

Abstract—This paper describes a novel methodology for

evolving artificial neural network topologies by intelligently
adding connections and neurons. The neural networks are
complexified and grown to optimise their neural complexity,
which is a measure of the information-theoretic complexity of
the network. Complexification of neural networks describes the
process of increasing the neural complexity whilst increasing
the structural complexity of the neural networks. This novel
technique is tested in a robot control domain, simulating a
racecar. It is shown, that the proposed methodology is a
significant improvement over other more common and
randomised growing techniques. The technique proposed here
helps to discover a network topology that matches the
complexity of the problem it is meant to solve. This results in
networks which in some cases learn faster than some fixed
structure networks.

Index Terms—Neural Networks, Complexification, Neural
Complexity.

 INTRODUCTION
Artificial Neural Networks (ANNs) have been used in

many different applications, with varying success. The
success of a neural network, in a given application, depends
on a series of different factors, such as ANN topology,
learning algorithm and learning epochs. Furthermore all of
these factors can be dependent or independent of each other.
Network topology is the focus of this research, in that
finding the optimum network topology can be a tedious and
difficult process. Ideally all network topologies should be
able to learn every given task to competency, but in reality a
given topology can be a bottleneck and constraint on a
system. Selecting the wrong topology can result in a
network that cannot learn the task at hand [1]-[3]. It is
commonly known that a too small or too large network does
not generalise well, i.e. learn a given task to an adequate
level. This is due to either too few or too many parameters
used to represent a proper and adequate mapping between
inputs and outputs.

This paper proposes a methodology that can help find an
adequate network topology. The methodology proposes to
grow existing networks by adding elements to the network
be it connections or neurons, whilst trying to increase a
measure of the neural complexity of the network. Assuming

 Manuscript received December 10, 2008.
 Thomas D. Jorgensen is with the Department of Electronic and

Computer Engineering, University of Portsmouth, Portsmouth, PO1 3DJ,
UK (phone +44 2392-842580, e-mail: Thomas.Jorgensen@port.ac.uk).

 Barry P. Haynes is with the Department of Electronic and Computer
Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK (e-mail:
Barry.Haynes@port.ac.uk).

 Charlotte C. F. Norlund is with the School of Engineering Sciences,
University of Southampton, Southampton, SO17 1BJ, UK. (e-mail:
ccfn1g08@soton.ac.uk)

that complex task solving requires complex neural
controllers, continuously growing and adapting network
topology increases the controller complexity and can
increase the probability of finding an adequate network
topology. The further evolution of an existing network into a
more complex one yields an increased chance of better
performance and thus a higher fitness.

There are generally 4 ways to construct the topology of an
ANN[3]-[5]. (1) Trial and Error, is the simplest method.
This essentially consists of choosing a topology at random
and testing it, if the network performs in an acceptable way,
the network topology is suitable. If the network does not
perform satisfactory, select another topology and try it. (2)
Expert selection; the network designer decides the topology
based on a calculation or experience [3], [6]. (3) Evolving
connection weights and topology through complexification.
Extra connections and neurons can be added as the
evolutionary process proceeds or existing networks can be
reorganised [7]-[17]. (4) Simplifying and pruning overly
large neural networks, by removing redundant elements
[18],[19].

The 4 methods mentioned can be sub-divided into
different techniques and approaches, but they all support the
fact that continually growing or pruning network topologies
yields the most unconstrained and open-ended evolution
[15].

This paper starts with a short description of related
research in artificial evolution of artificial neural network
topology in section 2, followed by a brief description of the
neuro-scientific background behind complexification in
section 3. Section 4 describes the neural complexity applied
in this paper, and section 5 describes in details how it is
applied herein. Section 6 describes the results of the
experiments conducted here, this is followed by a discussion
and a conclusion in sections 7 and 8 respectively.

 BACKGROUND
The most common applications of artificial neural

networks in both evolutionary robotics and in common AI
systems utilize a fixed network structure, in which the
connection weights are trained [3]. This fixed structure
network is adequate for many different types of systems,
and if not, another structure is selected, trained and tested. In
systems with inadequate networks, caused by wrong or
constraints in network topology, continual complexification
of topology by adding valuable components could be the
way to find a suitable and adequate topology.

