
 
 

 
Abstract—This paper describes a novel methodology for 

evolving artificial neural network topologies by intelligently 
adding connections and neurons. The neural networks are 
complexified and grown to optimise their neural complexity, 
which is a measure of the information-theoretic complexity of 
the network. Complexification of neural networks describes the 
process of increasing the neural complexity whilst increasing 
the structural complexity of the neural networks. This novel 
technique is tested in a robot control domain, simulating a 
racecar. It is shown, that the proposed methodology is a 
significant improvement over other more common and 
randomised growing techniques. The technique proposed here 
helps to discover a network topology that matches the 
complexity of the problem it is meant to solve. This results in 
networks which in some cases learn faster than some fixed 
structure networks. 
 

Index Terms—Neural Networks, Complexification, Neural 
Complexity.  
 

   INTRODUCTION 
Artificial Neural Networks (ANNs) have been used in 

many different applications, with varying success. The 
success of a neural network, in a given application, depends 
on a series of different factors, such as ANN topology, 
learning algorithm and learning epochs. Furthermore all of 
these factors can be dependent or independent of each other. 
Network topology is the focus of this research, in that 
finding the optimum network topology can be a tedious and 
difficult process. Ideally all network topologies should be 
able to learn every given task to competency, but in reality a 
given topology can be a bottleneck and constraint on a 
system. Selecting the wrong topology can result in a 
network that cannot learn the task at hand [1]-[3]. It is 
commonly known that a too small or too large network does 
not generalise well, i.e. learn a given task to an adequate 
level. This is due to either too few or too many parameters 
used to represent a proper and adequate mapping between 
inputs and outputs. 

This paper proposes a methodology that can help find an 
adequate network topology. The methodology proposes to 
grow existing networks by adding elements to the network 
be it connections or neurons, whilst trying to increase a 
measure of the neural complexity of the network. Assuming 
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that complex task solving requires complex neural 
controllers, continuously growing and adapting network 
topology increases the controller complexity and can 
increase the probability of finding an adequate network 
topology. The further evolution of an existing network into a 
more complex one yields an increased chance of better 
performance and thus a higher fitness. 

There are generally 4 ways to construct the topology of an 
ANN[3]-[5]. (1) Trial and Error, is the simplest method. 
This essentially consists of choosing a topology at random 
and testing it, if the network performs in an acceptable way, 
the network topology is suitable. If the network does not 
perform satisfactory, select another topology and try it. (2) 
Expert selection; the network designer decides the topology 
based on a calculation or experience [3], [6]. (3) Evolving 
connection weights and topology through complexification. 
Extra connections and neurons can be added as the 
evolutionary process proceeds or existing networks can be 
reorganised [7]-[17]. (4) Simplifying and pruning overly 
large neural networks, by removing redundant elements 
[18],[19].  

The 4 methods mentioned can be sub-divided into 
different techniques and approaches, but they all support the 
fact that continually growing or pruning network topologies 
yields the most unconstrained and open-ended evolution 
[15]. 

This paper starts with a short description of related 
research in artificial evolution of artificial neural network 
topology in section 2, followed by a brief description of the 
neuro-scientific background behind complexification in 
section 3. Section 4 describes the neural complexity applied 
in this paper, and section 5 describes in details how it is 
applied herein. Section 6 describes the results of the 
experiments conducted here, this is followed by a discussion 
and a conclusion in sections 7 and 8 respectively. 

 

   BACKGROUND 
The most common applications of artificial neural 

networks in both evolutionary robotics and in common AI 
systems utilize a fixed network structure, in which the 
connection weights are trained [3]. This fixed structure 
network is adequate for many different types of systems, 
and if not, another structure is selected, trained and tested. In 
systems with inadequate networks, caused by wrong or 
constraints in network topology, continual complexification 
of topology by adding valuable components could be the 
way to find a suitable and adequate topology. 

Most research in complexification has so far focused on 
increasing the structural complexity, i.e. increasing the 
number of network components, of a neural network, this is 
done to mimic natural evolution [20]. Different routes and 
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techniques have been proposed to continuously complexify 
neural network for a continuous increase in fitness [8], most 
prominently is the NEAT framework [15].    

