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Abstract—In assessing the insulation withstand
level of the electric apparatus, the step-up test
method is used. However, we have still many un-
known matters regarding the treatment of the re-
sults. In this paper, we assume that the underlying
probability distribution of failure time with a con-
stant voltage level follows a Weibull distribution and
that an inverse power law relationship between the
mean lifetime and the imposed voltage holds; that
is, the Weibull power law is assumed. Under such
a condition, we first investigate whether we can es-
timate the unknown Weibull power law parameters
using the breakdown voltage results obtained from
the step-up test. We assume two models: one is the
independence model, and the other is the cumulative
exposure model. When we use the maximum like-
lihood estimation (MLE) method, the estimation is
well performed in both the models. On the contrary,
the method of least squares (LS), commonly used for
electric engineers in obtaining the Weibull parameters
for the breakdown voltage, performs badly. We com-
pare the estimation results between those using the
MLE and those using the LS both the models. The LS
has a tendency to yield a bias for the Weibull shape
parameter, and it generates a larger standard devia-
tion. Consequently, the RMSE using the LS becomes
larger than that using the MLE. We conclude that
the MLE is superior to the LS. Regarding the model
selection of which model between the independence
model and the cumulative exposure model should be
used, we recommend the cumulative exposure model
from both viewpoints of the model derivation and the
RMSE.
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1 Introduction

To assess the insulation withstand level of the electric ap-
paratus in electric power substations by using the voltage
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application test is crucial for insulation design. Although
the test method is rather simple, we have still many un-
known matters; e.g., how we deal with the test results.
Assuming, e.g., that the voltage level imposed to the ap-
paratus is continuously increased. Then, we can obtain
the breakdown voltage results; using the basic statistics
we may estimate the voltage blow which the breakdown
probability is specified to be low, e.g., µ− 3σ is a simple
guess to that (see [4]) where µ and σ are the sample mean
and the sample standard deviation. However, we know
that values µ and σ are affected by the voltage increasing
rate per second; the faster the rate, the higher the value
of µ. Using the step-up test method (Figure 1), a similar
tendency will be observed. Unlike the breakdown time
observation with same constant voltage stress imposing,
we aware how difficult to assess the insulation withstand
level by using the step-up voltage test [1, 6, 7, 8, 9]. This
is because the step-up voltage test includes the random
variable of time T and the explanation variable of voltage
stress v together.

Figure 1: Step-up voltage test. The test is performed as
follows: Stress vi is imposed to the insulation one minute;
if the insulation is not broken, then the stress level is
raised higher to vi+1 and vi+1 is imposed one minute;
this continues until the insulation is broken, and the final
stress vf is used for the estimation.

Here, we assume that the underlying probability distribu-
tion of failure time with a constant voltage level follows
a Weibull distribution with shape parameter a and that
there is a inverse power law between the mean lifetime
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tmeanlife and the imposed voltage v, that is

tmeanlife = kv−n, (1)

where n is the power law constant, and k is a constant.
Therefore, we assume the Weibull power law model [2, 3],

F (t; v) = 1 − exp[−K(vnt)a], (2)

where, t expresses the random variable and v expresses
the explanation variable. In this paper, we first investi-
gate whether we can estimate the unknown values of a
and n using the results obtained by the step-up test. We
use the maximum likelihood estimation method (MLE).

Superficially, one sometimes uses the relationship of

m = na, (3)

to evaluate the voltage stress endurance parameter, as if
v works as the random variable and m behaves as the
Weibull shape parameter. As seen in the literature, e.g.,
[7], it is common for electric engineers to use the method
of least squares (LS) in obtaining the Weibull parameters
for the breakdown voltage, i.e., the Weibull plot method
is used. In such a case, the shape parameter m is often
addressed.

We next compare the results between those using the
MLE and those using the LS. We finally show the su-
periority of the MLE over the LS.

2 Step-up Test Method

The step-up test method is performed as follows: 1) stress
v1 is imposed to the insulation one minute, 2) if the insu-
lation is not broken, then the stress level is raised higher
to v2 and v2 is imposed one minute, 3) this continues
until the insulation is broken, and the final stress vf is
used for the estimation. Here, the initial stress level is
set such that the breakdown would not occur, and the
step-up distance d is set such that too many stress levels
are not imposed; in actual case, v1 is 70% to 90% of the
mean value of vf , i.e., the sample mean µ, and d is 4%
to 8% of the mean value of vf . In the simulation study
in this paper, we set v1 = 0.1 and d = 0.1; the number of
samples is 200; the number of trials is 100 each.