Most research in complexification has so far focused on
increasing the structural complexity, i.e. increasing the
number of network components, of a neural network, this is
done to mimic natural evolution [20]. Different routes and

Evolving Artificial Neural Networks through
Topological Complexification

Thomas D. Jorgensen, Barry P. Haynes and Charlotte C. F. Norlund

Engineering Letter, 16:3, EL_17_1_04
__

(Advance online publication: 17 February 2009)

techniques have been proposed to continuously complexify
neural network for a continuous increase in fitness [8], most
prominently is the NEAT framework [15].

Research into the use of neural complexity in
complexification to produce biologically plausible structures
is limited. This is due to the lack of proper calculation tools
and the variety of definitions and focus.

 Structural Complexification
The NEAT framework crossbreeds neural networks of

different topology. In the NEAT model, mechanisms are
introduced to evolve network structure, either by adding
neurons or connections, in parallel with the normal
evolution of weights. Furthermore different controllers can
be crossbred using a gene tracking methodology. The results
of these experiments with complexification achieve, in some
cases, faster learning as well as a neural network structure
capable of solving more complex tasks than produced by
normally evolved controllers. One of the main
improvements indicated by the success of NEAT is the use
of speciation; it increases the search space with only little
loss of speed.

Other approaches do not crossbreed networks of different
topology, but use mutation as the evolutionary operator that
evolves the network. Reference [9], [10] propose networks
that are gradually evolved by adding connections or neurons
and new components are frozen, so that fitness is not
reduced. This is similar to the first method of topological
complexification proposed by Fahlman [7], which increased
network size by adding neurons.

 Neural Complexity
Neural complexity is a measure of how a neural network

is both connected and differentiated [16]. It is measure of
the structural complexity as well as the differentiated
connectivity of the network. The measure was developed to
measure the neural complexity of human and animal brains
by estimating the integration of functionally segregated
modules. This measure reflects the properties that fully
connected networks and functionally segregated networks
have low complexity, whilst networks that are highly
specialised and also well integrated are more functionally
complex. Reference [17] has shown that when optimising an
artificial neural network with a fixed number of neurons for
neural complexity, the fitness increases proportionally,
suggesting a link between neural and functional complexity.
The more complex a network, the greater the likelihood that
it will be capable of solving complex tasks and surviving in
complex environments [11]-[17].

 NEUROSCIENTIFIC FOUNDATIONS
Complexification in artificial neural networks can prove

to be as important, as it is in the development of natural
neural systems. It is important in artificial development to
unleash fitness potential otherwise left untouched and
constrained by a fixed neural topology. Complexification in
neural networks is a vital process in the development of the
brain in any natural system [21]. Complexification in human
brains happens in several different ways, by growth, by
pruning and by reorganisation. The first form of

complexification happens from before birth and goes on up
to adulthood, as the brain is formed. During this period
neurons and interconnections grow and hence complexifies
the network. The second form of complexification happens
through continuous pruning. Connections between neurons
have to be used for them not to fade away and eventually
possibly disappear. This concept is called neural Darwinism,
as it is similar to normal evolution, where the fittest, in this
case connections, survive [22]. The third form of
complexification happens through reorganisation. In some
cases, for yet unknown reasons, connections detach
themselves from neuron and reconnects to another. Mostly,
reorganisation in natural systems has a detrimental effect.

This paper is only concerned with the first type of
complexification. As natural brains are developed during its
prenatal phase and during childhood connections and
neurons are grown in vast number with a significant amount
of redundancy. Research shows that childhood redundancy
of neurons and connections and their subsequent pruning is
a necessary part of our brains development, as other
connections are strengthened after a pruning [21], [22].
Neurons and connections need to be activated and used
regularly to prevent them from decaying away, if neurons or
connections aren't active they risk decaying away or being
pruned. This principle is called “Neural Darwinism”, as only
the fittest and most used elements survive, whereas the rest
slowly disappear. This methodology tries to avoid growing
networks larger than necessary, as this will increase learning
time. The aim of this research is to find network topologies
that will match the task, it is meant to solve, in size and
complexity. Having a too large network will probably mean
the task at hand will be solved adequately, but at a cost in
form of learning time. Therefore, rather than grow a network
with redundancy and then let it be pruned down in size
according which elements of the network that are used and
which are not, this methodology tries to predict which will
be used. This means elements are added if they are likely to
be vital elements of the network, i.e. adding the element will
probably increase the network's fitness.

