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Abstract—In ensemble methods the aggregation of
multiple unstable classifiers often leads to reduce the
misclassification rates substantially in many applica-
tions and benchmark classification problems. We pro-
pose here a new ensemble, “Double SVMBagging”,
which is a variant of double bagging. In this ensem-
ble method we used the support vector machine as the
additional classifiers, built on the out-of-bag samples.
The underlying base classifier is the decision tree. We
used four kernel types; linear, polynomial, radial ba-
sis and sigmoid kernels, expecting the new classifier
perform in both linear and non-linear feature space.
The major advantages of the proposed method is that,
1) it is compatible with the messy data structure, 2)
the generation of support vectors in the first phase fa-
cilitates the decision tree to classify the objects with
higher confidence (accuracy), resulting in a significant
error reduction in the second phase. We have applied
the proposed method to a real case, the condition di-
agnosis for the electric power apparatus; the feature
variables are the maximum likelihood parameters in
the generalized normal distribution, and weibull dis-
tribution. These variables are composed from the
partial discharge patterns of electromagnetic signals
by the apparatus. We compare the performance of
double SVMbagging with other well-known classifier
ensemble methods in condition diagnosis; the double
SVMbagging with the radial basis kernel performed
better than other ensemble method and other kernels.
We applied the double SVMbagging with radial basis
kernel in 15 UCI benchmark datasets and compare
it’s accuracy with other ensemble methods e.g., Bag-
ging, Adaboost, Random forest and Rotation Forest.
The performance of this method demonstrates that
this method can generate significantly lower predic-
tion error than Rotation Forest and Adaboost more
often than reverse. It performed much better than
Bagging and Random Forest.
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1 Introduction

Support Vector learning is based on simple ideas which
originated in statistical learning theory [9]. The simplic-
ity comes from the fact that Support Vector Machines
(SVMs) apply a simple linear method to the data but in
a high-dimensional feature space non-linearly related to
the input space. The SVM learns a separating hyperplane
to maximize the margin and to produce a good general-
ization ability [6]. Recent theoretical research work has
solved the existing difficulties of using the SVM in practi-
cal applications [21], [31]. The capability of SVM to have
competitive generalization error than other classification
methods and ensemble methods have also been checked
[29], [14].

The idea of the SVM ensemble has been proposed in [39].
They used the boosting technique to train each individ-
ual SVM and took another SVM for combining several
SVMs. Valentini and Dietterich proposed an ensemble
of low biased SVM in [40], where the authors aggregate
only SVMs with low bias. The bias was estimated us-
ing the out-of-bag samples. In [24] authors proposed to
use the SVM ensemble based on the bagging and boost-
ing techniques. In bootstrapping (bagging), each indi-
vidual SVM is trained over the randomly chosen training
samples via the bootstrap technique. In boosting, the
training samples for each individual SVM are chosen ac-
cording to updating the probability distribution (related
to error) for samples. Then, the independently trained
several SVMs are aggregated in various ways such as the
majority voting, the least square error based weighting,
and the double-layer hierarchical combining. In [38] au-
thors used a novel aggregation rule SEN (selective ensem-
ble) in constructing LS-SVM ensemble. In [26] authors
used subsampling to build SVM ensembles to increase the
diversity of the ensemble. In [28] authors presented two
novel approach for SVM ensemble, probabilistic ordering
of one-vs-rest (OVR) SVMs with naive Bayes classifier
and multiple decision templates of OVR SVMs. In an-
other SVM ensemble method, [41] Fuzzy integral is used
to combine the SVM classifiers. In this paper, we have
used SVM as the additional classifier model in an en-
semble method called the double bagging [19]. In double
bagging an additional classifier model is built on the out-
of-bag samples and then this model is trained on both
the inbag samples and test set to extract additional pre-
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dictors for both in building the ensemble and testing it
in the test set. As the SVM is a maximum margin clas-
sifier, which construct optimum separating hyperplane
between the classes (for binary classification), we intend
to use it in the first phase of the ensemble to attain the
class posteriori probabilities consisting of the discrimina-
tive information between the classes and then integrate
these as the additional predictors to construct the deci-
sion tree ensemble in the second phase. These posteriori
probabilities are also used in the testing the decision tree
ensembles. This procedure ensures a possibility of max-
imum separation of the classes and henceforth increases
the prediction accuracy of the decision tree ensemble in
discriminating the classes.

In this paper, one of our main focus is to endeavor Dou-
ble SVMBagging in classifying the type of partial dis-
charge (PD) patterns in a model gas insulated switch
gear (GIS) as a typical electric power apparatus. For
condition monitoring purposes, it is considered to be im-
portant to identify the type of defects when monitoring
discharge activities inside an insulation system. In the
paper [17] authors first proposed to use the decision tree
as a classification tool for diagnosing because it provides
the tangible if-then-rule, and thus we may have a possi-
bility to connect the physical phenomena to the observed
signals. In [18] authors used several ensemble methods
in classifying the defect patterns in the electric power
apparatuses. In [27] authors applied a SVM ensemble
for fault diagnosis, based on the genetic algorithm (GA).
They used the GA in order to find more accurate and
diverse ensemble.

