.  4  Rounding-off scheme illustration in a 5-operand adder 
tree 

 

It is worth noting that the rounding precisions of the operands 
don’t have to be equal. As such, a block Left and Right 
rounding attributes need to be added. However, throughout 
this paper, we limit the presentation to a uniform rounding for 
the sake of simplicity. 
B. HIDE+  Library Structure 
 
The HIDE+ library contains a range of components with 
different levels of abstractions (e.g. from a 1-bit section of a 
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multiplier to a fully parameterised multiplier unit). The library 
is built hierarchically as illustrated in Fig. 5. 
 

 

 
 
 
 
 
 

Fixed Basic 
Component 

Library 

Parameterised skeletons 

Parameterised Basic 
Components Library 

 
Fig. 5 A layered model of the HIDE+ library 

 
The following sub-sections detail each layer in turn. 
 
B.1. Fixed Basic Components Library 
At the bottom level lays the fixed Basic Components Library 
(BCL). This groups the basic building blocks that implement 
the widely used operations in DSP applications, such addition, 
multiplication, delay, etc but at one bit level. These blocks are 
described in VHDL and EDIF format 2.0. This layer 
implemented by the architecture builder constitutes the 
nucleus of any HIDE+ constructed block. The properties of 
this layer’s blocks are stored in the Object Description Library 
(ODL) (see section II) so that the user can instantiate them 
when composing DSP operators. 

Most of this layer’s components have three varieties: 
combinatorial, clocked with the master clock or a dedicated 
clock, or instead at each N cycles of the master clock so the 
clock enable is used.  
 
B.2. Parameterised Basic Components Library  
This layer delivers the basic DSP operations (e.g. N bits 
buffers, adders, etc). The blocks are fully parameterised, and 
composed solely from the fixed BCL components. The 
following gives examples from this layer’s components. 
 
• Line Buffer 
Buffer units are often used in order to synchronise the supply 
of data. A buffer unit of size Size words and I/O wordlength 
WL is obtained by invoking the following constructor: 

lb(Size, WL, ClkType) 

• Multi-Lines Buffer 
A Multi-Lines buffer is used to generate parallel data outputs 
from a serial stream of samples as shown in Fig. 6. This 
configuration can be generated by invoking the following 
constructor: 

ser2Par(NumOfPorts, WL, Size, ClkType, Flag) 

where NumOfPorts specifies the number of lines to be 
buffered each of Size words length. Flag is a Boolean variable 
that specifies whether the input sample should also be forked 
to the output or not. 

Δ Δ ΔΔ

D0D1DK-2

DK-1

DK-1

 
Fig. 6 A serial to parallel converter: ser2Par(K) 

 
• Truncation 
Truncating an input of InWl bits to Prec-bits precision is 
obtained by invoking the following constructor: 

truncator(InWl, Prec) 

• Adder/Subtractor 
This performs a weighted addition/subtraction since the 
operands of an addition/subtraction might need to be shifted 
before addition/subtraction [8] (see Fig. 7). The required 
constructor for the adder is: 

adder(OutWl, LeftOff, RightOff, ClkType, Round) 

 
 

+/-
In2(W2,RightOff) 

In1(W1, LeftOff) 

Out(OutWl) 

 
Fig. 7 A weighted adder/subtractor 

 
• Counter 
This block is useful in generating a regular periodic sequence. 
It is created by calling the following constructor: 

  counter(UpOrDown, Step, InitSate, Period, ClkType, TypeOfOut) 

where: 
UpOrDown: specifies if it is an upward or downward counter 
Step: specifies the step-size of the counting 
InitState: specifies the initial value of the counter 
Period: specifies the period of the counter 
TypeOfOut: a Boolean flag that specifies if the combinatorial 
output of the counter should also be available at the output. 
  
• LUT 
This is useful to configure FPGAs’ Lookup-Tables. For 
instance, a 6-input LUT can be invoked by calling the 
constructor: 

lut6(INIT) 

where INIT specifies the function of the LUT.  
 
B.3. Parameterised Skeletons Library 
This layer contains higher level units called skeletons. A 
skeleton is a mapped-to-structure, to which the user can 
supply not only fixed and parameterised BCL components but 
even other skeletons, as parameters. Skeletons embed 
optimisation rules for logic use reduction and speed 
enhancement. An example of such rules computes the 
minimum wordlength needed at every node of an architecture 
[12]. This minimum wordlength depends on the dynamic 
range of the node’s operands as well as the node operation 
itself.  For instance, the following constructor is inherently 
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called inside a coefficient-multiplier skeleton code to 
determine the minimum wordlength necessary at its output: 

  nodeDynamic(Coeff, Scale, InValue, OutValue, OutWl) 