 THE NEURAL COMPLEXITY MEASURE
The neural complexity measure is an information-

theoretic measure of the complexity of the neural network
and not a measure of the magnitude of connection weights
or of the number of elements in the network [16]. The
measure uses the correlation between neurons to quantify
the integration and the specialisation of neural groups in a
neural network. Neural complexity is a measure of how well
brain or artificial neural network neurons have grouped
together to form specialised functional clusters and how
well these cluster work together. Complex networks have
functional clusters that are integrated with each other to
work as a unit. This is why complex networks are more
likely to be able to solve a complex task. Having a complex
network is not a requirement for complex behaviour nor is it
a guarantee for complex behaviour, but it increases the
chances of finding a neural network that adequately solves a
given task. The weights of the connections are all set to a
constant value when calculating the neural complexity to
avoid basing the neural complexity measure on the

Engineering Letter, 16:3, EL_17_1_04
__

(Advance online publication: 17 February 2009)

magnitude of the connection weights.
X is a neural system with n neurons, represented by a

connection matrix stating where connections go to and from.
The information entropy H(X) is used to calculate the
integration between components [23], and it is calculated by
the standard formula H(X) = ln((2·π·e)n·|COV(X)|)/2.
COV(X) is a standard covariance matrix based on the
connection matrix and |·| denotes the determinant. The
integration between neurons in a system X is defined as:

 ∑
=

−=
n

1i
i H(X))H(xI(X) (1)

The integration I(X) of segregated neural elements equals

the difference between the sum of entropies H(xi) of all of
the individual components xi of the neural network
considered alone and the entropy of the network as a whole.

One of the main features of using the entropy its
symmetrical properties. Systems that have highly
independent functional components or have highly
integrated clusters will have a low complexity. Complex
systems are characterised by highly specialised clusters,
which are integrated with each other. These properties are
desirable, as systems that are fully connected are not
particularly complex, because every components is
correlated with all other components. Systems that have
functional clusters that work independently of each other are
also not complex, but only some of its subcomponents are.
The integration between components can be calculated in
different ways, here it is calculated by equation 2.

)/2COV(X)e)πln((2

)/2COV(X)eπln(2I(X)

n

n

1i
ii

⋅⋅⋅−

⋅⋅⋅=∑
= (2)

The measure of integration uses a covariance matrix

based on the connection matrix. The covariance generally
expresses the correlation between two variables. The
integration is based on the sum of the natural logarithm of
diagonal elements of the covariance matrix. The diagonal
elements of the covariance matrix are the variance of the
connectivity between components and the off-diagonal
elements are the covariance’s. The covariance matrix gives a
measure of how correlated the different components in a
network are, as it is closely related to the correlation matrix.
The natural logarithm of the determinant of the covariance
matrix is subtracted from the sum of the diagonals yielding
the integration of components in a given network. The
determinant is here used to penalize great variations in the
variance of the connectivity.

The average integration between functionally segregated
neural groups with k (out of n) elements is expressed with
<I(X)>. j is an index indicating that all possible
combinations of subsets with k components are used. The
average integration for all subsets with k components is used
to calculate the neural complexity:

 ∑
=

><−⋅=
n

1k

k
jN])I(XI(X)[(k/n)(X)C (3)

The neural complexity CN of a neural system X is the sum

of differences between the values of the average integration
<I(X)> expected from a linear increase for increasing subset
size k and the actual discrete values observed. The
complexity of a given system is high when the integration is
high and the integration of the any sub-system is lower than
expected from a linear increase in subset size. This neural
complexity measure yields an estimate of the information-
theoretic complexity of a neural network by measuring the
integration between individual components and all possible
combinations of subsets, which is an improvement over
similar methods such as those proposed in [18], [19]. In the
case where all components are independent of each other,
the integration I(X) = 0 and hence the complexity CN(X) =
0. The integration and the complexity will always be ≥ 0,
due to the definitions and nature of the equations. It is worth
notion that <I(Xj

k)> is monotonically increasing with
increasing k. This neural complexity is efficient as it is not
based on the magnitude of the connection weights, but on
the correlation and variance of the different elements in
neural network. The complexity measure has the property
that it is not the number of neurons or connections that
decides the complexity, but the connectivity. Large networks
can be more complex than smaller networks, because it has
more elements. Smaller network can be more complex than
larger networks as they can be connected better.