The paper is organized as follows. In section 2, we have
introduced the SVM with a non-mathematical introduc-
tion and mathematical formulation, and then we have
introduced some popular kernels we used in this paper in
SVM. In section 3 we have introduced the double bag-
ging and give a brief description of the implementation
of the double bagging via the linear discriminant anal-
ysis (LDA). In section 4, the main topic of this paper
is discussed: the Double SVMBagging. Here we have
put together motivation and construction steps of Dou-
ble SVMBagging. Section 5 contain the characteristics of
the datasets used in the experiments. This also includes
the extraction method used for the GIS datasets of the
experiments in this paper. In section 6 the experimental
setup of the study is explained, where we have compared
the performance of the double bagging (with subbagging)
SVM with other ensemble methods, such as the bagging,
the adaboost.M1, the logitboost and the double bagging
(with subbagging) with LDA and k-NN. In section 7 the
results of the experiments are explained and discussed.
In section 8, the conclusion of the study is stated.

Figure 1: Maximum Separation Hyperplane.

2 Support Vector Machine (SVM)

The SVM models were originally defined for the classifi-
cation of linearly separable classes of objects. Such an ex-
ample is presented in Figure 1. For these two-dimensional
objects that belong to two classes (class +1 and class −1),
it is easy to find a line that separates them perfectly. For
any particular set of two-class objects, an SVM finds the
unique hyperplane having the maximum margin (denoted
with δ in Figure 1). The hyperplane H1 defines the border
with class +1 objects, whereas the hyperplane H2 defines
the border with class −1 objects. Two objects from class
+1 define the hyperplane H1, and three objects from class
−1 define the hyperplane H2. These objects, represented
inside circles in Figure 1, are called the support vectors.
A special characteristic of the SVM is that the solution
to a classification problem is represented by the support
vectors that determine the maximum margin hyperplane.

The SVMs aim at minimizing an upper bound of the gen-
eralization error through maximizing the margin between
the separating hyperplane and the data. This can be re-
garded as an approximate implementation of the struc-
tural risk minimization (SRM) principle, which endows
with good generalization performances independent of
underlying distributions [21]. The SVMs algorithms are
based on parametric families of separating hyperplanes
of different Vapnik-Chervonenkis dimensions (VC dimen-
sions). The SVMs can effectively and efficiently find the
optimal VC dimension and an optimal hyperplane of that
dimension simultaneously to minimize the upper bound
of the expected risk. Usually the classification decision
function in the linearly separable problem is represented
by

fw,b = sign(w · x + b).

Thus, to find a hyperplane with minimum VC dimension,
we need to minimize the norm of the canonical hyper-
plane ||w||. Also the distance between the hyperplane
H1 and H2 showed in Figure 1 is,

δ =
2

||w||
.
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Consequently, minimizing the norm of the canonical hy-
perplane ||w|| is equivalent to maximizing the margin δ
between H1 and H2 in Figure 1. The purpose of imple-
menting SRM for constructing an optimal hyperplane is
to find an optimal separating hyperplane that can sepa-
rate the two classes of training data with maximum mar-
gin. In Figure 1, the support vectors construct these
optimal hyperplanes. Hence the optimal hyperplane sep-
arating the training data of two separable classes is the
hyperplane that satisfies,

Minimize : F (w) =
1
2
wT w, yi(w · xi + b) ≥ 1.

This is a convex, quadratic programming (QP), problem
with linear inequality constraints. It is hard to solve the
inequality constraint optimization problem directly. The
most common way to deal with optimization problems
with inequality constraints is to introduce Lagrange mul-
tipliers to convert the problem from primal space to dual
space and then solve the dual problem. For the linearly
non-separable case, the minimization problem needs to
be modified to allow the misclassified data points. This
modification results in a soft margin classifier that allows
but penalizes errors by introducing a new set of variables
ξi (i = 1 . . . l) as the measurement of violation of the
constraints.

Minimize : F (w) =
1
2
wT w + C(

L∑
i=1

ξi)k,

yi(wT φ(x) + b) ≥ 1 − ξi,

where C and k are used to weight the penalizing vari-
ables ξi, and φ(·) is a nonlinear function which maps the
input space into a higher dimensional space. Minimizing
the first term in the above QP is corresponding to min-
imizing the VC dimension of the learning machine and
minimizing the second term in QP controls the empirical
risk. Therefore, in order to solve problem the QP, we
need to construct a set of functions, and implement the
classical risk minimization on the set of functions. Here,
a Lagrangian method is used to solve the above prob-
lem. Then, the QP can be written as, after introducing
L non-negative Lagrangian multipliers α1, α2, . . . , αL,

Maximize : L(α),

L(α) =
1
2

L∑
i=1

αi −
L∑

i=1

L∑
j=1

αiαjyiyjφ(x)T φ(xi)T ,

subject to

L∑
i=1

αiyi = 0;
L∑

i=1

αi ≤ C;
L∑

i=1

αi ≥ 0.

After the optimum Lagrange multipliers αi have been de-
termined, we can compute the optimum coefficient vector

w∗ and the optimal offset b∗. The solution is given by

f(x) = sign(
L∑

i=1

yiα
∗
i (x) + b∗),

where α∗
i (x) = αiyiK(x, xi), and K(x, xi) = φ(x) · φ(xi).

(K(x, xi) can be simplified by kernel trick [35]).

One interesting property of support vector machines and
other kernel-based systems is that, once a valid kernel
function has been selected, one can practically work in
spaces of any dimension without any significant addi-
tional computational cost, since feature mapping is never
effectively performed. In fact, one does not even need
to know which features are being used. Another advan-
tage of SVMs and kernel methods is that one can design
and use a kernel for a particular problem that could be
applied directly to the data without the need for a fea-
ture extraction process. This is particularly important in
problems where a lot of structure of the data is lost by
the feature extraction process (e.g., text processing).

