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Abstract – In this communication, based upon
the deterministic Gompertz growth law, a sto-
chastic nonlinear model of tumour growth is pro-
posed to model the conventional size-dependent
therapy strategy of tumours. The probability den-
sity function of the size of the tumour obeys a non-
linear Fokker-Planck equation which can be solved
analytically. It is found that during the cancer
treatments the dose intensity should not be de-
creased at any time because the level of therapy
adequate to initiate shrinking of the tumour size
may not be su�cient to sustain the reduction and
produce cure, and that the late logarithmic inten-
si�cation therapy could be the optimal therapeu-
tic strategy.

Keywords: Gompertz law; Tumour growth; Fokker-
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1. Introduction

Modelling tumour growth and treatment has be-
come one of the leading research areas since cancer is
a major cause of death in our modern society. To-
day most studies stem out of mechanistic population
growth models which consist of one or more di�eren-
tial equations. Despite their simplicity, such models
have proved to be appropriate to predict the evolution
of numerous biological phenomena (Preziosi, 2003).
Among the proposed models those based upon the
deterministic Gompertz growth law appears to be
particularly consistent with the evidence of tumour
growth (Fuchshuber et al., 1986; Bassukas, 1994; Ry-
gaard and Spang-Thomsen, 1997; Bass and Green,
1989; Qi et al., 1993; Tyurin et al., 1995). If � (�)
is the volume of the tumour at time �, then the de-
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terministic Gompertz growth law is de�ned by the
di�erential equation:

�� = {�1���2� ln (�)} �� � (1)

where �1 is the intrinsic growth rate of the tumour
(related to the initial mitosis rate) and �2 is the
growth deceleration factor (related to the antiangio-
genic processes). The parameters �1 and �2 charac-
terize the evolution of di�erent tumour types. Eq.(1)
admits the solution of the form of a sigmoidal func-
tion:

� (�) = exp

½
�1
�2

�
·
�1
�2

� ln (�0)
¸
exp (��2�)

¾
(2)

where �0 � � (0). From the solution one can eas-
ily see the non-trivial equilibrium point � (�) =
exp (�1��2) representing the largest tumour size
that an organism can tolerate (i.e. carrying ca-
pacity). There also exists an in�ection point
�� = exp (�1��2 � 1) corresponding to the maximum
growth rate, which re�ects the self regulation e�ect
by an intrinsic growth control mechanism. However,
it is quite often that discrepancies are found to exist
between clinical data and theoretical predictions due
to intense environmental �uctuations. For instance,
Ferreira et al. (2003) analyzed the e�ect of distinct
chemotherapeutic strategies for the growth of avascu-
lar tumours, and con�rmed that an environment like
chemotherapy would a�ect tumour growth behaviour
and lead to morphological transitions under certain
conditions. Therefore, a better model is needed to
re�ect the external randomness that a�ects the tu-
mour growth behaviour.
A few years ago Ferrante et al. (2000) proposed a

stochastic version of the Gompertz law to account for
random �uctuations of the model parameters. They
assume that the growth deceleration factor �2 does
not change, while the variability of environmental
conditions induces �uctuations in the intrinsic growth
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rate �1. By assuming that the intrinsic growth rate
varies in time according to

� (�) = �1 + 	 
 (�) � (3)

where �1 is the constant mean value of � (�), 	 is
the di�usion coe�cient, and 
 (�) is a Gaussian white
noise process, the proposed stochastic model is de-
�ned by the stochastic di�erential equation

�� = {�1���2� ln (�)} ��+ 	� �� � (4)

where �� denotes the standard Wiener process. By
Ito’s lemma Eq.(4) implies that the exponent � � ln�
follows the Ornstein-Uhlenbeck process:(Gardiner,
1985)

�� =

½
�1 � 1

2
	2 ��2�

¾
��+ 	 �� (5)

with the long term mean
¡
�1 � 1

2	
2
¢
��2. This model

has been applied to simulate the e�ects of a time-
dependent therapy for the case of a parathyroid tu-
mour via adding a suppresion factor to moderate the
intrinsic growth rate (Albano and Giorno, 2006).
In the administration of cancer treatments it is

conventional that strategic dosing is used to max-
imize anticancer-drug e�ects while minimizing host
toxicity (Sanga et al., 2006). Accordingly, many
therapy schedules employ intensive therapy initially,
when the tumour is largest, and then the dose is de-
creased as the tumour is reduced. For example, in the
post-surgical setting only microscopic foci of tumour
are left residual, and the dose schedule of adjuvant
chemotherapy chosen is often less intense in compar-
ison with the case of a larger tumour of equivalent
type. In this communication we propose that in or-
der to model this size-dependent therapy strategy, a
nonlinear tumour regression rate �3h� (�)i is incor-
porated into the intrinsic growth rate as follows:

�� =

½
�1 � 1

2
	2 ��3h� (�)i ��2�

¾
��+ 	 �� (6)

where h� (�)i is the �rst moment of the probability
density function 
 (�� �):

h� (�)i =
Z
�
 (�� �) �� � (7)

and without loss of generality �3 is assumed to
be a constant. The corresponding Fokker-Planck
equation governing the probability density function

 (�� �) is then given by

�
 (�� �)

��
=

1

2
	2
�2
 (�� �)

��2
� �

��

½·
�1 � 1

2
	2

��3h� (�)i ��2�]
 (�� �)} (8)

which is manifestly nonlinear. The inclusion of the
nonlinear tumour regression rate would inevitably es-
calate the complexity of the problem dramatically,
and thus the system is expected to exhibit more in-
teresting properties.

2. Model and Analysis
As is well known, while the stationary solution of

the conventional Fokker-Planck equation can be given
in closed form (at least up to quadratures) if the con-
dition of detailed balance holds, the study of its time-
dependent solution is a much more complicated prob-
lem. Since there are only a limited number of cases
that can be solved analytically, this situation gives
rise to many stimulating opportunities for the de-
velopment of approximate methods to analyze such
problems. Beyond question, the nonlinear Fokker-
Planck equation is much more challenging to treat
(both analytically and numerically). Whereas linear
Fokker-Planck equations are in principle amenable
to numerical solutions, the truly nonlinear ones are
much more di�cult to treat and in most nontrivial
cases one needs to resort to ad hoc approximations.
Here a time-dependent similarity transformation ap-
proach proposed by Lo (2005) is applied to derive the
exact solution of the nonlinear Fokker-Planck equa-
tion in Eq.(8) in closed form, which provides us a
complete picture of the time evolution of the proba-
bility density function. Furthermore, the knowledge
of the exact solution in closed form not only provides
a conceptual basis for understanding the properties
behind the nonlinear Fokker-Planck equation, but it
can also be useful as a benchmark to test approximate
numerical or analytical procedures.
Following the method of Lo (2005), the solution


 (�� �) of Eq.(8) can be easily found to be


 (�� �) =

Z �

��
�
¡
�� �;�0� 0

¢

(�0� 0) ��0 (9)

where

�
¡
�� �;�0� 0

¢
=

1p
4�� (�)

exp {�2�} ×

exp

(
�
£
� exp (�2�) + � (�)� �0

¤2
4� (�)

)
(10)

� (�) = �
Z �

0

� (�0) exp (�2�0) ��0 (11)

� (�) =
	2

4�2
{exp (2�2�)� 1} � (12)
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Obviously, this solution corresponds to the so-called
natural boundary condition.
We suppose that the random variable � initially

has the value �0, i.e. 
(�� 0) = � (� � �0). Then,

(�� �) = � (�� �;�0� 0), and

h� (�)i = �{� (�)� �0} exp (��2�) (13)

which in turn yields

�� (�)

��
= ��3 {� (�)� �0} �μ

�1 � 1
2
	2
¶
exp (�2�) � (14)

Eq.(14) can be easily solved to give

� (�) = �0 {1� exp (��3�)}+
�1 � 1

2	
2

�2 +�3
×

{exp (��3�)� exp (�2�)} (15)

=� h� (�)i =
μ
�0 �

�1 � 1
2	

2

�2 +�3

¶
×

exp {� (�2 +�3) �}+
�1 � 1

2	
2

�2 +�3
� (16)

The solution 
(�� �) can then be expressed as


 (�� �) =
1p

4��2 (�)
exp

(
� [� � h� (�)i]

2

4�2 (�)

)
(17)

where

�(�) =
	

2

s
1� exp (�2�2�)

�2
� (18)

Obviously, as � ���, we have

�(�) �� �� � 	

2
�
�2

(19)

h� (�)i �� �� � �1 � 1
2	

2

�2 +�3
� (20)