 USING THE COMPLEXITY MEASURE
The neural complexity measure is used to optimise the

complexity of the neural network. A structural addition only
takes place if the complexity increases. The
complexification methodology proposed is summarised by
the following algorithm:

1. Create a starting network, which consists of only

the input and output neurons. Furthermore each
input neuron should be connected to each output
neuron. The starting network used here can be seen
Fig. 3.

2. Test the network by evolving connections weights,
if the fitness achieved is adequate there is no need
to change topology or connection weights, if the
fitness isn't acceptable the network should be
complexified.

3. Complexify the network by adding elements to the
network, this can be neurons or connections.

4. Measure the neural complexity of the network, if
the neural complexity has increased the
complexification is deemed a success, if it has
remained constant or decreased, the changes are
undone and the network is re-complexified.

Engineering Letter, 16:3, EL_17_1_04
__

(Advance online publication: 17 February 2009)

5. The network is trained to competency, if the
complexification has increased the fitness, the
process has been a success and if desired another
complexification can take place. If on other hand
the fitness hasn't increased three scenarios exist:
i. The complexification process is abandoned, as

the maximum fitness for the given
problem/task has been reached.

ii. The complexification can be undone, and
another different complexification can take.
This is done is rare cases, as sometimes certain
topologies are unable to adequately learn a
given task sufficiently. A different
complexification can solve this problem.

iii. The network can be complexified even further
with the existing topology. This is sometimes
done as it is assumed that the complexification
and the resulting fitness increase has been too
small to be statistically significant, a further
complexification can increase this
significance.

At step 3, when the network is being complexified, there

are multiple ways of doing this. Merely adding a number of
connections and neurons isn’t enough, some of the
connections of the original starting network should be
replaced by new connections to and from new neurons. This
is done to decrease the learning time of the network, as it
forces the network topology away from being a reactive
network. Adding components can either be a semi-random
process or fully optimised one. Randomly replacing some of
the existing connections with new ones and randomly
adding neurons one by one is recommendable. As long as
these additions increase the neural complexity, they are
valid. Alternatively, one can try to find the optimum
position for new additions, this requires heavy computations
as all possible combinations of connections and neurons
have to be tested in order to find the optimal configuration.

 The Simulated Track and Robot
The controllers evolved here are tested in a simulated

environment with a robot. In this environment a robot has to
drive around a track, which consists of 32 sections. The
objective of this task is to complete 3 laps in the shortest
amount of time. If a robot fails to complete 3 laps, the
distance covered is the measure of its performance. The
robot has to drive around the track covering all of the
sections of the track, it is not allowed to skip any sections.
In total the robot has to complete 3 laps, with 32 sections in
each lap, all visited in the correct order. If the robot is too
slow at driving between two sections the simulation is
terminated. The following Fig. 1, illustrates the task to be
completed:

Fig. 1. The figure illustrates the track and the robot in the
simulator.

Fig. 1 illustrates the track and the robot driving around it.
The robot is not limited in its movement, i.e. it can drive off
the track, reverse around the track or adapt to any driving
patterns desired, as long at its drives over the right counter
clockwise sequence of sections. Fig. 2 illustrates how the
robot perceives the track and its environment seen from
above.

Fig. 2. The figure illustrates the robot and its sensors.

The track sections have alternating colours to mark a
clear distinction between sections. The arrows, in Fig. 2,
illustrate the three sensors perceived by the robot. The front
sensor measures the distance to the next turn and the two
side sensor measures the distance to the edge of the track.
As indicated by Fig. 2, the simulated robot has three wheels
and not four. The reason for this is that it is much more
difficult controlling and evolving a controller for a three
wheeled robot than for a four wheeled one. The risk when
driving this three wheeled robot is, in contrast to a four
wheeled vehicle, that it will roll over if driven too abruptly.
A robot that has rolled over will not to be able to continue.
The front wheel controls the speed as well as the direction.
Additionally to the three distance sensors the robot has
sensor feedback on its outputs. The robot has a speed sensor
and a direction sensor, to measure the actual values of speed
and direction, as these may vary from output values from the
network. By having these two sensors the network becomes
a proper control network with the capability to implement an
adequate solution to the task at hand, as well as risking
instability.