Research into the use of neural complexity in 
complexification to produce biologically plausible structures 
is limited. This is due to the lack of proper calculation tools 
and the variety of definitions and focus.  

   Structural Complexification 
The NEAT framework crossbreeds neural networks of 

different topology. In the NEAT model, mechanisms are 
introduced to evolve network structure, either by adding 
neurons or connections, in parallel with the normal 
evolution of weights. Furthermore different controllers can 
be crossbred using a gene tracking methodology. The results 
of these experiments with complexification achieve, in some 
cases, faster learning as well as a neural network structure 
capable of solving more complex tasks than produced by 
normally evolved controllers. One of the main 
improvements indicated by the success of NEAT is the use 
of speciation; it increases the search space with only little 
loss of speed. 

Other approaches do not crossbreed networks of different 
topology, but use mutation as the evolutionary operator that 
evolves the network. Reference [9], [10] propose networks 
that are gradually evolved by adding connections or neurons 
and new components are frozen, so that fitness is not 
reduced. This is similar to the first method of topological 
complexification proposed by Fahlman [7], which increased 
network size by adding neurons. 

   Neural Complexity  
Neural complexity is a measure of how a neural network 

is both connected and differentiated [16]. It is measure of 
the structural complexity as well as the differentiated 
connectivity of the network. The measure was developed to 
measure the neural complexity of human and animal brains 
by estimating the integration of functionally segregated 
modules. This measure reflects the properties that fully 
connected networks and functionally segregated networks 
have low complexity, whilst networks that are highly 
specialised and also well integrated are more functionally 
complex. Reference [17] has shown that when optimising an 
artificial neural network with a fixed number of neurons for 
neural complexity, the fitness increases proportionally, 
suggesting a link between neural and functional complexity. 
The more complex a network, the greater the likelihood that 
it will be capable of solving complex tasks and surviving in 
complex environments [11]-[17]. 

 

   NEUROSCIENTIFIC FOUNDATIONS 
Complexification in artificial neural networks can prove 

to be as important, as it is in the development of natural 
neural systems. It is important in artificial development to 
unleash fitness potential otherwise left untouched and 
constrained by a fixed neural topology. Complexification in 
neural networks is a vital process in the development of the 
brain in any natural system [21]. Complexification in human 
brains happens in several different ways, by growth, by 
pruning and by reorganisation. The first form of 

complexification happens from before birth and goes on up 
to adulthood, as the brain is formed. During this period 
neurons and interconnections grow and hence complexifies 
the network. The second form of complexification happens 
through continuous pruning. Connections between neurons 
have to be used for them not to fade away and eventually 
possibly disappear. This concept is called neural Darwinism, 
as it is similar to normal evolution, where the fittest, in this 
case connections, survive [22]. The third form of 
complexification happens through reorganisation. In some 
cases, for yet unknown reasons, connections detach 
themselves from neuron and reconnects to another. Mostly, 
reorganisation in natural systems has a detrimental effect. 

This paper is only concerned with the first type of 
complexification. As natural brains are developed during its 
prenatal phase and during childhood connections and 
neurons are grown in vast number with a significant amount 
of redundancy. Research shows that childhood redundancy 
of neurons and connections and their subsequent pruning is 
a necessary part of our brains development, as other 
connections are strengthened after a pruning [21], [22]. 
Neurons and connections need to be activated and used 
regularly to prevent them from decaying away, if neurons or 
connections aren't active they risk decaying away or being 
pruned. This principle is called “Neural Darwinism”, as only 
the fittest and most used elements survive, whereas the rest 
slowly disappear. This methodology tries to avoid growing 
networks larger than necessary, as this will increase learning 
time. The aim of this research is to find network topologies 
that will match the task, it is meant to solve, in size and 
complexity. Having a too large network will probably mean 
the task at hand will be solved adequately, but at a cost in 
form of learning time. Therefore, rather than grow a network 
with redundancy and then let it be pruned down in size 
according which elements of the network that are used and 
which are not, this methodology tries to predict which will 
be used. This means elements are added if they are likely to 
be vital elements of the network, i.e. adding the element will 
probably increase the network's fitness. 