where Coeff denotes the multiplier operand’s coefficient 
value, Scale any scaling applied to the multiplicand, InValue 
is a 2-tuple (Min, Max) representing the dynamic range of the 
input,  OutValue is a 2-tuple representing the dynamic range 
of the output and OutWl is the minimum wordlength necessary 
to cover the output’s dynamic range. Similarly, the following 
constructor is invoked to find the minimum wordlength at the 
output of a generic node: 

nodeDynamic(Op, Scale, InValue, OutValue, OutWl) 

where Op can be either add (for an addition), sub (for a 
subtraction), max (for a maximum) or min (for a minimum),  
Scale is a tuple representing any weighting applied on the 
operands and InValue is a list of tuples representing the 
dynamic ranges of the operands. The outValue represents the 
InValue attribute of the subsequent node in the architecture. 
Hence the above constructors can be applied iteratively 
through all of the architecture’s nodes. 
 
The following gives illustrative examples of skeletons:  
• Reduction Tree skeleton 
A reduction tree skeleton reduces a set of operands into one 
result. Fig. 8 gives an example of 2-input node tree structure. 
  

Op 

Op 

Op 

Op 

Op 

Op 

Op 

Op 

Op 

Op 

Op 

Op 

Op 

Op 

 

Op

Op

Op
Op 

Op 

Op 

Op 

sgnN, scalingN 

sgn1, scaling1 
sgn2, scaling2 

Fig. 8 A reduction tree skeleton 
 
To generate an instance of this skeleton, the following 
constructor is provided: 

tree(Op, NodeSz,TreeSz, Round, ClkType, OrdOfPip, InpVal, 
BoundWL, OutVal, OutWl, SgnOfOp, Scaling) 

where Op specifies the tree operation (i.e. add, max or min),  
NodeSz/TreeSz the node/tree number of inputs, OrdOfPip the 
tree pipelining depth, BoundWL the upper bound wordlength 
set by the user if any, and SgnOfOp/Scaling the sign/scaling of 
operands. 
This constructor embeds rules to generate the final hardware 
configuration with the required wordlength at every node of 
the architecture as well as the rounding, clocking and 
pipelining. 
• Reduction Chain Skeleton 

A reduction chain skeleton reduces a set of operands into one 
result. Fig. 9 gives an example of 2-input node chain structure. 
 

Op

sgn1,
scaling1

sgn2,
scaling2

0 Op Op Op Op

sgnN,
scalingN

 
Fig. 9 A 2-input node reduction chain skeleton 

 
To generate an instance of this skeleton, the following 
constructor is provided: 

chain(Op, NodeSz,TreeSz, Round, ClkType, OrdOfPip, InpVal, 
BoundWL, OutVal, OutWl, SgnOfOp, Scaling) 

 
• 1-D FIR Filter Structures 
The following explains how general and symmetric FIR filters 
are described in HIDE+.  
 
a) General FIR filter  
The architectures of a general FIR filter have mainly two 
forms: direct and inverse [13]. 
 
1. Direct Form Filter Structure 
Fig. 10 shows the direct form of a 1-D FIR filter.  
 

Δ ΔΔXK-1

Adder Tree
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Fig. 10 Direct form structure of a K-taps FIR filter 

 
Its HIDE+ description is as follows:  
 

 
 
where FltCoefList/Coefs_Wl gives the filter’s coefficient 
values/wordlength, Mlts_OrdPip specifies the pipelining order 
of each multiplier, and B2_OutVal is a 2-tuple list of the 
dynamic ranges at the multipliers’ outputs. 
 
 

Op = add 
B1 = ser2Par(K-1, InWl, 1,ClkType, true), 
// parMlt is implemented using parallel constructor 
B2=parMlt(FltCoefsList,Coefs_Wl,ClkType,Mlts_OrdPip,InVal, 
B2_OutVal, B2_Wl), 
B3 = p_seq(K, truncator(B2_OutWl, Prec)), 
B4 = tree(Op, NodeSz, K, Round,ClkType,OrdOfPip, B2_Out_Val,  
BoundWl, OutVal,OutWl, SgnOfOp, Scaling), 
Constructor=serie([B1,B2,B3,B4]),!. 
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2. Inverse Form Filter Structure 
Fig. 11 shows the inverse form structure of the 1-D FIR filter.  
 

h0hK-1 hK-2

X

+

O
ut+ + +0

pa
rM

lt

Adder Chain  
Fig. 11 Inverse form structure of a K-taps FIR filter 

 
Its HIDE+ description is as follows: 
 

 
 
b) Symmetric FIR Filter 
The architectures of a symmetric FIR filter have mainly two 
forms: direct and inverse. 
 