 The Fitness Function
Fitness is rewarded according to normal motorsport rules

and practice. 3 laps of the track have to be completed and
the controller that finishes in the fastest time wins the race,

Start

Engineering Letter, 16:3, EL_17_1_04
__

(Advance online publication: 17 February 2009)

i.e. it is the fittest controller. If a controller fails to finish 3
laps, the controller with the most laps or longest distance
travelled wins. In the case that two controllers have reached
the same distance the racing time determines the fittest
controller. The fitness function can in general terms be
described by the following:

Time

Covered DistanceFitness = (4)

The equation states that the longest distance covered in

the shortest amount of time yields the best fitness. Time is
the time it takes to complete the track. If a controller fails to
finish this Time is set to 120 seconds, which is the absolute
slowest a controller is allowed to be, before a simulation is
stopped. In the likely event that two controllers have
covered the same distance, the controller with the fastest
time will be favoured for further evolving. The precise
version of the fitness function can be seen in the following:

Time

Length)Track (LapsSectionsFitness ∗+= (5)

The fitness is equal to the distance divided by the time.

The distance is equal to the number of track sections
covered in the current lap, plus the number of sections
covered in previous laps. Track length is the total number of
sections, which are 32. The minimum fitness obtainable is
1/120 ≈ 0.008, a very god controller can achieve up to 13.

 The Test Setup

A total of 4 different tests will be conducted in the
experiments. Two of the experiments have fixed network
topologies, these are tested to act as comparisons. In one
experiment a starting network is evolved randomly by
adding neurons and connections to the network whilst
evolving the connection weights. Finally, in the last
experiement, a starting network is complexified using the
neural complexity measure described earlier. The four
experiments are briefly summarised in the following:

1. Starting Network, the network shown in Fig. 3 is
tested, and it will act a comparison to the here
proposed methodology.

2. Benchmark Networks, two standard benchmark
networks are tested to contextualise the findings.
One network has three hidden layer neurons and
the other has five. These networks can be seen in
Fig. 4.

3. Randomised Evolution, like the complexification
algorithm described previously, the randomised
evolution algorithm used here replaces one or more
of the connections of the starting network with a
random number of new connections and neurons.
Up to three successive evolutionary steps take
place for the randomly evolution and growth of the
starting network.

4. Complexification, using the complexification
algorithm described previously, different sets of
experiments have been conducted. All experiments

differ from one another, due to the randomness of
the algorithm. Each experiment conducted with the
neural complexity consists of up to three successive
changes of the starting network.

The starting network from which all evolved networks
have their origin is displayed in Fig. 3.

Fig. 3. The starting topology for all evolved network.

The starting network has 5 inputs and 2 outputs, as
illustrated in Fig. 3. The inputs are: The three distance
sensors, the actual speed and the direction of the control
wheel. The outputs from the networks are the speed and the
direction of the front wheel of the robot. Having the actual
speed and direction of the front wheel as an input means that
this system isn't purely reactive, which it is if these are
disregarded. Preliminary tests without these two inputs show
that a reactive system, consisting of only the starting
network, is in most cases, as good as larger network with
more connections and neurons.

 EXPERIMENTS AND RESULTS

A total of four sets of experiments have been
conducted. The first set of experiments was a thorough test
of the starting network and its inadequacies. The second set
of experiments was with the two benchmark network shown
in Fig. 4. In all of these tests the connections weights were
evolved and optimised with a genetic algorithm. The third
set of experiments was a test of a randomised evolution
algorithm. These tests were conducted to prove whether or
not the proposed complexification algorithm is efficacious.
The final sets of experiments conducted is a thorough test of
the here proposed complexification algorithm. The results
from the experiments are summarised in Table 1 and
described in detail in the following sections.