 

   THE NEURAL COMPLEXITY MEASURE 
The neural complexity measure is an information-

theoretic measure of the complexity of the neural network 
and not a measure of the magnitude of connection weights 
or of the number of elements in the network [16]. The 
measure uses the correlation between neurons to quantify 
the integration and the specialisation of neural groups in a 
neural network. Neural complexity is a measure of how well 
brain or artificial neural network neurons have grouped 
together to form specialised functional clusters and how 
well these cluster work together. Complex networks have 
functional clusters that are integrated with each other to 
work as a unit. This is why complex networks are more 
likely to be able to solve a complex task. Having a complex 
network is not a requirement for complex behaviour nor is it 
a guarantee for complex behaviour, but it increases the 
chances of finding a neural network that adequately solves a 
given task. The weights of the connections are all set to a 
constant value when calculating the neural complexity to 
avoid basing the neural complexity measure on the 
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magnitude of the connection weights. 
X is a neural system with n neurons, represented by a 

connection matrix stating where connections go to and from. 
The information entropy H(X) is used to calculate the 
integration between components [23], and it is calculated by 
the standard formula H(X) = ln((2·π·e)n·|COV(X)|)/2. 
COV(X) is a standard covariance matrix based on the 
connection matrix and |·| denotes the determinant. The 
integration between neurons in a system X is defined as: 

 

                        ∑
=

−=
n

1i
i H(X))H(xI(X)                   (1) 

 
The integration I(X) of segregated neural elements equals 

the difference between the sum of entropies H(xi) of all of 
the individual components xi of the neural network 
considered alone and the entropy of the network as a whole.  

One of the main features of using the entropy its 
symmetrical properties. Systems that have highly 
independent functional components or have highly 
integrated clusters will have a low complexity. Complex 
systems are characterised by highly specialised clusters, 
which are integrated with each other. These properties are 
desirable, as systems that are fully connected are not 
particularly complex, because every components is 
correlated with all other components. Systems that have 
functional clusters that work independently of each other are 
also not complex, but only some of its subcomponents are. 
The integration between components can be calculated in 
different ways, here it is calculated by equation 2. 

 

             
)/2COV(X)e)πln((2

)/2COV(X)eπln(2I(X)
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n
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⋅⋅⋅−

⋅⋅⋅=∑
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The measure of integration uses a covariance matrix 

based on the connection matrix. The covariance generally 
expresses the correlation between two variables. The 
integration is based on the sum of the natural logarithm of 
diagonal elements of the covariance matrix. The diagonal 
elements of the covariance matrix are the variance of the 
connectivity between components and the off-diagonal 
elements are the covariance’s. The covariance matrix gives a 
measure of how correlated the different components in a 
network are, as it is closely related to the correlation matrix. 
The natural logarithm of the determinant of the covariance 
matrix is subtracted from the sum of the diagonals yielding 
the integration of components in a given network. The 
determinant is here used to penalize great variations in the 
variance of the connectivity. 

The average integration between functionally segregated 
neural groups with k (out of n) elements is expressed with 
<I(X)>. j is an index indicating that all possible 
combinations of subsets with k components are used. The 
average integration for all subsets with k components is used 
to calculate the neural complexity: 

 

            ∑
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k
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The neural complexity CN of a neural system X is the sum 

of differences between the values of the average integration 
<I(X)> expected from a linear increase for increasing subset 
size k and the actual discrete values observed. The 
complexity of a given system is high when the integration is 
high and the integration of the any sub-system is lower than 
expected from a linear increase in subset size. This neural 
complexity measure yields an estimate of the information-
theoretic complexity of a neural network by measuring the 
integration between individual components and all possible 
combinations of subsets, which is an improvement over 
similar methods such as those proposed in [18], [19]. In the 
case where all components are independent of each other, 
the integration I(X) = 0 and hence the complexity CN(X) = 
0. The integration and the complexity will always be ≥ 0, 
due to the definitions and nature of the equations. It is worth 
notion that <I(Xj

k)> is monotonically increasing with 
increasing k. This neural complexity is efficient as it is not 
based on the magnitude of the connection weights, but on 
the correlation and variance of the different elements in 
neural network. The complexity measure has the property 
that it is not the number of neurons or connections that 
decides the complexity, but the connectivity. Large networks 
can be more complex than smaller networks, because it has 
more elements. Smaller network can be more complex than 
larger networks as they can be connected better. 