1. Direct Form Symmetric Structure 
Fig. 12 shows the direct form of a 1-D symmetric FIR filter.  
 

Δ Δ Δ

ΔΔΔ

Adder Tree
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h0 h1 hK

ser2Par

parAdd

parMlt

X

 
Fig. 12 Direct form structure of a (2K+1)-taps FIR filter 

 
The HIDE+ description of a 1-D L-tap direct symmetric filter 
is: 
 

 
2. Inverse Form Symmetric Structure 
Fig. 13 shows the inverse symmetric form of the 1-D FIR r.  
 

Δ Δ

Δ
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0

Kh0h 1h 2Kh −

ΔOut

parMlt
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Fig. 13 Inverse form structure of a (2K+1)-taps symmetric 
FIR filter 

 
The HIDE+ description of a 1-D L-tap inverse symmetric 
filter is: 
 

 
 
• 2-D FIR Filter structure 
Fig. 14 shows the architecture of a (KxM) taps 2-D FIR filter. 
The 2-D FIR filter is implemented by means of K 1-D FIRs 
(each one having M taps) and “K-1” row delays. Each row 
delay holds a whole image raw (e.g., N pixels for an NxN 
image).  
 

Op = add 
B1 = nc([(1,1),(1,2),…,(1,K)]), 
B2=parMlt(FltCoefsList, Coefs_Wl, ClkType, Mlt_OrdPip, InVal, 
B2_OutVal, B2_Wl), 
B3 = p_seq(K, truncator(B2_Wl, Prec)), 
B4 = chain(Op, NodeSz, K, Round, ClkType, OrdOfPip, B2_OutVal, 
BoundWl, OutVal, OutWL, SgnOfOp, Scaling), 
Constructor = serie([B1,B2,B3,B4]),!. 

Op = add 
B1 = ser2Par(L-1, InWl, 1, ClkType, true), 
B2 = generate_nc_for_symmetric filter, 
// parAdd is implemented using parallel constructor 
B3=parAdder(InVal, ClkType, B3_OutVal), 
 ( (even(L), Half is L/2); (Half is L//2+1) ),!, 
B4 = p_seq(Half, truncator(B3_Wl,Prec)) 
B5=parMlt(FltCoefsList, Coef_Wl, ClkType, Mlts_OrdPip, 
B4_OutVal, B5_OutVal, B5_Wl), 
B6 = tree(Op, NodeSz, Half, Round, ClkType, OrdOfPip, 
B5_OutVal, BoundWL, OutVal, OutWl, SgnOfOp, Scaling), 
Constructor = serie([B1,B2,B3,B4,B5,B6]),!. 

Op = add 
B1 = nc([(1,1),(1,2),…,(1,L)]), 
B2 = parMlt(FltCoefsList, Coef_Wl, ClkType, Mlts_OrdPip, InVal, 
B2_OutVal, B2_Wl), 
B3 = p_seq(L, truncator(B2_Wl, Prec)) 
B4 = chain (Op, NodeSz, L, Round, ClkType, OrdOfPip, 
B2_OutVal, BoundWl, OutVal, OutWL, SgnOfOp, Scaling),  
Constructor = serie([B1,B2,B3, B4]),!. 
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Fig. 14 (KxM)-tap 2-D FIR filter architecture 

 
The following presents the main HIDE+ constructor calls to 
implement a 2-D KxM FIR filter: 
 

 
 
where FirStructures instantiates one of the 1-D FIR structures 
shown in the previous section.  
 
Note that this skeleton architecture has been used to 
implement a generic image algebra neighbourhood operation 
core set [8], simply by replacing the multiplier by the required 
local operator (e.g. addition) and the adder by the global 
operator (e.g. maximum, minimum). The implementation 
configuration delivers the same performance as when 
optimised carefully by hand [14].  
 
C.  HIDE+’s Architecture Control  
 
In addition to the provision of regular counter constructor (see 
section B.2), HIDE+ is able to generate the logic for any 
periodic pattern output. This logic consists of LUTs 
associated with flip flops where the flip-flops’ outputs are fed 
back into the LUT inputs. Fig. 15 shows, for example, the 
required logic for implementing the periodic sequence 
[0,1,0,0].  
 

O
ut

0

0
0

1 FF

Clk

LUT2  
Fig. 15 Implementation of a [0,1,0,0] periodic sequence 

generators. 
 
The equivalent HIDE+ constructor is: 
 

B=loop([serie([lut2(4),FF])]) 
 
More complex controllers are implemented via Finite State 
Machine (FSM) structures. These are automatically generated 
using high level HIDE+ constructors as explained below. 
 