In SVM for multi-class classification, mostly voting
schemes such as one–against–one and one–against–all
are used. In the one–against–one classification method
(also called pairwise classification),

(
k
2

)
classifiers are con-

structed where each one is trained on data from two
classes. Prediction is done by voting where each classifier
gives a prediction and the class which is most frequently
predicted wins (“Max Wins”). In the one–against–all
method k binary SVM classifiers are trained, where k
is the number of classes, each trained to separate one
class from the rest. The classifiers are then combined by
comparing their decision values on a test data instance
and labeling it according to the classifier with the highest
decision value.

2.1 Kernels used in SVM

In this subsection, we present the most used SVM ker-
nels. These functions are usually computed in a high-
dimensional space and have a nonlinear character.

Linear (dot) kernel: The inner product of xi and xj de-
fines the linear (dot) kernel

K(xi, xj) = xi · xj .

This is a linear classifier, and it should be used as a test of
the nonlinearity in the training set, as well as a reference
for the eventual classification improvement obtained with
nonlinear kernels.

Polynomial Kernel: The polynomial kernel is a simple
and efficient method for modeling nonlinear relationships:

K(xi, xj) = (1 + xi · xj)d.

Gaussian Radial Basis Function: Radial basis functions
(RBF) are widely used kernels, usually in the Gaussian
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form:

K(xi, xj) = exp(
||x − µ||2

2σ2
).

The parameter σ controls the shape of the separating
hyperplane.

Exponential Radial Basis Function:

K(xi, xj) = exp(
||x − µ||

2σ2
).

Neural (tanh, sigmoid) kernel: The hyperbolic tangent
(tanh) function, with a sigmoid shape, is the most used
transfer function for artificial neural networks. The cor-
responding kernel has the formula:

K(xi, xj) = tanh(axi · xj + b).

ANOVA Kernel: A useful function is the ANOVA kernel,
whose shape is controlled by the parameters γ and d:

K(xi, xj) = (
∑

exp(γ(xi − xj)))d.

The Gaussian and Exponential RBF are general-purpose
kernels used when there is no prior knowledge about the
data. The linear kernel is useful when dealing with large
sparse data vectors as is usually the case in text cate-
gorization. The polynomial kernel is popular in image
processing and the sigmoid kernel is mainly used as a
proxy for neural networks. The ANOVA RBF kernels
typically perform well in regression problems. Usually
RBFs are favored instead of polynomial kernel functions,
because they are not sensitive to outliers and do not re-
quire inputs to have equal variances. However, in some
cases polynomial kernels result in an excellent classifi-
cation performance. In this paper we have used linear,
polynomial, Gaussian radial basis function and sigmoid
kernel.

2.2 Advantage of SVM over other classifiers
in data based condition diagnosis

During the last years Neural Network (NN) based models
like multilayer perceptrons (MLP), radial basis function
(RBF) networks or self organising maps (SOM) in appli-
cation to the data-based fault diagnosis is widely studied
[37], [30]. With NN models it is possible to estimate a
nonlinear function without requiring a mathematical de-
scription of how the output functionally depends on the
input; NNs learn from examples. The most commonly
mentioned advantages of NNs are their ability to model
any non-linear system, the ability to learn, the highly par-
allel structure and the ability to deal with inconsistent or
noisy data. But difficulties occur in creating a reliable
network, if there are not enough measurements available
from all operation states of the process. Another disad-
vantage of NNs is that the net architecture with weighting

factors is difficult to figure out by human. This may be a
problem in tuning the system, or explaining the diagnosis
results to a system operator.

SVM gives refreshing views on conventional pattern
recognition and classification systems. It has several ben-
efits compared to statistical classifiers or MLPs, e.g.

1. The most important benefit is its efficiency in high
dimensional classification problems, where statistical
classifiers often fail.

2. The other benefit of SVM compared to statistical clas-
sifiers is its general applicability to nonlinear prob-
lems. MLPs or RBF networks can also be applied
in nonlinear problems, but SVM outperforms them
when considering the globality of solution.

3. Training of the SVM results in a global solution for
the problem under study, whereas MLPs and RBF
networks may have many local minima leading to
not a reliable solution.

Thus, we see that SVM possess some advantageous prop-
erties over other statistical classifiers not only in fault
diagnosis but also in other real world classification prob-
lems. Our primary objective is to incorporate SVM in
double bagging to utilize these advantages in fault diag-
nosis.

2.3 Designing and tuning of SVM in the ex-
periments

We have used the C-SVM in our paper. This name orig-
inates from the fact that the complexity of the C-SVM
solely depends on the cost parameter C. Design of SVM
for a classification task consists of two tasks: choosing
the kernel function and setting a value for the parameter
C. The parameter C is also called an error penalty, be-
cause it deals with the trade-off between maximum mar-
gin and the classification error during training. A high
error penalty will force the SVM training to avoid classifi-
cation errors. It is clear that with high error penalty, the
optimizer gives a boundary that classifies all the train-
ing points correctly. This, however, can give very irreg-
ular boundaries that may not lead good performance of
the classifier in the test set. In this paper we have used
the R package e1071 [7] to implement the SVM. In the
SVMs the optimization is done by SMO [31], which takes
advantage of the special structure of the SVM quadratic
problem (QP). The selection of kernel function has also
influence on the decision boundary. When using polyno-
mial kernel function, the order of the polynomial needs to
be chosen, and when using RBF the spread (kernel width)
σ, needs to be decided. In our experiments we have used
grid search method to select the optimum combination of
the parameters. In this search method the 10-fold cross
validation is used to search for the models with lowest
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Input:

• L: Training set
• X: the predictors in the training dataset
• B: number of classifier in the ensemble
• {ω1, . . . , ωc}: the set of class labels
• x: a data point to be classified

Training Phase:

For b = 1, . . . , B

• Draw a random sample L(b) with replacement from the training set L and
where X(b) denote the matrix of predictors x

(b)
1 , . . . , x

(b)
N from L(b).