 

   USING THE COMPLEXITY MEASURE 
The neural complexity measure is used to optimise the 

complexity of the neural network. A structural addition only 
takes place if the complexity increases. The 
complexification methodology proposed is summarised by 
the following algorithm: 

 
1. Create a starting network, which consists of only 

the input and output neurons. Furthermore each 
input neuron should be connected to each output 
neuron. The starting network used here can be seen 
Fig. 3.  

2. Test the network by evolving connections weights, 
if the fitness achieved is adequate there is no need 
to change topology or connection weights, if the 
fitness isn't acceptable the network should be 
complexified. 

3. Complexify the network by adding elements to the 
network, this can be neurons or connections. 

4. Measure the neural complexity of the network, if 
the neural complexity has increased the 
complexification is deemed a success, if it has 
remained constant or decreased, the changes are 
undone and the network is re-complexified.  
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5. The network is trained to competency, if the 
complexification has increased the fitness, the 
process has been a success and if desired another 
complexification can take place. If on other hand 
the fitness hasn't increased three scenarios exist: 
i. The complexification process is abandoned, as 

the maximum fitness for the given 
problem/task has been reached. 

ii. The complexification can be undone, and 
another different complexification can take. 
This is done is rare cases, as sometimes certain 
topologies are unable to adequately learn a 
given task sufficiently. A different 
complexification can solve this problem. 

iii. The network can be complexified even further 
with the existing topology. This is sometimes 
done as it is assumed that the complexification 
and the resulting fitness increase has been too 
small to be statistically significant, a further 
complexification can increase this 
significance. 

 
At step 3, when the network is being complexified, there 

are multiple ways of doing this. Merely adding a number of 
connections and neurons isn’t enough, some of the 
connections of the original starting network should be 
replaced by new connections to and from new neurons. This 
is done to decrease the learning time of the network, as it 
forces the network topology away from being a reactive 
network. Adding components can either be a semi-random 
process or fully optimised one. Randomly replacing some of 
the existing connections with new ones and randomly 
adding neurons one by one is recommendable. As long as 
these additions increase the neural complexity, they are 
valid. Alternatively, one can try to find the optimum 
position for new additions, this requires heavy computations 
as all possible combinations of connections and neurons 
have to be tested in order to find the optimal configuration. 

   The Simulated Track and Robot 
The controllers evolved here are tested in a simulated 

environment with a robot. In this environment a robot has to 
drive around a track, which consists of 32 sections. The 
objective of this task is to complete 3 laps in the shortest 
amount of time. If a robot fails to complete 3 laps, the 
distance covered is the measure of its performance. The 
robot has to drive around the track covering all of the 
sections of the track, it is not allowed to skip any sections. 
In total the robot has to complete 3 laps, with 32 sections in 
each lap, all visited in the correct order. If the robot is too 
slow at driving between two sections the simulation is 
terminated. The following Fig. 1, illustrates the task to be 
completed: 

 
 
 
 
 

Fig. 1. The figure illustrates the track and the robot in the 
simulator.   

Fig. 1 illustrates the track and the robot driving around it. 
The robot is not limited in its movement, i.e. it can drive off 
the track, reverse around the track or adapt to any driving 
patterns desired, as long at its drives over the right counter 
clockwise sequence of sections. Fig. 2 illustrates how the 
robot perceives the track and its environment seen from 
above. 

Fig. 2. The figure illustrates the robot and its sensors.  

The track sections have alternating colours to mark a 
clear distinction between sections. The arrows, in Fig. 2, 
illustrate the three sensors perceived by the robot. The front 
sensor measures the distance to the next turn and the two 
side sensor measures the distance to the edge of the track. 
As indicated by Fig. 2, the simulated robot has three wheels 
and not four. The reason for this is that it is much more 
difficult controlling and evolving a controller for a three 
wheeled robot than for a four wheeled one. The risk when 
driving this three wheeled robot is, in contrast to a four 
wheeled vehicle, that it will roll over if driven too abruptly. 
A robot that has rolled over will not to be able to continue. 
The front wheel controls the speed as well as the direction. 
Additionally to the three distance sensors the robot has 
sensor feedback on its outputs. The robot has a speed sensor 
and a direction sensor, to measure the actual values of speed 
and direction, as these may vary from output values from the 
network. By having these two sensors the network becomes 
a proper control network with the capability to implement an 
adequate solution to the task at hand, as well as risking 
instability. 

