
 
 

 

  
Abstract—Nonlinear inter-symbol interference leads to 
significant error rate in nonlinear communication and digital 
storage channel. In this paper, therefore, a novel recurrent 
interval type-2 fuzzy neural network with asymmetric 
membership functions (RT2FNN-A) is proposed for nonlinear 
channel equalization. The RT2FNN-A uses the interval 
asymmetric type-2 fuzzy sets and it implements the fuzzy logic 
system in a five-layer neural network structure. The 
RT2FNN-A is an extensive results of type-2 fuzzy neural 
network to provide memory elements for capturing the system’s 
dynamic information and has the properties of high 
approximation accuracy and small network structure. Based on 
the Lyapunov theorem and gradient descent method, the 
convergence of RT2FNN-A is guaranteed and the 
corresponding learning algorithm is derived. In addition, the 
RT2FNN-A is applied in the nonlinear channel equalization to 
show the performance and effectiveness of RT2FNN-A system.  
 

Index Terms—type-2 fuzzy logic system, recurrent neural 
network, asymmetric membership functions, channel 
equalization  
 

I. INTRODUCTION 
With the growth of internet technologies, the efficient 

high- speed data communication techniques over 
communication channels have become a challenging issue. 
The nonlinear equalization are always superior to the linear 
ones with the added advantages of lower bit error rate, lower 
mean squares error, and higher convergence rate [1-9]. In 
recent years, the nonlinear channel equalization using 
intelligent system (includes neural network, fuzzy systems, 
fuzzy neural systems) was discussed [5, 10-13]. In [13], there 
were successful application cases in complex channel 
equalization by using self-constructing fuzzy neural network, 
but a larger fuzzy rule number should be used when signal to 
noise ratio is low. 

In recent years, the fuzzy systems and control are regarded 
as the most widely used application of fuzzy logic system 
[14-19]. Mendel and Karnik developed a complete theory of 
type-2 fuzzy logic systems (T2FLSs) [17, 19-21]. Recently, 
T2FLSs have attracted more attention in many literatures and 
special issues [10, 15, 19-21, 22-24]. The major difference 
being the present of type-2 is their antecedent and consequent 
sets. T2FLSs result in better performance than type-1 fuzzy 
logic systems on the applications of function approximation, 
modeling, and control. Besides, neural networks have found 
numerous practical applications, especially in the areas of 
prediction, classification, and control [25-27]. Based on the 
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advantages of T2FLSs and neural networks, the type-2 fuzzy 
neural network (T2FNN) systems are presented to handle the 
system uncertainty and reduce the rule number and 
computation [10, 19, 22-24]. Using the asymmetric Gaussian 
function which is a new type of membership function (MF) 
due to excellent approximation results it provides. It also 
provides a fuzzy-neural network with higher flexibility to 
easily approach the optimum result more accurately. In the 
literature [18, 22], a T2FNN with asymmetric membership 
functions (T2FNN-A) was proposed to improve the system 
performance and obtain better approach ability.  

In this paper, we proposed a combining interval type-2 
fuzzy asymmetric membership functions with recurrent 
neural network system, called RT2FNN-A, for nonlinear 
channel equalization. The proposed RT2FNN-A is a 
modified version of the T2FNN [23, 25, 28-31] which 
provides memory elements to capture system dynamic 
response [25]. The RT2FNN-A system capability for 
temporarily storing information allowed us to extend the 
application domain to include temporal problem. Simulations 
are shown to illustrate the effectiveness of the RT2FNN-A 
system. 

This paper is organized as follows. Section II introduces 
the problem formulation: nonlinear channel equalization. 
The proposed novel recurrent interval type-2 fuzzy neural 
network with asymmetric membership functions 
(RT2FNN-A) is introduced in Section III. Section IV is the 
proposed novel equalizer scheme using RT2FNN-A system. 
The effectiveness of the proposed nonlinear equalizer is 
illustrated by comparison with other equalizers in Section V. 
Section VI is devoted to a brief conclusion. 
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Figure 1: Block diagram of a digital transmission system with equalizer. 