We have two cases of random number generation method
according to the two proposed methods for insulation
evaluation. One is the independence model and the other
is the cumulative exposure model. In reliability fields, the
latter is common.

2.1 Independence model

The independence method, called by [7, 8] and adopted
by JEC-012 [4], is a probability model that each insu-
lation event phenomenon such as TOV (temporary over

voltages) independently affects the insulation failure re-
gardless of its history such as aging or deterioration of
the insulation. Then, the probability distribution model,
when we observe the final breakdown voltage of vf , is
expressed as,

F (v) = 1 − exp[−A

f∑
i=1

(vna
i · tai )], (4)

where A is a constant. If we use unit time for each
ti, then, t is hidden. Note that in this model the ran-
dom variable is superficially expressed by v; then, the
unknown shape parameter in this Weibull model is na,
resulting that the parameters n and a are not obtained
simultaneously. Therefore, the use of the parameter m is
common.

By a simple calculation when time duration to each
stress is small enough, the estimated shape parameter
in Weibull analysis using this independence model has a
bias for m even if the sample size is large enough; this
is because, by approximating the summation part by in-
tegration, (4) tends to the ordinary Weibull distribution
with shape parameter m + 1; thus, the bias of quantity
1 is always observed if the Weibull plot is used. See ap-
pendix.

2.2 Cumulative exposure model

The cumulative exposure model [3], also called the ac-
cumulation model by [7, 8], is a probability model that
every step vi, where stress vi is imposed to the insulation,
affects the next step vi+1 failure probability. This may
be interpreted that we assume that the quantity vnt is
accumulated to the insulation for future failure probabil-
ity. Then, the probability distribution model, when we
observe the final breakdown voltage vf , is expressed as,

F (v) = 1 − exp[−B{
f∑

i=1

(vn
i · ti)}a], (5)

where B is a constant.

By a similar approximation to the independence model,
we mention that we observe a bias of quantity a to the
shape parameter m when we admit (3).

2.3 Bias for the Weibull shape parameter

As mentioned above, the bias will always be observed
even if the sample size is large; an exception is seen when
a = 1, the case of the exponential model. Otherwise,
by looking at the functions in the exponential function
in (4) and (5), we can see that the convexity varies by
the value of a; see appendix. This is explained in [7] in
a more concrete case when the actual step-up setting is
assumed.
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3 Parameter Estimation using the MLE

In both the models of 2.1 and 2.2, we use the likelihood
function such that

L =
N∏

k=1

{F (vfk+1) − F (vfk
)}, (6)

where N is the sample size. The maximum likelihood es-
timates are obtained by searching for the parameters such
that the log-likelihood function becomes the maximum.
We, here, use the simplex method [5] in optimization.

When we adopt the independence model, the unknown
parameters are m and A. When we adopt the cumulative
exposure model, the unknown parameters are a, n, and
B.

4 Parameter Estimation using the LS

When we use the LS, the Weibull plot is required. To fit
the straight line on the Weibull plot to the observed data,
we transform the voltage values vfk

(k = 1, 2, . . . , N) to
its logarithmic values, and the probability of kth order
statistics is set usually to k

N+1 , where v(f1) ≤ . . . ≤ v(fN ).
The superficial estimate for the shape parameter in the
Weibull model is then obtained.

When we adopt the independence model, the unknown
parameters are m and A. When we adopt the cumulative
exposure model, the unknown parameters are m and B.

5 Simulation

5.1 Simulation cases

For the independence model we consider the cases where
m = 6.67, 10, 15, 33.3. The simulation cases for the cumu-
lative exposure model are shown in Table 1. The value of
m is set according to (3). The value of A is set to 0.053m.

Table 1: Simulation cases for the cumulative exposure
model

a n m
6.67 2

0.3 10 3
33.3 10
6.67 6.67

1 10 10
33.3 33.3
6.67 10

1.5 10 15
33.3 49.95

In all the cases, we set v1 = 0.1 and d = 0.1; the number
of samples is 200; the number of trials is 100 to each case.