   The Fitness Function 
Fitness is rewarded according to normal motorsport rules 

and practice. 3 laps of the track have to be completed and 
the controller that finishes in the fastest time wins the race, 

Start
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i.e. it is the fittest controller. If a controller fails to finish 3 
laps, the controller with the most laps or longest distance 
travelled wins. In the case that two controllers have reached 
the same distance the racing time determines the fittest 
controller. The fitness function can in general terms be 
described by the following: 

 

                 
Time

Covered DistanceFitness =              (4) 

 
The equation states that the longest distance covered in 

the shortest amount of time yields the best fitness. Time is 
the time it takes to complete the track. If a controller fails to 
finish this Time is set to 120 seconds, which is the absolute 
slowest a controller is allowed to be, before a simulation is 
stopped. In the likely event that two controllers have 
covered the same distance, the controller with the fastest 
time will be favoured for further evolving. The precise 
version of the fitness function can be seen in the following: 
 

  
Time

Length)Track (LapsSectionsFitness ∗+=    (5) 

 
The fitness is equal to the distance divided by the time. 

The distance is equal to the number of track sections 
covered in the current lap, plus the number of sections 
covered in previous laps. Track length is the total number of 
sections, which are 32. The minimum fitness obtainable is 
1/120 ≈ 0.008, a very god controller can achieve up to 13. 

   The Test Setup 

A total of 4 different tests will be conducted in the 
experiments. Two of the experiments have fixed network 
topologies, these are tested to act as comparisons. In one 
experiment a starting network is evolved randomly by 
adding neurons and connections to the network whilst 
evolving the connection weights. Finally, in the last 
experiement, a starting network is complexified using the 
neural complexity measure described earlier. The four 
experiments are briefly summarised in the following: 

1. Starting Network, the network shown in Fig. 3 is 
tested, and it will act a comparison to the here 
proposed methodology. 

2. Benchmark Networks, two standard benchmark 
networks are tested to contextualise the findings. 
One network has three hidden layer neurons and 
the other has five. These networks can be seen in 
Fig. 4. 

3. Randomised Evolution, like the complexification 
algorithm described previously, the randomised 
evolution algorithm used here replaces one or more 
of the connections of the starting network with a 
random number of new connections and neurons. 
Up to three successive evolutionary steps take 
place for the randomly evolution and growth of the 
starting network. 

4. Complexification, using the complexification 
algorithm described previously, different sets of 
experiments have been conducted. All experiments 

differ from one another, due to the randomness of 
the algorithm. Each experiment conducted with the 
neural complexity consists of up to three successive 
changes of the starting network.  

The starting network from which all evolved networks 
have their origin is displayed in Fig. 3. 

 
Fig. 3. The starting topology for all evolved network. 

The starting network has 5 inputs and 2 outputs, as 
illustrated in Fig. 3. The inputs are: The three distance 
sensors, the actual speed and the direction of the control 
wheel. The outputs from the networks are the speed and the 
direction of the front wheel of the robot. Having the actual 
speed and direction of the front wheel as an input means that 
this system isn't purely reactive, which it is if these are 
disregarded. Preliminary tests without these two inputs show 
that a reactive system, consisting of only the starting 
network, is in most cases, as good as larger network with 
more connections and neurons.  

 

   EXPERIMENTS AND RESULTS 

A total of four sets of experiments have been 
conducted. The first set of experiments was a thorough test 
of the starting network and its inadequacies. The second set 
of experiments was with the two benchmark network shown 
in Fig. 4. In all of these tests the connections weights were 
evolved and optimised with a genetic algorithm. The third 
set of experiments was a test of a randomised evolution 
algorithm. These tests were conducted to prove whether or 
not the proposed complexification algorithm is efficacious. 
The final sets of experiments conducted is a thorough test of 
the here proposed complexification algorithm. The results 
from the experiments are summarised in Table 1 and 
described in detail in the following sections. 