II. PROBLEM FORMULATION- NONLINEAR CHANNEL 
EQUALIZATION  

Consider a real-valued digital communication system with 
a 2-PAM signal to transmit a sequence of real-valued 
symbols, which is denoted as s(k) for the kth time instance. A 
discrete-time model for the digital transmission system with 
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the equalizer is shown in Fig. 1. The channel characteristic 
represents random temporal fluctuations by the time-varying 
amplitude factor. The received signal can be described as 
follows 

)()1(...)1()()(ˆ
21 knpksctsctsctx p ++−++−+=       (1) 

where s(t) is transmitted signal, and )(ˆ tx denotes the channel 
state; cl, l=1, 2, …, p, are time-varying amplitude factor, and 
p is the channel order. The channel characteristic is similar to 
nonlinear time-varying channel. The nonlinear channel 
equalization is a technique used to combat some imperfect 
phenomenon in high-speed data transmission over channels 
[28]. Figure 1 shows the block diagram of a communication 
system that is subject to inter-symbol interference (ISI) and 
additive white Gaussian noise (AWGN). The transmitted 
input symbols s(k) is independent and identically distributed 
discrete-time random processes taking its value {-1, +1}. The 
signal is sent through the channel.  

In real communications, the channel is too dispersive to 
cause interference between successive signal samples. It will 
complicate reliable transmission and reception. )(ˆ tx  denotes 
the output of the channel. The channel function can be 
described as [28] 

 ( ))1(,),1(),()(ˆ +−−= pksksksfkx L                   (2) 
where p means the channel order. Generally, f is a nonlinear 
function of past transmitted signals, and the channel changes 
slowly but significantly over time; therefore, a nonlinear 
channel equalizer with adaptation ability is needed.  

At receiving terminal, the inter-symbol interference and 
nonlinear distortion are introduced by the channel; received 
signals x(k) are also assumed to be corrupted by a additive 
noise n(k), that is  

 )()(ˆ)( knkxkx +=                               (3) 
where n(k) is an AWGN, and is assumed to be zero mean 
white Gaussian.  

The function of the equalizer is to re-construct the 
transmitted signal, s(k-d) (d denotes the decision delay), from 
the observed information sequence, x(k), …, x(k-p+1). Thus, 
the mathematical representation of equalizer is  

 ))1(,),1(),(()(ˆ +−⋅⋅⋅−=− pkxkxkxdks ψ             (4) 
where }1,1{: −→ℜ pψ . We can say that a correct decision by 
the equalizer if 

)()(ˆ dksdks −=− .                           (5) 
Herein, we will extend the application to the nonlinear 
complex value channel. Details will be introduced in Section 
V.  
 

III. A NOVEL RECURRENT INTERVAL TYPE-2 FUZZY 
NEURAL SYSTEMS  

We here introduce the recurrent type-2 neural fuzzy 
inference system with asymmetric fuzzy MFs (RT2FNN-A) 
that was modified and extended from our previous results [14, 
17, 28]. The RT2FNN-A uses the interval asymmetric type-2 
fuzzy sets and it implements the FLS in a five-layer neural 
network structure which contains four-layer forward network 
and a feedback layer.  

In general, given an system input data set xi, i=1, 2, …, n, 
and the desired output yp, p=1, 2, …, m, we have the 
representation of jth fuzzy rule for RT2FNN-A 

Rule j:   IF      x1 is jG1

~  and … xn is njG~   and gj is F
jG~  

THEN   y1 is jw1
~  and … ym is j

mw~ ,  
g1 is ja1

~ , g2 is ja2
~ , …, and gM is j

Ma~ . 

where ijG~  represents the linguistic term of the antecedent 

part, j
pw~  and j

pa~  represents the interval real number of the 
consequent part; and M is the rule number. Here the fuzzy 
MFs of the antecedent part ijG~  are asymmetric interval 
type-2 fuzzy sets, which represent the different from typical 
Gaussian MFs. The asymmetric interval type-2 fuzzy sets 
will be introduced in the following subsection.  
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Figure 2: Diagram of MISO recurrent type-2 fuzzy neural network with 

AFMFs (RT2FNN-A). 
 