5.2 Simulation results

The simulation results for the independence model are
shown in Table 2. In the table, the RMSE is computed
as

RMSE =
√

bias2 + variance,

where variance is s.d.2.

Table 2: Simulation results for m in the independence
model

true estimation estimate
m method bias s.d. RMSE

6.67 MLE −0.003 0.427 0.427
LS 0.754 1.109 1.341

MLEc 0.951 0.448 1.052
10 MLE 0.028 0.612 0.613

LS 0.339 2.322 2.346
MLEc 0.900 0.706 1.144

15 MLE −0.065 0.896 0.898
LS 0.418 2.452 2.487

MLEc 0.764 1.028 1.280
33.3 MLE −0.005 1.913 1.913

LS −0.079 5.075 5.076
MLEc 0.975 1.676 1.939

From the table, we can see that the large bias is not
observed in the MLE, but is in the LS as indicated in
2.1. The more important matter is that the standard
deviation by the LS is markedly larger than that by the
MLE. Consequently, the estimates by using the MLE are
always far superior to those using the LS. In the table, we
can see MLEc for reference; this value is the maximum
likelihood estimate for m when we regard the data as the
continuous data. We discuss this in the next section.

The simulation results for the cumulative exposure model
are shown in Tables 3 and 4. In Table 3, the results by
the MLE are shown, and in Table 4, the value for m using
the MLE by (3) and using the LS are shown.

From the tables, we do not see the large bias in the MLE,
but we do in the LS as indicated in 2.2. Similar to the
results in the independence model, the standard deviation
by the LS is larger than that by the MLE. Consequently,
the estimates by using the MLE are always superior to
those using the LS.

6 Discussion

As stated, using the independence model, we can estimate
the superficial Weibull shape parameter induced from (4)
by the LS, which is no more the same as m. On the con-
trary, the MLE will not yield the large bias. Similarly
in the cumulative model, the MLE will not produce the
large bias, while the LS will. In addition, the standard
deviation is larger in the LS than in the MLE. As a con-
sequence, the RMSE tends to larger in the LS than in the
MLE. This is a first merit in using the MLE.
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Table 3: Simulation results in the cumulative exposure
model (1): a and n by the MLE

true estimate a
a n bias s.d. RMSE

6.67 0.001 0.018 0.018
0.3 10 0.005 0.023 0.023

33.3 0.003 0.019 0.019
6.67 −0.003 0.046 0.046

1.0 10 0.021 0.048 0.053
33.3 0.000 0.038 0.038
6.67 −0.001 0.025 0.025

1.5 10 −0.003 0.045 0.045
33.3 −0.008 0.031 0.032

true estimate n
a n bias s.d. RMSE

6.67 0.112 0.313 0.332
0.3 10 0.157 0.480 0.505

33.3 0.415 0.289 0.506
6.67 0.100 0.118 0.155

1.0 10 0.332 0.203 0.389
33.3 0.170 0.142 0.222
6.67 0.171 0.083 0.190

1.5 10 0.146 0.120 0.189
33.3 0.070 0.078 0.105

Which model between the independence model and the
cumulative exposure model should be used? This is a
next question. We can adopt the cumulative exposure
model because of the natural derivation of the model.
The independence model has long been used because the
estimation method is simple and is easy to use. There
seems no difference between the two models as long as
we use the LS. However, if we use the MLE, a big differ-
ence between the two models is seen apparently. In the
independence model (4), the parameter m can be defined
by m = na. However, we cannot estimate the param-
eters a and n simultaneously. On the contrary, we can
estimate both the parameters a and n simultaneously, if
we use the MLE. Moreover, from Tables (2) and (4), the
RMSE for m is smaller in the cumulative exposure model
than in the independence model. We can regard that the
cumulative exposure model can be recommended from
both viewpoints of the model derivation and the RMSE.