   The Simulation Environment 
The evolved neural network controllers are tested in a 
physics simulator to mimic a real world robot subject to real 
world forces. The genetic algorithm has in all tests a 
population size of 25 and the number of tests per method is 

Direction 
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15. The benchmark networks have been trained for 500 
generations, whereas newly evolved networks have been 
retrained for another 500 generations. The crossover and 
mutation probabilities were 0.8 and 0.05 respectively. 
Uniformly distributed noise has been added on the input and 
output values to simulate sensor drift, actuator response, 
wheel skid and other real world error parameters. The 
simulated robot can be seen in Fig. 5, which is a snapshot 
from the simulator: 

Fig. 5. The robot and the track in the simulator.  

The robot, the wheeled box in the middle, is driven along 

the track, which is visualised by the rectangles of alternating 
colour. Fig. 5 is similar to Fig. 1 and it gives an impression 
of how the artificial neural network controls a simulated 
robot driving around a virtual track. To give the simulation 
similar attributes and effects as on a real racing track, the 
track has been given edges, which can be seen in Fig. 5. 
Whenever the robot drives off the track it falls off this edge 
onto another slower surface. This means, that if the robot 
cuts corners, it could potentially have wheels lifting off the 
ground, thus effecting stability and speed, due to the edge 
when returning onto the track. 

   The Starting and Benchmark Networks 
The results from the experiments conducted with the 

starting network clearly illustrate that the network topology 
is incapable of representing an adequate solution to the 
problem. One can now either start structurally elaborating 
this starting topology or select another network topology. 
The benchmark networks can both adequately represent a 
controller capable of driving fast around the track. The 
networks have been selected to make one topology medium 
sized and another large. This can be seen in Table 1, as the 
large network has a longer learning time than the medium 
sized network. Longer learning time can be seen to affect 
the average fitness of a network, as it simply cannot learn 
the task given the granted learning time. 

Fig. 4. Benchmark Network 1 (Left) and Benchmark Network 2 (Right).  

Fig. 6. Randomly evolved networks, steps 1, 2 and 3(Top) and complexified networks, steps 1, 2 and 3(Bottom).
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   Randomised Evolution 
The randomly evolved network tests show how the 

starting network can be evolved into a network that 
adequately solves the task. Fig. 6. shows an example of how 
three successive steps of random evolution can evolve the 
starting network into an adequate one. Each test yields 
different results and different topologies as a result of the 
randomness in the algorithm. The different results are 
averaged and normalised. After one step, some of the initial 
connections have been replaced by a neuron and some new 
connections. Despite several new components the network 
topology is still inadequate and further additions are 
necessary. After two steps the evolved network can 
adequately implement the task at hand. The evolved network 
topologies range from being very capable to inadequate. 
Some topologies can learn the task fast whereas others 
cannot learn it at all. After three steps enough components 
have been added to assure that the task is learned adequately 
for all evolved networks. 

   Complexified Networks 
The complexification algorithm has been tested 

thoroughly and the results can be seen in Table 1. The 
results show some of the same tendencies as the randomised 
algorithm, no two additions are the same as the number of 
connections to remove and add is semi-random. The neural 
complexity increases with each addition to the network, as 
this is a requirement. The complexity of the starting network 
is measured to 6.89, this on average increases by 15.32% 
after the first evolutionary step, 38.12% after the second step 
and 71.16% after the third. The results show that after the 
first additions, the network is still incapable of adequately 
solving the task. After the second step the average network 
is capable of learning the task at hand fast and competently. 
The fitness decreases insignificantly after the third step, this 
is due to the increased learning time after the addition of 
more components to the network. Had the complexifications 
stopped after the second step, the algorithm proposed here 
would have found a network whose topology adequately 

matches the complexity of the problem to solve. Any further 
additions beyond this step will not be fruitful.  
 