A.    Structure of RT2FNN-A System 
The RT2FNN-A is shown in Fig. 2. In the following, )(l

iO  
denotes the ith output of a node in the lth layer. 

Layer 1: Input Layer 
For the ith node of layer 1, the net input and output are 

represented as 
 )1()1(

ii xO =                                          (6) 
where )1(

ix  represents the ith input to the jth node. 

Layer 2: Membership Layer 
In layer 2,  it is clear that there are two parts in this layer, 

regular nodes and feedback nodes. Their input are )1(
jO  and 

gj(k). Therefore, for network input xj, the corresponding 
output is 

           [ ] [ ] .)()( )1(
~

)1(
~

)2()2()2( T

iGiG

T

ijijij OOOOO
ijij

μμ==       (7) 

For internal or feedback variable 
jg , we have 

        [ ] [ ]TjGjG

TF
j

F
j

F
j kgkgOOO F

j
F
j

))(())(( ~~
)2()2()2( μμ== (8) 

where the subscript ij indicates the jth term of the ith input 
)(l

iO , where j=1, …, M. The superscript F denotes the 
feedback layer. 

Layer 3: Rule Layer 
Using the product t-norm, the firing strength associated 

with the jth rule is 
 )()()( ~~1~

1

⋅∗∗∗=
jF
j

j
n

j GnFF

j xxf μμμ L                   

(9) 
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where )(~ ⋅
jG

μ  and )(~ ⋅
jG

μ  are the lower and upper 

membership grades of )(~ ⋅
G

μ . Therefore, a simple 
PRODUCT operation is used. Then, for the jth input rule 
node 
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where the weights )3(
ijw  are assumed to be unity.  

Layer 4: Output Layer 
Without loss of generality, the consequent part of interval 

T2FLS is [ ] ,~ T
jjj www =  jj ww ≤ . The vector notations 

T
Mwww ][ 1 L=  and T

Mwww ][ 1 L=  are used for 
clarity. According to the literature [18], we denote the 
maximum and minimum of ∑=

M

i ii wf
1

 as )4(O  and )4(O . 
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where  
[ ] [ ]T

MLL

T

MLLL OOOOfffff )3()3(
1

)3()3(
111 ,,,,,,,,,, LLLL ++

== (14) 

[ ] [ ] . ,,,,,,,,,, )3()3(
1

)3()3(
111

T

MRR

T

MRRR OOOOfffff LLLL ++ ==  (15) 
It is obvious that R and L should be calculated first. The 
weights are arranged in order as Mwww L≤≤ 21  and 

Mwww L≤≤ 21 . According to the Karnik-Mendel procedure 
[17, 19, 20], L and R are 
 ( ), minarg )4(

]1,.1[
OL

Mj −∈
=

L

    ( ). maxarg )4(

]1,.1[
OR

Mj −∈
=

L

          (16) 

Finally, the crisp output is  

 .
2

)4()4(

)4(
OO

O
+

=                                 (17) 

Layer 5: Feedback Layer 

This layer contains the context nodes which is used to 
produce the internal or feedback variable gj. Each rule is 
associated with a particular internal variable. Hence, the 
number of the context nodes is equal to the number of rules. 
The same operations (type-reduction and defuzzification) as 
layer 4 are performed here. 
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and  
( ), )1(minarg )5(
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Finally, the crisp output of this layer is  

[ ].)1()1(
2
1)1()1( )5()5()5( +++=+=+ kOkOkOkg jjjj  (21) 

Note that the delayed value of gj is fed into layer 2, and it acts 
as an input variable to the precondition part of a rule. Each 
fuzzy rule has the corresponding internal variable gj which is 
used to decide the influence degree of temporal history to the 

current rule. 
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Figure 3: Construction of a type-2 AFMF: (a) upper MF (solid line), (b) 
lower MF (solid line), and (c) constructed type-2 AFMF. 