Fig. 16 shows the general structure of an FSM [15]. The 
current state(value) of the machine is stored in the state 
memory (a set of n flip-flops or a memory). The machine’s 
next state is a function of the current state and the inputs. The 
outputs in Mealy FSMs are a function of the current state and 
the inputs while in the Moore FSMs, outputs are a function of 
the current state only. 
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Fig .16 FSM Block Diagram 

 
Usually, FSM are described by state diagrams. State diagrams 
are then converted into state and output tables from which the 
structure of the next state and output circuits can be derived. 
The current version of HIDE+ does not allow the designer to 
draw the state diagram graphically. Instead, he/she can set the 
next state function by invoking the following constructor: 

stateTable[(In,CurrentState,NextState),….] 

The designer can set the output function by calling:  

outTable[(In,CurrentState,outVal)], in Mealy FSMs 

or 

outTable[(CurrentState,outVal)], in Moore FSMs 

where In, CurrentState, NextState, and outVal can be given in 
decimal or binary representation. 
 
Subsequently, the FSM block’s architecture is generated by 
invoking the following constructor: 

genFSM(Type,StateTable,OutTable,EncType) 

Op = add 
B1 = ser2Par(K, InWl, RowSz,ClkType, true), 
// parFlt is implemented using parallel constructor 
B2 = parFlt(RowFlt, FirStructures, B2_OutVal, B2_OutWl), 
B3 = tree(Op, NodeSz, M, Round,ClkType,OrdOfPip, B2_OutVal, 
BoundWl, OutWl, ones(1,M),ones(1,M)), 
Constructor=serie([B1,B2,B3]),!. 
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where Type indicates the type of the FSM and EncType 
specifies the FSM’ states encoding: Binary, Gray Code, or 
oneHot. The genFSM function implements the Quine 
McLusky algorithm needed to minimise the combinatorial 
logic [15]. Finally, a drive_controls constructor [7], connects 
the output of the above FSM block to the relevant block(s) in 
the sought architecture.  
 
D.  HIDE+ Architecture Constraint 
 
In addition to mapping constraints applied on the BCL 
components, designers can attach placement and timing 
constraints to the designed hardware architecture. Currently, 
these are automatically passed to back-end synthesis tools. In 
the future, HIDE+ will include rules for automatic time-driven 
floorplanning. 
 

V.   Implementation Results 
 
HIDE+ has been used to implement a wide range of real word 
applications on actual FPGA Hardware [8][9][14]. The results 
show that HIDE+ can deliver the same performance as the 
best handcrafted designs, with the added parameterisability 
and scalability features. This section gives a sample of these 
results through a Daubechies-8 FIR filter [16] implementation 
on Xilinx XCVE50-8 FPGA [17]. The filter is an instance of a 
HIDE+ core which was written with various optimisations 
embedded into it, including automatic minimum word length 
and precision inference, and efficient FPGA hardware 
mapping. Table 1 below gives the performance achieved by 
implementing the low Daubechies-8 FIR filter using the 
structures of figure 10 and 11, using both HIDE+ and a 
handcrafted schematic-entry design of the same filter. The 
filter coefficients have been represented in 8 bits and 2 
fractional precision were allocated  
to the internal wordlength.  
 

 Area (Slices) Speed (MHz) 
Fig. 10 architecture 147 ~167 
Fig. 11 architecture 113 ~159 

 

 
 

Table 1. Performance of a low Daubechies-8 FIR filter 
implementation on Xilinx XCVE50-8 FPGA using schematic 

entry and HIDE+ tool 
 
As can be seen from the table, the HIDE+ core delivers the 
same performance as a handcrafted schematic-entry design.  
 

VI. Conclusion 
  

In this paper, we have described the bases of a Prolog-based 
structural hardware development environment, called HIDE+, 
which allows for very concise and abstract descriptions of 
structured hardware architectures, and translates them 
automatically into very efficient hardware implementations. 
Based on a hierarchical library of hardware building blocks 
and a small set of constructors, we have illustrated the use of 
HIDE+ in the construction of a number of FIR-based 
architectures. These designs proved optimal in the sense that 
the same optimisations undertaken by hand were achieved 
automatically through the use of HIDE+. The achieved 
concise descriptions show clearly the benefit of the modular 
structure of the language in facilitating the development of 
efficient and reusable designs and IP cores in general (see 
section B.3).  
 
The development of in-house Intellectual Property cores has 
become vital in the EDA industry, and with current high 
density heterogeneous hardware platforms and stringent time-
to-market constraints, HIDE+’s approach to hardware 
development can become very appealing. And although the 
proposed environment does not include behavioural modelling 
currently, and does not allow for concurrent hardware 
software co-design, it provides a fully programming 
environment for the development of highly parameterisable 
and optimised IP cores. Nonetheless, the extension of HIDE+ 
and its integration to higher level SLDLs are currently being 
considered. 
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