 The Simulation Environment
The evolved neural network controllers are tested in a
physics simulator to mimic a real world robot subject to real
world forces. The genetic algorithm has in all tests a
population size of 25 and the number of tests per method is

Direction

Left Sensor #1

#3

#5

#2

#3

#6

#7

Right Sensor

Front Sensor

Speed

Direction

Speed

Engineering Letter, 16:3, EL_17_1_04
__

(Advance online publication: 17 February 2009)

15. The benchmark networks have been trained for 500
generations, whereas newly evolved networks have been
retrained for another 500 generations. The crossover and
mutation probabilities were 0.8 and 0.05 respectively.
Uniformly distributed noise has been added on the input and
output values to simulate sensor drift, actuator response,
wheel skid and other real world error parameters. The
simulated robot can be seen in Fig. 5, which is a snapshot
from the simulator:

Fig. 5. The robot and the track in the simulator.

The robot, the wheeled box in the middle, is driven along

the track, which is visualised by the rectangles of alternating
colour. Fig. 5 is similar to Fig. 1 and it gives an impression
of how the artificial neural network controls a simulated
robot driving around a virtual track. To give the simulation
similar attributes and effects as on a real racing track, the
track has been given edges, which can be seen in Fig. 5.
Whenever the robot drives off the track it falls off this edge
onto another slower surface. This means, that if the robot
cuts corners, it could potentially have wheels lifting off the
ground, thus effecting stability and speed, due to the edge
when returning onto the track.

 The Starting and Benchmark Networks
The results from the experiments conducted with the

starting network clearly illustrate that the network topology
is incapable of representing an adequate solution to the
problem. One can now either start structurally elaborating
this starting topology or select another network topology.
The benchmark networks can both adequately represent a
controller capable of driving fast around the track. The
networks have been selected to make one topology medium
sized and another large. This can be seen in Table 1, as the
large network has a longer learning time than the medium
sized network. Longer learning time can be seen to affect
the average fitness of a network, as it simply cannot learn
the task given the granted learning time.

Fig. 4. Benchmark Network 1 (Left) and Benchmark Network 2 (Right).

Fig. 6. Randomly evolved networks, steps 1, 2 and 3(Top) and complexified networks, steps 1, 2 and 3(Bottom).

Engineering Letter, 16:3, EL_17_1_04
__

(Advance online publication: 17 February 2009)

 Randomised Evolution
The randomly evolved network tests show how the

starting network can be evolved into a network that
adequately solves the task. Fig. 6. shows an example of how
three successive steps of random evolution can evolve the
starting network into an adequate one. Each test yields
different results and different topologies as a result of the
randomness in the algorithm. The different results are
averaged and normalised. After one step, some of the initial
connections have been replaced by a neuron and some new
connections. Despite several new components the network
topology is still inadequate and further additions are
necessary. After two steps the evolved network can
adequately implement the task at hand. The evolved network
topologies range from being very capable to inadequate.
Some topologies can learn the task fast whereas others
cannot learn it at all. After three steps enough components
have been added to assure that the task is learned adequately
for all evolved networks.

 Complexified Networks
The complexification algorithm has been tested

thoroughly and the results can be seen in Table 1. The
results show some of the same tendencies as the randomised
algorithm, no two additions are the same as the number of
connections to remove and add is semi-random. The neural
complexity increases with each addition to the network, as
this is a requirement. The complexity of the starting network
is measured to 6.89, this on average increases by 15.32%
after the first evolutionary step, 38.12% after the second step
and 71.16% after the third. The results show that after the
first additions, the network is still incapable of adequately
solving the task. After the second step the average network
is capable of learning the task at hand fast and competently.
The fitness decreases insignificantly after the third step, this
is due to the increased learning time after the addition of
more components to the network. Had the complexifications
stopped after the second step, the algorithm proposed here
would have found a network whose topology adequately

matches the complexity of the problem to solve. Any further
additions beyond this step will not be fruitful.