 

B.    Construction of Type-2 Asymmetric Fuzzy Membership 
Functions 

Herein we introduce the construction of type-2 
asymmetric fuzzy membership function (AFMF). Figure 3 
shows the constructed AFMF. We use the superscripts (l) and 
(r) to denote the left and right curves of a Gaussian MF. The 
parameters of lower and upper MFs are denoted by an 
underline (_) and bar ( ), respectively. Thus, the upper MF is 
constructed as 
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where )(lm  and )(rm  denote the means of two Gaussian MFs 
satisfying )()( rl mm ≤ , and )(lσ  and )(rσ  denotes the 
deviation (i.e., width) of two Gaussian MFs. Fig. 3(a) shows 
the upper type-2 AFMF constructed using )(lm , )(rm , )(lσ , 
and )(rσ . Similarly, the lower asymmetric MF is defined as  
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where )()( rl mm ≤  and 15.0 ≤≤ r . The corresponding widths 
of the MFs are )(lσ  and )(rσ . To avoid unreasonable MFs, the 
following constrains should be given 
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Fig. 3(b) sketches the lower type-2 AFMF. Therefore, the 
corresponding constructed type-2 AFMF is shown in Fig. 
3(c). This introduces the properties of uncertain mean and 
variance [30]. Additionally, we can construct other type-2 
asymmetric MFs by tuning the parameters. The 
corresponding tuning algorithm is derived to improve system 
accuracy and approximation ability. 
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Figure 4: Block diagram of adaptive equalizer using RT2FNN-A 

system. 
 

IV. A NOVEL ADAPTIVE EQUALIZER USING RT2FNN-A 
SYSTEM 

It is well known that the universal approximation capacity 
of the fuzzy neural network is very powerful [18, 25, 31]. The 
proposed novel adaptive equalizer using RT2FNN-A system 
is decipted in Fig. 4. The input and output of RT2FNN-A 
equalizer are x(k) and )(ˆ dks − , respectively. The adaptive 
RT2FNN-A equalizer is adjusted by the proposed learning 
algorithm which is introduced as below.  

A. Adaptive Algorithm for RT2FNN-A System  
The gradient descent method is adopted to derive 

learning algorithm of the RT2FNN-A system. For 
clarification, we consider the single-output system and define 
the error cost function as 

    2)](ˆ)([
2
1)( kykykE d −=                         (25) 

where yd is the desired output and ŷ  is the RT2FNN-A’s 
output. By the gradient descent method, the parameters 
updated law is  
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in which η is the learning rate. WWWWW      [ F
w=  

]       F
a

F rrWW  are the adjustable parameters, where Ww is 

consequent weights, W  and FW  are parameters of lower 
MFs, W  and FW  are upper MFs parameters, Wa is 
parameter in feedback layer, and r  and Fr  are the column 
vectors, i.e., 
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Thus, (26) can be rewritten as 
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where  ).(ˆ)()( kykyke d −=  The remaining work involves 
finding the corresponding partial derivative with respect to 
each parameter. 

Observing equation (18) and if j≤L, only the term of 
( )∑ =

L

j jj wO
1

)3(  should be considered, and only consider 

( )∑ +=

M

Lj jj wO
1

)3(  if j>L. Moreover, we consider ( )∑ =

R

j jj wO
1

)3(  

if j≤ Rin (17), as well as ( )∑ +=

M

Rj jj wO
1

)3(  where j>R. Thus, we 

should notice the values of j, R, and L in deriving the update 
laws.  
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Figure 5: Firing regions definition of input variable 

ix  (upper MF). 

 
In order to avoid unnecessary tuning, we must also 

consider the firing regions of MFs for input variable xi. For 
example, considering an upper MF as shown in Fig. 5, region 
(I)- )(l

iji mx ≤ , only )(l
ijm  and )(l

ijσ  are updated; region (II)- 

i
r

ij xm ≤)( , only )(r
ijm  and )( r

ijσ  must be updated as well. 

Finally, region (III)- )()( r
iji

l
ij mxm << , nothing should be done. 

Therefore, we can tune one side of MF for each training 
pattern. The results of lower MFs are the same as above. 
Besides, parameter r  must be updated for all three regions. 
Owing the recurrent property, the real time recurrent learning 
algorithm is used [32]. We will show the update rule of ww 
and W   only. Other parameter’s updated rule can be derived 
the same way and are omitted. 
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where fL,j and fR,i  are introduced previously in (9) and (10), 
and ηw is the corresponding learning rate. 