   DISCUSSION AND EVALUATION 
The results from all of the experiments show that not all 

networks are capable of adequately solving the problem. 
The results furthermore confirm that increasing the neural 
complexity of a network is no guarantee for success. 
Sometimes using the complexity measure yields network 
incapable of solving any given problem. However on 
average this complexification strategy is more likely to yield 
good networks than a random evolution strategy. Comparing 
this methodology with randomised evolution strategy yields 
interesting results. After one step there is no significant 
difference between the two algorithms, after two steps the 
complexification algorithm is on average 26% better than 
random algorithm, which is a significant difference given a 
t-test with a 5% significance level. This difference is again 
insignificant after three steps. This means the 
complexification algorithm is more likely to find adequate 
networks to solve the given task. This can be seen by the 
fact that all complexified networks solve the task and gains 
a good fitness when solving it. Continually increasing the 
neural complexity does, for obvious reasons, not always 
increase the fitness of a network. The difference between the 
results from the complexifications in the step two and step 
three is insignificant. In step three the average fitness is 
lower as a result of the extra components to train. Training 
very complex networks even further than the networks at 
step 2 yields no significant improvement in the results. The 
fitness increase converges after the second step, hereafter 
any further complexity increases, does not add significantly 
to the fitness of the network.  

 
Table 1.  Results from the experiments. 

Method Minimum Fitness Average Fitness Maximum Fitness Standard Deviation 

Starting Topology 0.01 0.10 0.13 0.06 

Benchmark Network 1 7.57 10.45 12.07 1.79 

Benchmark Network 2 6.20 9.61 12.86 2.52 

Randomised Evolution  Step 1 0.08 0.18 0.28 0.09 

Randomised Evolution  Step 2 4.25 8.26 11.12 2.49 

Randomised Evolution  Step 3 7.23 10.17 12.29 2.02 

Complexification  Step 1 0.08 0.18 0.28 0.08 

Complexification  Step 2 9.02 11.23 12.79 1.41 

Complexification  Step 3 9.95 10.73 12.56 1.11 
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The learning speed of the starting network, the 
benchmark networks, and the newly elaborated networks 
can be seen in Fig. 7. It is noticeable that all networks loose 
their fitness immediately after a structural elaboration. 

Fig. 8 and Fig. 9 show the route that two different 
controllers choose to drive around the track. One controller 
has achieved a high fitness and the other a less than average 
fitness. The race car starts in (0,0) and drives to (20,0) 
where it turns. Hereafter it continues to (20,11) where it 
turns and continues to (-2.5,11) and from here it continues to 
(-2.5, 0) and on to (0,0). The controller tries to align the car 
on the straight line between the points. Fig. 8 shows an 
average lap of a good evolved network, and it clearly 
illustrates the route that the car takes. 

 
Fig. 8. The route taken by a good controller. 

 
Fig. 8 illustrates how the evolved network performs and the 

degree of overshoot when turning and recovering to drive 
straight ahead on another leg of the track. Fig. 9 shows the 
average route for a poor network for comparison. 

 
Fig. 9. The route taken by a poor controller. 

 
The two figures show the routes of the different networks. 

Fig. 9 clearly shows that the poor controller overshoots 
more than the good network controller in Fig 8. Less 
overshot, ultimately means that the racing car is able to 
move faster, which means it has a better fitness. The 
difference in fitness between the two routes is a factor 2 and 
the overshoot of the poor controller is more than twice that 
of the good controller.  

   Future Work and Direction 
The results obtained from the experiments indicate that 

this methodology is very useful when evolving network 

Fig. 7. The average learning speed of the different networks.
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topology and connection weights. Further experiments are to 
be conducted in order to determine whether this 
methodology is better than the best growing strategies. This 
involves implementing successful strategies like NEAT 
[15]. Further work on this methodology includes making 
comparisons with the optimum strategy described earlier. 
This requires different task of different complexity and 
different starting networks. Different tests and problems to 
solve will also reconfirm the efficacy of this algorithm. 

 

   CONCLUSION 
This paper has presented a new methodology for 

complexifying artificial neural networks through structural 
addition of neurally complex components. A semi-random 
number of connections and neurons were added at each 
complexification step, this was done whilst increasing the 
neural complexity of the network. A starting network, two 
benchmark networks, a randomised evolutionary algorithm 
and the here proposed complexification strategy were tested 
thoroughly. The results confirm that the here proposed 
methodology is better than more randomised methods. 
Complexification and evolutionary strategies that do not 
take neural complexity into account can prove to be less 
efficient than this methodology. Using the neural 
complexity measure and the algorithm proposed herein 
yields an increased probability of finding neural network 
controller that adequately solve the here given problem. 
Using this methodology does not give a guarantee for 
success, but is does increase the probability of achieving it. 
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