We have shown the MLEc values for reference in Tables 2
and 4; these value are the maximum likelihood estimates
for m when we regard the data as the continuous data.
That is, we fit the continuous Weibull model,

f(v) =
m

u
(
v

u
)m−1 exp[−(

v

u
)m]. (7)

The estimated values by the LS and by the MLEc are,
in principle, dealt with the data as continuous. On the
contrary, the estimates by the MLE are dealt with the
data as grouped. It would be recommended that we use
the maximum likelihood method in the continuos model
too. However, the difference of the RMSE value between
the LS and the MLEc is smaller than that between the
MLE and the LS. The important point is that the MLE
can deal with the data more accurately to each model

Table 4: Simulation results in the cumulative exposure
model (2): m by the MLE and the LS

true estimation estimate
m (a, n) method bias s.d. RMSE

2 (0.3, 6.67) MLE −0.027 0.125 0.128
LS 0.224 0.180 0.288

MLEc 0.251 0.136 0.286
3 (0.3, 1.0) MLE 0.004 0.176 0.176

LS 0.259 0.226 0.344
MLEc 0.308 0.200 0.368

10 (0.3, 33.3) MLE -0.015 0.630 0.630
LS 0.108 0.693 0.702

MLEc 0.331 0.655 0.733
6.67 (1, 6.67) MLE −0.123 0.296 0.321

LS 0.799 0.469 0.927
MLEc 0.902 0.435 1.002

10 (1, 10) MLE −0.135 0.434 0.454
LS 0.900 0.787 1.196

MLEc 0.881 0.591 1.060
33.3 (1, 33.3) MLE −0.164 1.206 1.217

LS 0.468 2.248 2.296
MLEc 1.160 1.822 2.160

10 (1.5, 6.67) MLE −0.262 0.222 0.343
LS 1.277 0.754 1.483

MLEc 1.376 0.623 1.510
15 (1.5, 10) MLE −0.250 0.432 0.499

LS 1.166 0.963 1.512
MLEc 1.298 0.844 1.548

49.95 (1.5, 33.3) MLE −0.358 0.982 1.045
LS 0.795 3.604 3.691

MLEc 1.168 2.679 2.923

than the LS can.

7 Conclusion

To assess the insulation withstand level of the electric ap-
paratus, the step-up test method is often used. However,
we have still many unknown matters regarding the treat-
ment of the results. Assuming that the underlying proba-
bility distribution of failure time with a constant voltage
level follows a Weibull distribution with shape parame-
ter a and that an inverse power law tmeanlife = kv−n be-
tween the mean lifetime tmeanlife and the imposed voltage
v holds, then, we first investigate whether we can estimate
the unknown values of n and a using the breakdown volt-
age results obtained by the step-up test. We have used
the maximum likelihood estimation (MLE) method for
this purpose. We have assumed two proposed models:
1) the independence model, 2) the cumulative exposure
model. The maximum likelihood estimation is well per-
formed in both the models.

It is common for electric engineers to use the method of
least squares (LS) in obtaining the Weibull parameters
for the breakdown voltage. In such a case, the shape
parameter m is often addressed. We next compare the
results between those using the MLE and those using the
LS in both the models. The LS is inclined to yield a bias
for parameter m, and it generates a larger standard de-
viation. Consequently, the RMSE using the LS becomes
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larger than that using the MLE. That is, the MLE is
superior to the LS.

Regarding the model selection of which model between
the independence model and the cumulative exposure
model should be used, we recommend the cumulative ex-
posure model from both viewpoints of the model deriva-
tion and the smaller RMSE.

Appendix

We consider the case that time duration t is 1 for all the
stress levels. We use a simple approximation such that

f∑
i=1

vna
i = (dv)na + (2dv)na + · · · + (vf )na

≈ C

∫ vf

0

unadu = C ′(vf )na+1. (8)

In the independence model, from (4),

F (v) = 1 − exp[−D

f∑
i=1

vna
i ]

≈ 1 − exp[−D′vna+1
f ]. (9)

Transforming this into the Weibull plot structure,

log log
1

1 − F (v)
= (na + 1) log vf + const. (10)

We can obtain the estimated mean of na+1 for true value
of na; i.e., the bias is 1.

In the cumulative exposure model, transforming (5) into
the Weibull plot structure,

log log
1

1 − F (v)
= a log[

f∑
i=1

(vn
i )]. (11)

By the approximation described above,

log log
1

1 − F (v)
≈ a(n + 1) log vf + const, (12)

which deduces the bias of a.
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