-Parameters W  
Region (I)： )(l

iji mx ≤  
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where η  denotes the corresponding learning rate and 
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Note that )()()()(  and , , , rQ
jh

lQ
jh

rP
jh

lP
jh HHHH  are recurrent factors 

and equal to zero initially and are reset to zero after a period 
of time. 

F
jhC  is recurrent weighting factor. 

B. Stability Analysis of RT2FNN-A System  
By [18, 25, 31], using the Lyapunov stability approach, 

we have the following convergence theorem. 
Theorem 1: Let ][ raw ηηηηη  be the learning 

rates of the tuning parameters for RT2FNN-A. The 
asymptotic convergence of RT2FNN-A is guaranteed if 
proper learning rates ][ raw ηηηηη  are chosen 
satisfying the following condition. 
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Proof: The details are introduced in Appendix 1. 
 

V. SIMULATION RESUTLS  
To demonstrate the performance of RT2FNN-A system, 

several simulations regarding signal processing are 
constructed. The RT2FNN-A system is applied to nonlinear 
time-varying channel equalization, real-value channel and 
complex channel. 

A. Real Channel  
As introduced in Section II, based on the category of s(k-d) 

(i.e., 1± ), the channel states )(ˆ kx  can be partitioned into two 
classes [5] 

{ }, 1)(|)(ˆ =−=+ dkskxX                        (35) 
{ } 1)(|)(ˆ −=−=− dkskxX .                  (36) 

The numbers of elements in X+ and X- are denoted as +
sn  and 

−
sn , respectively [5]. The probabilities for s(k-d)=1 and 

s(k-d)= -1 are the same, which means, 2/sss nnn == −+ , 
where ns is the total number of channel state. Besides, the 
channel states in X+ and X- are denoted ),,1(ˆ ++ = si nix L  and 

),,1(ˆ −− = si nix L , respectively. 
Suppose channel order is p=2 in the nonlinear channel 

function. For a time-varying channel, the coefficients of the 
channel, ci, i=0,1,…,n, are unknown. The nonlinear 
time-varying channel model is described as [33] 

 )()()1()()( 21 knkHkscksckx +−−+=            (37) 
where c1 and c2 are time-varying coefficients, and H(k) is 
Co-Channel Interference, (CCI) is described as 

 ))()(()( 1
1211

−+= zkckczH λ                    (38) 
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where c11(k) and c12(k) are co-channel time-varying 
coefficients. 

The time-varying coefficients, c1 and c2, are simulated by 
using a second-order Markov model. It is also called 
second-order Butterworth low-pass filter (LPF) which is 
derived by white Gaussian noise source [33]. In our 
simulations below, we use the function butter, provided by 
the Matlab- Signal Processing Toolbox, to generate a 
second-order low-pass digital Butterworth filter with cutoff 
frequency 0.1. Then the function filter is used to generate a 
colored Gaussian sequence, which is then used as 
time-varying channel coefficients. Note that we center )(1 kc  
around 1 and )(2 kc  around 0.5 as shown in Fig. 6. The input 
to Butterworth filter is a white Gaussian sequence code for 
time-varying coefficients with length of 1000.  
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Figure 6: Time-varying channel coefficients. 

 
As Fig. 4 shows, we use the RT2FNN-A system to be an 

adaptive equalizer for time-varying channel equalization. In 
the following simulations, we choose the independent input 
sequence s(k) which consists of 2000 symbols. The first 1000 
symbols are used for training, and the remaining 1000 are 
used for testing. After training, the parameters of the T2FNN, 
T2FNN-A and RT2FNN-A filters are fixed, and then the 
testing is performed. Then, we compare two examples among 
these three types of filters. 

 
Example 1: Nonlinear Time-varying Channel 

Firstly, we do not consider the CCI, i.e., H(k)=0. We 
assume that the time-varying channel is the form of (37) and 
we choose 4 rules to construct the RT2FNN-A filter. The 
learning rate is chosen to be 0.1, whereas the training epoch is 
50. Figure 7 shows the simulation results (solid-line: 
RT2FNN-A, dashed-line: T2FNN-A, and dotted-line: 
T2FNN). The comparisons of network structure and bit error 
rate (BER) are shown in Table 1. Obviously, the performance 

using our approach is also better than T2FNN-A and T2FNN 
(smaller BER value). 