• Compute an LDA Z(b), using the out-of-bag sample L−(b), that gives a ma-
trix W (b) where the columns are the coefficients of the linear discriminant
functions.

• Construct the combined classifier C
(b)
comb using the original variables as well

as the discriminant variables of the bootstrap sample (L(b), X(b)W (b))

Classification Phase:

• For a new observation x, let cbj(x, xZ(b)) be the decision(probability) as-
signed by the classifier C

(b)
comb to the hypothesis that x comes from the

class ωj . Calculate the confidence for each class ωj , by the “average”
combination rule:

µj(x) =
1
B

B∑
b=1

cbj((x, xZ(b))), j = 1, . . . , c.

• Assign x to the class with the largest confidence.

Figure 2: Double bagging Algorithm

prediction error. In our paper for multi-class classifica-
tion we have used one–against–one rule. In all of our ex-
periments we have used the posteriori class probabilities
as output instead of class labels of SVM as the additional
predictors. This is done by an improved implementation
([25]) of Platt’s a posteriori probabilities [32].

Prob(y = 1|f) =
1

1 + e(Af+B)

where a sigmoid function is fitted to the decision values
f of the binary SVM classifiers, A and B being estimated
by minimizing the negative log-likelihood function. This
is equivalent to fitting a logistic regression model to the
estimated decision values. We extended the class proba-
bilities to the multi-class case, combining all binary clas-
sifiers class probability output as proposed in [44].

As we have mentioned earlier in this section that SMO
is used to optimize the parameters of the SVMs of
our study, one can argue that, why not using other
faster SVM implementations available (e.g., Bottou’s
SVMSGD, Fan’s LINEARLIB [11], Chang’s PSVM [8]).

There are two reasons behind the expostulation to use
faster SVMs: firstly, SMO is found to achieve better
predictive performance considering speed, scalability and
memory usage [22] than other contemporary SVM imple-
mentations in R language (see svmpath [15], klaR [34],
kernlab [23], quadprog[42]), secondly we are using the
SVM in the out-of-bag samples (which are 1

3 of each boot-
strap sample), so in our understanding speeding up the
learning process is less important here.

3 Double Bagging

When a decision tree is adopted as the base learning algo-
rithm, only splits that are parallel to the feature axes are
taken into account even though the decision tree is non-
parametric and can be quickly trained. Considering that
other general splits such as linear ones may produce more
accurate trees, a “Double-Bagging” method is proposed
by Hothorn and Lausen [19] to construct ensemble classi-
fiers. In the statistical literature drawing a random sam-
ple of size N from the empirical distribution, a bootstrap
sample of size N covers approximately 2

3 of the obser-
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vations of the learning sample. The observations, which
are not in the bootstrap sample, are called out-of-bag
sample and may be used for estimating the misclassifica-
tion error or for improved class probability estimates. In
the double bagging framework proposed by Hothorn and
Lausen [19], the out-of-bag sample is used to generate
an additional classifier model to integrate with the base
learning model. In the setup of Hothorn and Lausen, the
double-bagging uses the values of the linear discriminant
functions trained on the out-of-bag sample as additional
predictors for bagging classification trees only. The dis-
criminant variables are computed for the bootstrap sam-
ple and a new classifier is constructed using the original
variables as well as the discriminant variables. The dou-
ble bagging algorithm [19] is shown in Figure 2.

Using the out-of-bag sample for the LDA, the coefficients
of the discriminants are estimated by an independent
sample; thus it is avoiding the overfitted discriminant
variables in the tree growing process. Furthermore, it en-
sures that the training sample for the LDA is small and
therefore the LDA becomes less stable and in the typi-
cal situation bagging can lead to stabilization. In double
bagging, instead of the LDA, the other stable classifiers
like, Nearest Neighbor (NN), Linear Logistic and SVM
can be used as the additional classifier models.

4 Double Bagging with SVM

4.1 The algorithm

The underlying idea of double bagging is in the spirit
of Breiman [4], “Instead of reducing the dimensionality,
the number of possible predictors available to the classi-
fication trees is enlarged and the procedure is stabilized
by bootstrap aggregation.” In this algorithm a linear
classifier model LDA is constructed for each bootstrap
sample using an additional set of observations: the out-
of-bag sample. The prediction of this classifier is com-
puted for the observations in the bootstrap sample and
is used as additional predictors for a classification tree.
The trees implicitly select the most informative predic-
tors. The procedure is repeated sufficiently enough and
a new observation is classified by averaging the predic-
tions of the multiple trees. So we see that performance
of the double bagging solely depends on two factors: 1)
the classes of the dataset are linearly separable so that
the additional predictors are informative (or discrimina-
tive), 2) the size of the out-of-bag samples as to construct
LDA model: the underlying covariance matrix should be
invertible. However, to handle real world classification
problems, the base classifier should have more flexibility.
In the next subsection we will discuss about the other
possible classifier choices to use in double bagging and
the advantage of SVM over them.

4.2 Other possible choices for additional
classifier model in Double Bagging

In this subsection we will clarify our idea to select SVM
as the additional classifier model in double bagging. The
possible classifiers to be used other than LDA in the dou-
ble bagging are, k-Nearest Neighbor (k-NN) classifiers,
Neural Network (NN). We will discard NN from our dis-
cussion as SVM itself can be considered as a NN with
radial basis function (RBF) while used with gaussian ker-
nel. Below in brief we have stated the rationale behind
not choosing of LDA and k-NN in using as the additional
predictors in double bagging.