As a result, the probability density function 
 (�� �)
will asymptotically approach the steady-state limit

� (�):


� (�) � lim
����
 (�� �)

=
1p
4��2�

exp

(
�(� � ��)

2

4�2�

)
�(21)

It should be noted that increasing �3 will eventually
push the �� towards zero.
For comparison, we consider a therapy in which

the dose is linearly increasing in time (Albano and

Giorno, 2006). This can be implemented by sim-
ply replacing the nonlinear tumour regression rate
�3h� (�)i by �3 (1 + ��), where � is an adjustable
positive parameter monitoring the rate. In this case
the desired 
 (�� �) is given by


 (�� �) =
1p

4��2 (�)
×

exp

Ã
�{� � [�0 � � (�)] exp (��2�)}

2

4�2 (�)

!
(22)

where

� (�) =
�3�

�2
� exp (�2�)�·

�1 � 	
2

2
��3

μ
1� �

�2

¶¸
×½

exp (�2�)� 1
�2

¾
� (23)

Then the �rst moment h� (�)i of the probability den-
sity function 
 (�� �) can be easily evaluated as

h� (�)i = [�0 � � (�)] exp (��2�) � (24)

For �2�À 1, we have

h� (�)i � �(�) � 1

�2

·
�1 � 	

2

2
�

�3

μ
1� �

�2

¶¸
� �3�
�2

� (25)

and


 (�� �) � 1p
4��2�

exp

(
� [� ��(�)]

2

4�2�

)
� (26)

It is clear that h� (�)i is a monotonically decreasing
function of �. Nevertheless, for the special case of
constant dose, i.e. � = 0, h� (�)i attains an asymp-
totic limit ��:

�� � 1

�2

μ
�1 � 	

2

2
��3

¶
(27)

as � ���, while
 (�� �) approaches the steady-state
limit Q� (�):

Q� (�) � 1p
4��2�

exp

(
�(� ���)

2

4�2�

)
� (28)

Accordingly, one needs a su�ciently high-dose ther-
apy, i.e. �3 À �1, in order to reduce the tumour size
to a desired level.
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Next, we also examine the late logarithmic intensi-
�cation therapy proposed by González et al. (2003).
It has been shown that by using the same amount
of therapy, a logarithmic therapy not only induces a
larger reduction of the tumour size than a constant
therapy, but it is also expected to be more tolerable
than the one in which the dose is linearly increas-
ing in time. In order to model such a logarithmic
therapy, we replace the nonlinear tumour regression
rate �3h� (�)i by �3 ln (�+ ��), where � is the Neper
constant and the adjustable positive parameter � con-
trols the rate. The corresponding probability density
function 
 (�� �) is thus found to be


 (�� �) =
1p

4��2 (�)
×

exp

Ã
�{� � [�0 � � (�)] exp (��2�)}

2

4�2 (�)

!
(29)

where

� (�) = �
μ
�1 � 	

2

2

¶½
exp (�2�)� 1

�2

¾
+

�3

Z �

0

ln (�+ ��) exp (�2�) �� � (30)

Accordingly, the �rst moment h� (�)i is given by

h� (�)i = [�0 � � (�)] exp (��2�) (31)

from which the special case of contant-dose therapy
discussed above can be recovered by setting � = 0.
It is obvious that the late logarithmic intensi�cation
therapy is capable of further reducing the tumour size
by the amount

�3�

�2

Z �

0

1� exp {��2 (�� �)}
�+ ��

��

=
�3
�2
ln

μ
�+ ��

�

¶
� �3
�2
exp

μ
��2 (�+ ��)

�

¶
×·

Ei

μ
�2 (�+ ��)

�

¶
� Ei

μ
�2�

�

¶¸

� �3
�2
ln

μ
�+ ��

�

¶
for large � � (32)

where Ei(�) is the exponential integral function1, in
comparison with the constant-dose therapy.