Next, we consider the time-varying channel with the 
co-channel for CCI  

31
1211 ))()((9.0)( −+⋅= zkckczH                        (39) 

where the nominal values are c11(k)=1 and c12(k)=0.5. The 
learning rate is set as 0.1, whereas the training epoch is 50. 
Fig. 8 shows the simulation results (solid-line: RT2FNN-A, 
dashed-line: T2FNN-A, and dotted-line: T2FNN). We found 
that the performance is better than T2FNN-A and T2FNN 
(smaller BER value). We can see that our approach results 
better performance and has advantages of fewer adjustable 
parameters and smaller BER value. 
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Figure 7: Performance comparisons of nonlinear time-varying channel 

without CCI (solid-line: RT2FNN-A, dashed-line: T2FNN-A, and 
dotted-line: T2FNN). 
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Figure 8: Performance comparisons of nonlinear time-varying channel with 

CCI (solid-line: RT2FNN-A, dashed-line: T2FNN-A, and dotted-line: 
T2FNN). 

 
Table 1: Comparison results of network structure, rule number, parameter 

number, and BER (SNR=10 dB). 

BER 
 Network

structure

Rule
 number 

(M) 

Parameter 
number Without CCI With CCI

2-30-15-1 15 120 0.1897 0.4704 T2FNN 
[26] 

2-8-4-1 4 32 0.597 0.798 

2-18-9-1 9 108 0.0825 0.1932 
T2FNN-A 

[18] 
2-8-4-1 4 48 0.434 0.601 

RT2FNN-A 2-8-4-1 4 100 0.0063 0.017 
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B. Complex Channel Equalization  
Due to the increasing demand on higher-speed data 

transmission in communication systems, most channels have 
inevitably become much noisier and more crowded than ever. 
This results in signal distortion at the end receiver. Herein, 
we consider a real-world complex nonlinear channel and the 
baseband discrete-time data transmission system in which 
4-QAM modulated signals are transmitted. The original 
complex-valued message symbol at kT is denoted by s(k), 
where T is the symbol duration. The real part and the 
imaginary part of s(k) are assumed to be independent and 
identically distributed (i.i.d.) when equiprobable values are 
over{+1, -1}. The output of the linear dispersive FIR channel 
at kT may be written as [13] 

 ∑
=

−⋅=
p

i

ksihka
1

)1()()(                           (40) 

where h(i), i=1,2,…, p, are the channel tap values and p is the 
tap length of the FIR channel. 

 
Example 2: Complex Linear Channel 

The channel transfer function is given by [13]     

)}2()3.06.0(
)1()4.08.0()({)707.07409.0()(ˆ

−−+
−−−×−=

ksj
ksjksjkx

 (41) 

  )()(ˆ)( knkxkx +=                                                         (42) 
where n(k) is an AWGN, x(k) and s(k) represent the channel 
output and the original 4-QAM modulated signals at time 
instant k. 

In this simulation, we use two networks to estimate the real 
and imaginary part of signal, we choose 4 rules to construct 
the RT2FNN-A filter. A sample with 1000 data sets are 
generated to train the RT2FNN-A. The learning rate is set to 
be η=0.1, and the training epoch is 20. In the simulation for 
error performance, 1000 data patterns are used to test the 
trained RT2FNN-A equalizer. In Fig. 9, it shows the 
simulation result of the performance in complex linear 
channel (solid-line: RT2FNN-A, dashed-line: T2FNN-A, 
and dotted-line: T2FNN). We can observe that our approach 
performs well. 
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Figure 9: Performance comparisons (solid-line: RT2FNN-A, dashed-line: 

T2FNN-A and dash-dotted-line: T2FNN). 
 
 
 
 
 
 
 

Table 2: Comparison results of network number, network structure, rule 
number, parameter number, and BER (SNR=12 dB). 