Linear discriminant Analysis (LDA): We have seen
in the earlier section that the success of double bagging
depends on the linear structure in the dataset. But if
there is no linear structure available in the datasets, we
are adding some non-informative predictors in the ensem-
ble construction. Furthermore it should be noted that for
small learning samples with a large number of predictors,
the out-of-bag sample may be too small for computing
additional classifier LDA. On the contrary for a high di-
mensional dataset linear discriminant analyses apply the
inverse of covariance matrix of the vectors to be classi-
fied requiring estimation of the covariance matrix. To
estimate high dimensional covariance matrices well one
needs an unpredictably large number of observations. So
for using LDA we must ensure that the data is linearly
distributed in the classes and also the dimension of the
data generates invertible covariance matrix.

k-Nearest Neighbor (k-NN): The nearest neighbor
(NN) method is one of the simplest and well-known non-
parametric classification methods. By the k-NN rule
(k ≥ 1), to classify a new case with the feature variable
values known, one simply looks at the k nearest neigh-
bors in the available data and the class label with the
highest frequency wins. For defining neighbors, a dis-
tance or metric is usually taken. So the performance of
the NN method depends heavily on the chosen distance
and distance metric. Given a set of feature variables, a
key issue in the k-NN classification is the choice of the
neighbor size k. Cover and Hart [10] showed that even
1-nearest neighbor rule can do half as well as the Bayes
rule (the optimal classifier) in terms of the classification
error probability. However, as the size of the training set
becomes large, the computational time may become in-
feasible. In this paper we have used 5-NN and 10-NN as
the additional classifiers condition diagnosis. The perfor-
mance of double bagging with k-NN is competitive with
double bagging with LDA in the experiments.

From the above discussion it is clear that the use of SVM
as an additional classifier in the double bagging will be
beneficial because SVMs performance is compatible with
the dimensionality of the dataset. The generalization
ability of the SVM can be measured only with the num-
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Input:

• L: Training set
• X: the predictors in the training dataset
• B: number of classifier in the ensemble
• {ω1, . . . , ωc}: the set of class labels
• x: a data point to be classified

Training Phase:

For b = 1, . . . , B

• Draw a subsample L(b) without replacement of size 1
2 of the L. Let X(b)

denote the matrix of predictors x
(b)
1 , . . . , x

(b)
N from L(b).

• Build an SVM model SV M (b), using the out-of-bag sample L−(b), train
this model on L(b), that gives a matrix CP (b) where the columns are the
class probability of the classes of the dataset.

• Construct the combined classifier C
(b)
comb using the original variables (L(b))

as well as the class probabability matrix (L(b), CP (b))

Classification Phase:

• For a new observation x, let cbj(x, TCP (b)) be the decision(probability)
assigned by the classifier C

(b)
comb to the hypothesis that x comes from the

class ωj . Here TCP (b) is the test set’s class posteriori probablity generated
by SV M (b). Calculate the confidence for each class ωj , by the “average”
combination rule:

µj(x) =
1
B

B∑
b=1

cbj((x, TCP (b))), j = 1, . . . , c.

• Assign x to the class with the largest confidence.

Figure 3: Double SVMSbagging Algorithm

ber of samples (Support Vectors) locating on the border
of the classes regardless of the dimension of the input
space. Also the computations are independent of the di-
mension of the input space, because they are handled
through Gram matrices of the input data. The other
benefit of SVM compared to statistical classifiers is its
general applicability to nonlinear problems. Due to these
reasons we have used SVM as the additional classifier.

In addition to the above reasonings we also know that
SVC (support vector classifier) are maximum margin
classifier, i.e., the support vectors construct the separat-
ing hyperplane with the maximal margin between the
classes (for example in 2-class problem), it has an ex-
tra advantage regarding automatic model selection in the
sense that both the optimal number and locations of the
support vectors are automatically obtained during train-
ing [36]. So in the double bagging the use of SVM will
ensure that the additional predictors (the class posteriori
probabilities) extracted after training the SVM models on
the inbag samples, will consist of optimum discriminative

(maximal margin) information of the classes. Henceforth
it will facilitate the base decision tree learn on the com-
bined training sample (i.e., the bootstrap samples and
the class posteriori probabilities) allow for more flexible
and accurate split of the data. So it is evident theoret-
ically that use of SVM in the double bagging therefore
will have an improved performance.

As the success of the double bagging mostly lies on the
classifier model build on the out-of-bag samples, to en-
sure large out-of-bag samples we also used subsamples
instead of the bootstrap samples, i.e., use 50% of each
sample without replacement. We denote this as, “Dou-
ble SVMSbagging”. This modification ensures that the
learning samples for the additional classifier model always
contain half of the observations of the training sample.
This will be expedient in decreasing the probability of
the additional classifiers to overfit the out of bag samples
and also will increase the learning ability of the additional
predictors.
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Figure 4: Architecture of Double SVMBagging

In Figure 3, we have given the pseudocode of Dou-
ble SVMSbagging algorithm. For better understanding
about the program flow of the Double SVMbagging en-
semble we have also given Figure 4. So we see from
Figure 4 that in the first phase of training step SVMs
are constructed using the out-of-bag samples, then to
get additional predictors, these SVMs are trained on the
bootstrap samples to get the class posteriori probabili-
ties (CP b). In the second phase an ensemble of decision
tree(DT b) is built using these CP bs and the bootstrap
samples (Lb). The SVMs are also trained in the test
set to enlarge the size of the test set by the test poste-
riori class probabilities (TCP b). Then these TCPs are
included with test set as the additional predictors.