1See, for example, M. Abramovitz and I. Stegun, Handbook
of Mathematical Functions with Formulae, Graphs and Math-
ematical Tables (Dover, New York, 1964) for a discussion of
the exponential integral function which is de�ned by
Ei(�) =

R �
��

1
�
exp (�) �� �

3. Numerical Results
For illustration, in Figures (1) and (2) we plot

h� (�)i (i.e. the expectation value of the tumour
size at time � > 0) versus time � for various val-
ues of �0 (i.e. the initial tumour size) under the
four di�erent kinds of therapy. In Fig.(1) we con-
sider the case of a large tumour, namely �0 = 5.
Other input model parameters are selected as fol-
lows: �1 = �2 = �3 = 	 = � = � = 1. Ac-
cording to the �gure, the size-dependent therapy is
most e�ective in reducing the tumour size during the
initial stage, i.e. 0 6 � . 1, in comparison with the
other three treatments. After the initial stage the
dose of the size-dependent therapy is reduced by a
signi�cant amount and the tumour size is maintained
at the limit �� = 1�4. On the other hand, while
the constant-dose therapy can shrink the tumour size
a bit more till the limit �� = �1�2, the treatment
with linearly enhancing intensity is able to reduce the
tumour size monotonically. As expected, the late log-
arithmic intensi�cation therapy is more e�ective than
the constant-does therapy, but it is outperformed by
the one with linearly increasing intensity. Fig.(2)
shows the results for the case of a tumour of mod-
erate size, i.e. �0 = 1. A similar pattern of the
reduction of the tumour size is observed for the four
di�erent treatments, but the size-dependent therapy
is obviously not so e�ective as the other three.
In order to facilitate a better understanding of the

four di�erent kinds of therapy, we also examine the
total amount of dosage �0 (�) of each therapy sched-
ule, namely

1. Constant-does therapy:

�0(�) = �3� (33)

2. Treatment with linearly increasing inten-
sity:

�0(�) = �3�

μ
1 +

1

2
��

¶
(34)

3. Size-dependent therapy:

�0(�) = �3

μ
�0 �

�3 � 	2�2
�2 +�3

¶
×·

1� exp {� (�2 +�3) �}
�2 +�3

¸
+

�3

μ
�3 � 	2�2
�2 +�3

¶
� (35)

4. Late logarithmic intensi�cation therapy:

�0(�) =
�3
�
(�+ ��) {ln (�+ ��)� 1} (36)
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Figure 1: vs. time for 0 = 5 under the four different kinds of

therapy.  The input model parameters are: A
1
= A

2
= A

3
= = = =1.
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Figure 2: vs. time for 0 = 1 under the four different kinds of

therapy.  The input model parameters are: A
1
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Figure 3:  D0 vs. time for 0 = 5 under the four different kinds of

therapy.  The input model parameters are: A
1
= A

2
= A

3
= = = =1.
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In Fig.(3) and Fig.(4) the �0 (�) is plotted against
time � for each cancer treatment strategy with �1 =
�2 = �3 = 	 = � = � = 1. For the case of a large
tumour, namely �0 = 5, the size-dependent therapy
gives the highest total amount of dosage during the
initial stage, i.e. 0 6 � . 1, and thus is most ef-
fective in shrinking the tumour size among di�erent
therapy strategies. It is also clear that although the
same total dose is used by both the size-dependent
therapy and that with linearly increasing intensity for
the initial duration of �� � 1�5, the latter strategy
is outplayed by the former. Similar observations are
found by comparing the size-dependent therapy with
the other two cancer treatment strategies. After the
initial stage, the total dose of the size-dependent ther-
apy is maintained at the rather low level of�0 (�) � 4,
whereas the other three treatment schemes keep in-
creasing their total amount of dosage, leading to fur-
ther reduction of the tumour size. Moreover, for
the case of a small tumour, namely �0 = 1, the size-
dependent therapy is obviously ine�ective for its total
amount of dosage is being kept at a very low level, i.e.
�0 (�) � 2.

4. Conclusion

In summary, based upon the deterministic Gom-
pertz growth law, we have proposed a stochastic non-
linear model of tumour growth to model the size-
dependent therapy strategy. The probability density
function 
 (�� �) of the tumour size obeys a nonlinear
Fokker-Planck equation which can be solved analyti-
cally. The model is able to simulate the conventional
size-dependent therapy strategy of tumours. It is
found that during the cancer treatments the dose in-
tensity should not be decreased at any time because
this will allow the tumour to relapse, and that the
therapy intensity should be continuously increased
if possible. However, clinically a therapy with lin-
early increasing intensity could well be fatal to the
patient. Hence, the late logarithmic intensi�cation
therapy could turn out to be the optimal therapeutic
strategy, as evidenced by the numerical results.
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