 DISCUSSION AND EVALUATION
The results from all of the experiments show that not all

networks are capable of adequately solving the problem.
The results furthermore confirm that increasing the neural
complexity of a network is no guarantee for success.
Sometimes using the complexity measure yields network
incapable of solving any given problem. However on
average this complexification strategy is more likely to yield
good networks than a random evolution strategy. Comparing
this methodology with randomised evolution strategy yields
interesting results. After one step there is no significant
difference between the two algorithms, after two steps the
complexification algorithm is on average 26% better than
random algorithm, which is a significant difference given a
t-test with a 5% significance level. This difference is again
insignificant after three steps. This means the
complexification algorithm is more likely to find adequate
networks to solve the given task. This can be seen by the
fact that all complexified networks solve the task and gains
a good fitness when solving it. Continually increasing the
neural complexity does, for obvious reasons, not always
increase the fitness of a network. The difference between the
results from the complexifications in the step two and step
three is insignificant. In step three the average fitness is
lower as a result of the extra components to train. Training
very complex networks even further than the networks at
step 2 yields no significant improvement in the results. The
fitness increase converges after the second step, hereafter
any further complexity increases, does not add significantly
to the fitness of the network.

Table 1. Results from the experiments.

Method Minimum Fitness Average Fitness Maximum Fitness Standard Deviation

Starting Topology 0.01 0.10 0.13 0.06

Benchmark Network 1 7.57 10.45 12.07 1.79

Benchmark Network 2 6.20 9.61 12.86 2.52

Randomised Evolution Step 1 0.08 0.18 0.28 0.09

Randomised Evolution Step 2 4.25 8.26 11.12 2.49

Randomised Evolution Step 3 7.23 10.17 12.29 2.02

Complexification Step 1 0.08 0.18 0.28 0.08

Complexification Step 2 9.02 11.23 12.79 1.41

Complexification Step 3 9.95 10.73 12.56 1.11

Engineering Letter, 16:3, EL_17_1_04
__

(Advance online publication: 17 February 2009)

The learning speed of the starting network, the
benchmark networks, and the newly elaborated networks
can be seen in Fig. 7. It is noticeable that all networks loose
their fitness immediately after a structural elaboration.

Fig. 8 and Fig. 9 show the route that two different
controllers choose to drive around the track. One controller
has achieved a high fitness and the other a less than average
fitness. The race car starts in (0,0) and drives to (20,0)
where it turns. Hereafter it continues to (20,11) where it
turns and continues to (-2.5,11) and from here it continues to
(-2.5, 0) and on to (0,0). The controller tries to align the car
on the straight line between the points. Fig. 8 shows an
average lap of a good evolved network, and it clearly
illustrates the route that the car takes.

Fig. 8. The route taken by a good controller.

Fig. 8 illustrates how the evolved network performs and the

degree of overshoot when turning and recovering to drive
straight ahead on another leg of the track. Fig. 9 shows the
average route for a poor network for comparison.

Fig. 9. The route taken by a poor controller.

The two figures show the routes of the different networks.

Fig. 9 clearly shows that the poor controller overshoots
more than the good network controller in Fig 8. Less
overshot, ultimately means that the racing car is able to
move faster, which means it has a better fitness. The
difference in fitness between the two routes is a factor 2 and
the overshoot of the poor controller is more than twice that
of the good controller.

 Future Work and Direction
The results obtained from the experiments indicate that

this methodology is very useful when evolving network

Fig. 7. The average learning speed of the different networks.

Engineering Letter, 16:3, EL_17_1_04
__

(Advance online publication: 17 February 2009)

topology and connection weights. Further experiments are to
be conducted in order to determine whether this
methodology is better than the best growing strategies. This
involves implementing successful strategies like NEAT
[15]. Further work on this methodology includes making
comparisons with the optimum strategy described earlier.
This requires different task of different complexity and
different starting networks. Different tests and problems to
solve will also reconfirm the efficacy of this algorithm.

 CONCLUSION
This paper has presented a new methodology for

complexifying artificial neural networks through structural
addition of neurally complex components. A semi-random
number of connections and neurons were added at each
complexification step, this was done whilst increasing the
neural complexity of the network. A starting network, two
benchmark networks, a randomised evolutionary algorithm
and the here proposed complexification strategy were tested
thoroughly. The results confirm that the here proposed
methodology is better than more randomised methods.
Complexification and evolutionary strategies that do not
take neural complexity into account can prove to be less
efficient than this methodology. Using the neural
complexity measure and the algorithm proposed herein
yields an increased probability of finding neural network
controller that adequately solve the here given problem.
Using this methodology does not give a guarantee for
success, but is does increase the probability of achieving it.