The SVM has been known to show a good generaliza-
tion performance and is easy to learn exact parameters
for the global optimum [6]. Because of these advantages,
their ensemble may not be considered as a method for
improving the classification performance greatly. How-
ever, since the practical SVM has been implemented us-
ing the approximated algorithms in order to reduce the
computation complexity of time and space, a single SVM
may not learn exact parameters for the global optimum.
Sometimes, the support vectors obtained from the learn-
ing is not sufficient to classify all unknown test examples
completely. So, we cannot guarantee that a single SVM
always provides the global optimal classification perfor-
mance over all test examples. This allows us to use the

SVM in bagging; as in bagging the base classifiers should
be unstable to get better performance.

5 Data

The main objective of this paper is two fold; first, exam-
ine the performance of Double SVMBagging in condition
diagnosis and compare its prediction accuracy with other
ensemble methods; second, investigate its classification
performance in real world datasets along with other well-
known ensemble methods.

The datasets used for condition diagnosis are GIS (Gas
Insulated Switchgears) datasets which are transformed
version of the electromagnetic signals measured by the
sensors in the electric power substations, since the
stochastic signals measured cannot be used as they are
because of too abundant information, they are once trans-
formed into φ-V -n (phase resolved Partial Discharge
(PD)) patterns. Then generalized normal distribution
(GND) and Weibull distribution fitting [16] is used in or-
der to acquire accurate diagnosis of the faults. We assume
three classes for possible abnormal conditions in the GIS;
1) the metal which is attached on the high voltage side
conductor (abbreviated as “HV”), 2) the metal which is
attached on the earth side tank ((abbreviated as “TK”),
and 3) the metal is freely movable (abbreviated as “FR”).
The numbers of the observed samples are, 150, 377, 126,
for HV, TK, FR. Here the first dataset consist of MLE
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(Maximum Likelihood Parameters) of 4 parameters (2
parameters for phase 0-180 and 2 parameters for phase
180-360) of the GND and two parameters for the single
phase of the Weibull fitted to the observed PD patterns,
and these are used as feature variables.

For our second experiment we randomely selected 15
datasets from the UCI Machine Learning Repository [1].
The characteristics of the datasets are showed in Table 1.

Table 1: Description of the 15 Data used in this paper

Dataset Objects Classes Features
Boston Housing 506 3 13

DNA 3186 3 180
Ecoli 336 8 7

German-credit 1000 2 20
Glass 214 7 9

Cleveland-Heart 297 5 13
Ionosphere 351 2 34

Iris 150 3 4
Liver-disorder 345 2 6
Pima-Diabetes 768 2 8

Sonar 208 2 60
Vehicle 846 4 18
Vote 435 2 16

Wiscinson-breast 699 2 9
Zoo 101 7 16

6 Experimental Setup and Discussion of
results

In this paper we have conducted two experiments. In the
first experiments we have applied Double SVMBagging
in the two GIS datasets. To compare the efficacy of the
proposed double bagging via SVM ensemble we have per-
formed three different ensemble methods, bagging [3], ad-
aboost.M1 [12] and logitboost [13], with the double bag-
ging (with subbagging) with LDA, 5-NN and 10-NN clas-
sifier models. In the second experiment we have checked
the performance of the new ensemble method in 15 UCI
repository datasets. We have compared its perfromance
with Bagging, Adaboost.M1, Random Forest [5] and Ro-
tation Forest [33]. In all the experiments for each dataset,
we extracted the optimum parameters of the SVM using
10-fold crossvalidation and then use those parameters to
construct the SVC to be used in each out of bag sample.

6.1 Experiment with GIS dataset

In the first experiment, we have used CART [2] in
bagging, double bagging and adaboost.M1 and decision
stump (DS) [20] in adaboost.M1 and logitboost as the
base classifier. We used here 2-node decision stump in
case of adaboost.M1 and logitboost and 3-node decision
stump in case of adaboost.M1. Since DS is more efficient

as a weak classifier to be used in boosting algorithms, we
used it in the experiments. As there are three classes in
the GIS datasets, to get reasonable results we have used
here 3-node DS and 2-node DS. The results are shown
in Table 2. In double bagging with SVM we have used
four kernels (as stated in section 2.1) linear, polynomial,
radial basis function and sigmoid. The main idea behind
this is to check which kernel produces better diagnosis
results. In our earlier experiments [17], [45] we split the
dataset into two independent parts, one for training, the
training set (50% of the dataset) and the test set (remain-
ing 50% of the data). We performed this splitting 5, 10,
25 and 50 times in order to avoid the dependence on the
splitting. In this experiment we have used 10-fold cross-
validation to estimate the misclassification error of the
ensemble methods. We repeat this 5 times and report the
average misclassification error of the 5 repititions. In [17]
and [45] the accuracy of the bagging and double bagging
ensemble was better with the ensemble size B = 100, for
that the ensemble size for bagging and double bagging en-
semble is 100 in all the experiment in this paper; in case
of adaboost.M1 and logitboost we have used iterations
M = 100. We have reported in Table 2 the lowest test
errors of the classifiers. The best result is printed in bold.
In the first column of Table 2 we have given the name of
the ensemble methods and in the second column we have
given the abbreviations we have used for the ensemble
methods. For example for a Bagged CART ensemble we
have used “BCART”.