 Network
number

Network 
structure 

Rule 
 number (M) 

Parameter
number BER 

2 2-30-15-1 15 240 0.35 
T2FNN[26]

2 2-8-4-1 4 64 0.477

2 2-18-9-1 9 216 0.34 
T2FNN-A 

[18] 
2 2-8-4-1 4 96 0.428

SCRFNN 
[13] 2 2-8-4-1 4 56 0.7 

RT2FNN-A 2 2-8-4-1 4 200 0.255

 
Example 3:  Complex Nonlinear Channel 

Herein, we consider the complex nonlinear channel as [13] 

)1()5059.03796.0(
)()7589.00119.1()(ˆ

−+−+
−=

ksj
ksjkx

               (43) 

 )()(ˆ1.0)(ˆ2.0)(ˆ)( 32 knkxkxkxkx +++=             (44) 
where n(k) is an AWGN, x(k) and s(k) represent the channel 
output and the original 4-QAM modulated signals at time 
instant k. 

The same as Example 2, we use two networks to estimate 
the real and imaginary part of signal. We then use 4 rules to 
construct the RT2FNN-A filter. 1000 data sets are generated 
to train the RT2FNN-A. The learning rate is set to be η=0.1. 
The training epoch is 50. In the simulation for error 
performance, 1000 data patterns are used to test the trained 
RT2FNN-A equalizer. In Fig. 10, it shows the simulation 
result of the performance in complex nonlinear channel 
(solid-line: RT2FNN-A, dashed-line: T2FNN-A, and 
dotted-line: T2FNN). We found that our approach performs 
well. Fig. 11 shows the scattered diagram of the noisy 
channel output signals when SNR=10 dB. These signals are 
received at the receiver and are passed through the equalizer. 
Fig. 12 represents the equalizer output signal distribution 
result. It can be seen that output distribution presents a higher 
concentration at the signal space. 
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Figure 10: Performance comparisons of Example 3 (solid-line: RT2FNN-A, 

dashed-line: T2FNN-A, and dash-dotted-line: T2FNN). 
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Figure 11: Test channel symbol distribution for Example 3. 
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Figure 12: RT2FNN-A equalizer output for Example 3. 

 
Table 3:  Comparison results of network number, network structure, rule 

number, parameter number, and BER (SNR=10 dB). 

 
This simulation shows that the RT2FNN-A has a smaller 

network structure for complex nonlinear channel 
equalization. The comparisons of network structure, 
adjustable parameters number and BER are shown in Table 3. 
We can see that our approach performs well and has 
advantages of fewer adjustable parameters and smaller BER 
value. 
 

VI. CONCLUSION   
In this paper, we propose a recurrent interval type-2 

fuzzy neural network with asymmetric membership functions 
(RT2FNN-A). The novel RT2FNN-A uses the interval 
asymmetric type-2 fuzzy sets implements the FLS in a 
five-layer neural network structure which contains four layer 
forward network and a feedback layer. According to the 
Lyapunov theorem and gradient descent method, the 
convergence of RT2FNN-A is guaranteed and the 
corresponding learning algorithm is derived. The effect of 

RT2FNN-A has been introduced by several illustration 
examples. From the simulation results, a RT2FNN-A 
equalizer over various channel models are presented in this 
paper. Simulation results have been carried out in both 
real-valued and complex-valued nonlinear channels to ensure 
the flexibility of the proposed equalizer. The feedback layer 
of proposed RT2FNN-A makes it have advantages of storing 
past information. Moreover, the RT2FNN-A can use a small 
number of tuning parameters than the feed-forward fuzzy 
neural networks to obtain better performances (smaller BER). 
To reduce the computation complexity, RT2FNN-A is a good 
choice. 

APPENDIX 
Proof of Theorem 1 

First, we define the Lyapunov function as follows: 

 [ ] )(
2
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2
1)( 22 kekykykV d =−=        (A1) 

where )(ˆ ky  is RT2FNN-A’s system output, yd(k)  is desired 
output and e(k) denotes the approximated error. Thus, the 
change of V(k) is 
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The error difference due to the learning can be represented by  
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The convergence of RT2FNN-A is guaranteed if 0)( <Δ kV , 
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This completes the proof. 
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