REFERENCES
[1] A.S. Weigend, D.E. Rumelhart and B.A. Huberman, “Back-

propagation, weight-elimination and time series prediction,”
Proceedings of the 1990 Summer School on Connectionist Models,
1990.

[2] J. Denker, D. Schwartz, B. Wittner, S. Solla R. Howard, L. Jackel and
J. Hopfield, “Large Automatic Learning, Rule Extraction and
Generalization,” Complex Systems, vol. 1, no. 5, 1987.

[3] S. Nolfi, and D. Floreano, Evolutionary Robotics; The Biology,
Intelligence, and Technology of Self-Organizing Machines. MIT Press
2000.

[4] X. Yao and Y. Liu, “A New Evolutionary System for Evolving
Artificial Neural Networks,” IEEE Trans. Neural Networks, vol. 8,
no. 3, May 1997.

[5] X. Yao, “Evolving Artificial Neural Networks,” Proc. of the IEEE,
vol. 87, no. 9, September 1999.

[6] R. Jacobs and M. Jordan, “Adaptive mixtures of local experts,”
Neural Computation, vol. 3, 1991.

[7] S. E. Fahlman, and C. Lebiere, “The Cascade-Correlation Learning
Architecture,” Advances in Neural Information Processing Systems 2,
Los Altos CA, US, 1990.

[8] T. Jorgensen, and B. Haynes, “Evolving Co-operative behavior,” in
Proc. of SAB06 Workshop on Bio-inspired Cooperation and Adaptive
Behaviours in Robots, Rome 2006.

[9] P. Angeline, and J.Pollack, “Evolutionary Module Acquisition,” in
Proc. of the Second Annual Conf. on Evolutionary Programming,
1993.

[10] P. Angeline, G. M. Saunders, and J. B. Pollack, “An Evolutionary
Algorithm that Constructs Recurrent Neural Network,” IEEE Trans.
on Neural Networks, 1994.

[11] M. Lungarella, and O. Sporns, “Information Self-Structuring: Key
Principle for learning and Development,” in Proc. of the fourth IEEE
Int. Conf. on Development and Learning, 2005.

[12] O. Sporns, G. Tononi, and G. M. Edelman, “Connectivity and
complexity: the relationship between neuroanatomy and brain
dynamics,” in Neural Networks 13, 2000.

[13] O. Sporns, “Small-world connectivity, motif composition, and
complexity of fractal neuronal connections,” in Biosystems 85, 2006.

[14] O. Sporns, and M. Lungarella, “Evolving Coordinated Behaviours by
Maximizing Informational Structure,” in Proc. of the Tenth Int. Conf.
on Artificial Life, 2006.

[15] K. O. Stanley, and R. Miikkulainen, “Continual Coevolution through
Complexification,” in Proc. of the Genetic and Evolutionary
Conference, 2002.

[16] G. Tononi, O. Sporns, and G. M. Edelman, “A Measure for Brain
Complexity: Relating Functional Segregation and Integration in the
Nervous System,” in Proc. of the National Academy of Science of
USA, May 1994.

[17] L. S. Yaeger, and O. Sporns, ”Evolution of Neural Structure and
Complexity in a Computational Ecology,” in Proc. of the Tenth Int.
Conf. on Artificial Life, 2006.

[18] Y. L. Cun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,”
Adv. Neural Inform. Process. Syst. 2, 1990.

[19] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal Brain Surgeon,” Adv. Neural Inform. Process. Syst.
4, 1993.

[20] R. Dawkins, Climbing Mount Improbable. Reprint by Penguin Books,
London, England 2006.

[21] G. N. Martin, Human Neuropsychology. Prentice Hall, 1998,
Reprinted 1999.

[22] G. Edelman, Neural Darwinism – The Theory of Neuronal Group
Selection. New York: Basic Books, 1989, Print by Oxford Press 1990.

[23] C. E. Shannon, “A Mathematical Theory of Communication,” The
Bell System Technical J., vol 27, 1948.

Engineering Letter, 16:3, EL_17_1_04
__

(Advance online publication: 17 February 2009)