In Table 2 we see that for the GND fitted dataset, the per-
formance of BCART is (misclassification error 4.4%) bet-
ter than single CART and adaboost.M1 and logitboost.
We see that 3-node DS has the highest prediction accu-
racy among the boosted algorithms. Among the results
of DB5NN, DB10NN, DBLDA, DSB5NN, DSB10NN and
DSBLDA we see that DBLDA has the highest accu-
racy than the other classifier (accuracy 96.02%) although
DB5NN has 95.11% accuracy. We see here that the accu-
racy has increased (or misclassification error is decreased)
than the best acquired by BCART (accuracy 95.6%).
From the results of the double bagging (and subbagging)
via the SVM, we see that the better performing SVM
for this data is the RBF, as the DBRBF and DSBRBF
have the lowest misclassification error (0.03198, 0.02885)
among all the classifiers here. The main reason for the
success of the RBF kernel to perform very well could be
that we used the Gaussian RBF instead of the exponen-
tial RBF and as the features of this dataset are the fitted
parameters of generalized normal distribution, and the
kernel function mapped the features in the best way than
the other kernel methods. We also see that all the classi-
fiers instead of DSBPOLYSV and DSBLINSV produced
error nearly the same or lower than the other classifiers.

For the Weibull fitted GIS dataset we see that the double
bagging (also subbagging) with 5-NN has the highest ac-
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Table 2: Misclassification error of all the ensemble methods for GND and Weibull fitted GIS dataset
Classifiers Abbreviations GND fitted Data Weibull fitted Data

Single Decision Tree CART 0.08638 0.08191

Bagged CART BCART 0.04407 0.03891

Double Bagging With LDA, 5-NN and 10-NN

Double bagging with LDA DBLDA 0.03798 0.03730

Double bagging with 5-NN DB5NN 0.03889 0.03316

Double bagging with 10-NN DB10NN 0.04610 0.04315

Double subbagging with LDA DSBLDA 0.04086 0.04097

Double subbagging with 5-NN DSB5NN 0.03824 0.03439

Double subbagging with 10-NN DSB10NN 0.04314 0.04271

Double Bagging With SVM

Double bagging with linear kernel
SVM

DBLINSV 0.03811 0.04221

Double bagging with polynomial
kernel SVM

DBPOLYSV 0.03425 0.03524

Double bagging with RBF kernel
SVM

DBRBFSV 0.03198 0.03442

Double bagging with sigmoid kernel
SVM

DBSIGSV 0.03795 0.04349

Double subbagging with linear ker-
nel SVM

DSBLINSV 0.04284 0.04037

Double subbagging with polynomial
kernel SVM

DSBPOLYSV 0.03591 0.03600

Double subbagging with RBF kernel
SVM

DSBRBFSV 0.02885 0.03543

Double subbagging with sigmoid
kernel SVM

DSBSIGSV 0.03891 0.03914

Boosting Methods

Adaboost.M1 CART ADACART 0.05238 0.04717

Adaboost.M1 Decision Stump with
2-node

ADADS2 0.09687 0.09587

Adaboost.M1 Decision Stump with
3-node

ADADS3 0.04671 0.04518

LogitBoosted Decision Stump LOGITDS 0.07221 0.03492

curacy (96.84% and 95.61%). The double bagging with
RBF kernel performed better among the double bagging
with SVM. It acquired 34.42% and 35.43% misclassifi-
cation error which is better than all classifiers except,
DB5NN, DSB5NN. The performance of LOGITDS is sat-
isfactory in this dataset, it is the fourth best performer
(error 34.92%) in this dataset. The performance of poly-
nomial SVM kernel like the GND fitted dataset, better
than linear and sigmoid kernel double bagging SVM clas-
sifiers.

So wee see that in both the GIS dataset the performance
of the double bagging SVM classfiers with RBF and Poly-
nomial kernel performed very well in classifying the ab-
normal conditions. In Weibull fitted dataset, however,
the accuracy of double bagging with 5-NN is better than
double bagging with RBF and polynomial SVM kernel.

6.2 Experiment with the UCI dataset

In this section we describe our findings of the comparative
experiment with our new ensemble creation technique
and several ensemble creation technique of CART (Bag-
ging, Adaboost, Random Forest (abbreviated as Rand-

Forest in the table) and Rotation Forest (abbreviated as
RotForest in the table). For each data set and ensem-
ble method, five 10-fold cross validations were performed.
The average accuracies and the standard deviations are
reported in Table 3. In this experiment for each data set,
we used stratified ten-fold cross-validation method. A
stratified n-fold cross-validation breaks the data set into
n disjoint subsets each with a class distribution approx-
imating that of the original data set. For each of the n
folds, an ensemble is trained using n − 1 of the subsets,
and evaluated on the held out subset. As this creates n
non-overlapping test sets, it allows for statistical compar-
isons between approaches to be made. We used t-test for
testing the statistical significance of the observed differ-
ences in errors of the ensemble methods. In this approach
a t-test is conducted on the results of a ten-fold cross val-
idation. This is the most widely used approach for this
type of experiment. While the ten folds of the cross-
validation have independent test sets, the training data
is highly overlapped across folds, and use of the t-test
assumes independent trials.

The results for which a significant difference with dou-
ble bagging with RBF SVM is found are marked with a
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Table 3: Mean and Standard deviations prediction error of single CART, Bagged CART, Adaboost CART,Double
Bagged CART,Random Forest and Rotation Forest

Dataset Single Bagging AdaBoost Double Bagging RandForest RotForest

Boston Housing 0.2623 ± 0.013 • 0.2176 ± 0.012 0.2148 ± 0.014 0.2156 ± 0.018 0.2195 ± 0.011 0.2118 ± 0.029

DNA 0.0921 ± 0.014 • 0.0452 ± 0.017 0.0428 ± 0.019 0.0434 ± 0.015 0.0532 ± 0.023 • 0.0418 ± 0.020

Ecoli 0.1934 ± 0.019 • 0.1786 ± 0.011 • 0.1636 ± 0.018 0.1541 ± 0.016 0.1631 ± 0.016 0.1582 ± 0.017

German-credit 0.3580 ± 0.137 • 0.2914 ± 0.064 0.2677 ± 0.051 0.2788 ± 0.067 0.2756 ± 0.089 0.2895 ± 0.081 •
Glass 0.2561 ± 0.066 • 0.2595 ± 0.058 • 0.2568 ± 0.049 • 0.2364 ± 0.052 0.2645 ± 0.058 • 0.2549 ± 0.034 •

Cleveland-Heart 0.3250 ± 0.048 • 0.2214 ± 0.043 • 0.2127 ± 0.042 • 0.1837 ± 0.041 0.1994 ± 0.064 0.1893 ± 0.064

Ionosphere 0.1126 ± 0.059 • 0.0655 ± 0.037◦ 0.0681 ± 0.036◦ 0.0786 ± 0.039 0.0716 ± 0.039 0.0621 ± 0.036◦
Iris 0.0556 ± 0.010 0.0470 ± 0.012 0.0516 ± 0.015 0.0490 ± 0.011 0.0500 ± 0.009 0.0440 ± 0.010

Liver-disorder 0.3604 ± 0.013 • 0.3172 ± 0.014 • 0.3151 ± 0.019 • 0.2896 ± 0.021 0.3078 ± 0.026 • 0.3051 ± 0.025 •
Pima-Diabetes 0.3451 ± 0.017 • 0.2811 ± 0.029 • 0.2433 ± 0.028 0.2430 ± 0.022 0.2755 ± 0.027 • 0.2553 ± 0.028

Sonar 0.3104 ± 0.018 • 0.2088 ± 0.014 0.1834 ± 0.024 0.2083 ± 0.029 0.1852 ± 0.017◦ 0.1820 ± 0.030◦
Vehicle 0.2948 ± 0.011 • 0.2546 ± 0.012 0.2387 ± 0.015 0.2401 ± 0.017 0.2470 ± 0.018 0.2226 ± 0.011◦
Vote 0.0675 ± 0.010 0.0460 ± 0.014 0.0517 ± 0.012 0.0490 ± 0.011 0.0509 ± 0.013 0.0422 ± 0.010

Wiscinson-breast 0.0595 ± 0.001 • 0.0298 ± 0.004 0.0430 ± 0.010 • 0.0343 ± 0.001 0.0320 ± 0.002 0.0288 ± 0.006

Zoo 0.1237 ± 0.018 • 0.1074 ± 0.030 • 0.0575 ± 0.027 • 0.0401 ± 0.029 0.0498 ± 0.032 0.0782 ± 0.030 •
Win–Tie–Loss 13–2–0 5–9–1 5–9–1 4–10–1 4–8–3

“•” indicates Double Bagging is significanly better, “◦” indicates Double Bagging is significanly worse at the significance level α = 0.05

bullet or an open circle next to them. A bullet next to
a result indicates that double bagging with RBF SVM is
significantly better than the respective method (column)
for the respective data set (row). An open circle next to
a result indicates that double bagging with RBF SVM
is significantly worse than the respective method. In the
triplet labeled, “Win–Tie–Loss” in the last row of Table
3, the first value is the number of data sets on, the double
bagging with RBF SVM is significantly better than the
other ensemble methods; the second one is the number
of data sets on which the difference between the perfor-
mance of the double bagging with RBF SVM and that of
the other ensemble methods is not significant; the third
one denotes the number of data sets on which the double
bagging with RBF SVM is significantly worse than the
other ensemble methods.

We see from Table 3 that double bagging with RBF SVM
performed consistently better than Bagging, Adaboost
and Random Forest in the datasets. The Rotation Forest
due to its ingenious construction has performed better
than our method in the datasets.

7 Conclusions

CART searches for partitions in the multivariate samples
space, which may be seen as higher-order interactions
or homogeneous subgroups defined by some combination
binary splits of the predictors. SVM has advantage over
other classifiers in (a) non-linear feature space, (b) di-
mensionality of the feature space and (c) generalization
ability. In adition to these SVC construct the optimum
separating hyperplane which maximize the margin be-
tween the classes (in binary classification). To build an

ensemble of classifier with better generalization perfor-
mance we combine these two methods.

A new SVM ensemble method has been proposed in this
study, being a variant of another ensemble method named
double bagging, where the SVM is used to construct addi-
tional classifier models using an independent sample than
the training sample (the out-of-bag sample) to enhance
the generalization performance of the ensemble method.
Then, these additional predictors are combined with the
CART to build the ensemble.

The new method is used to detect the defects in the insu-
lation system in order to model a better diagnosis system
for the electric power apparatus. The proposed method
outperformed other ensemble methods such as bagging,
adaboost.M1, logitboost and double bagging with LDA
and k-NN (k = 5 and 10), in the experiments. The new
method is found to be better than most of the other en-
semble classifier methods in diagnosing abnormal states.
The new double bagging method with RBF kernel SVM
is tested on several UCI datasets and its performance is
consistently better than popular ensemble methods like
bagging, boosting and random forest. Its performance is
also competitive with the recent ensemble method roation
forest.

In our future work we intend to construct a double bag-
ging with localized version of the additional classifier,
which will ensure better discriminative information for
the primary base classifier (which is the decision tree in
our case). It should be noted that prunning this new dou-
ble bagging ensemble method is also an interesting area
of the research.
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