
 
 

 

Abstract— In this paper we present the efficient control 
imparted to an inverted gyroscopic pendulum (GIP) and 
demonstrate how the control mechanism through a flywheel 
mounted at the top of the GIP governed by a fuzzy logic 
controller (FLC) achieves good stability and control 
performance of the system around vertical position. The 
intuitive knowledge of controlling the GIP via a wheel 
momentum is fuzzified in an FLC with a base of 49 rules. FLC 
design is conducted using simulation before testing on real GIP 
plant. Compared to a proportional-integral-derivative (PID) 
controller it is concluded that the FLC is more suitable for 
stabilizing the GIP system which has a weak restoring torque. 

 
Index Terms— fuzzy control, Mamdani FLC, Sugeno FLC, 

gyroscopic pendulum, real time control. 
 

I. INTRODUCTION 
Development of control techniques for inverted pendulum 

(IP) has always remained an interesting topic to control 
engineers for decades. This is largely due to its physical 
simplicity along with complete instability. Also these control 
techniques are applicable to control of rockets, robots, fast 
moving ground vehicles and anti-seismic controls for 
buildings. The control goal aims at keeping the IP at an 
upright position, despite the natural tendency of IP to fall on 
either side. There are various types of IPs discussed 
academically followed by many kinds of control methods, 
e.g. Proportional-Integral-Derivative (PID), Fuzzy Logic 
(FL), Linear-Quadratic-Gaussian (LQG), Genetic Algorithms 
(GA) and Artificial Neural Networks (ANN), or any 
combination of these techniques. Most of the pendulums 
developed so far have restoring force(s) applied somehow at 
the fulcrum. Various linearization techniques can be used to 
account for nonlinearities, such as linear compensators based 
on Jacobian linearization. Similarly, approximate 
linearization was used effectively to design a controller for an 
inverted pendulum [1]. Some authors have considered an 
alternative control action consisting of an oscillatory vertical 
force applied to the pendulum pivot [2], [3]. The stabilizing 
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effect of a fast vertical oscillation applied to the pendulum 
base is known from the early work of Stephenson [4]. 
Another control alternative is based on the application of a 
rotational torque to the pendulum base, as proposed in [5]. A 
hybrid LQG-Neural Controller has been studied in [6]. IPs 
with higher degrees of freedom are the plant of choice for 
control of MIMO systems [7], [8], [9], [10]. Recently a neural 
network control was performed on the GIP system using 
Nonlinear AutoRegressive Moving Average (NARMA) 
technique [11]. 

 
Humans manage to balance the pendulums intuitively, by 

applying actuation at the fulcrum, and their complicated 
counterparts. Although, in our case, applying a gyroscopic 
motion based actuation at the top of the GIP pendulum is a 
novel idea. This is how most biped creatures walk and 
balance in everyday life, or when a person spreads their arms 
and rotates them rapidly to restore balance and keep from 
falling. There is always a process of learning various 
techniques based on previous goals set to balance the 
pendulum in a vertical position. In the presented case, the 
GIP’s fulcrum is kept in a groove so that it is only free to 
move on either side [12]. The restoring torque is applied 
through a DC motor-flywheel fixed at the top. It is a 
freestanding pendulum where it is swung around the fulcrum 
to achieve stability (see Figure 1). The GIP has much less 
actuating power making it a weak system [13]. The restoring 
torque depends on the gyroscopic movement of the flywheel, 
and the DC motor has to be run in a Min-Max voltage limit 
(±10 V). The GIP is a novel and a challenging plant for the 
design and testing of several control synthesis techniques. 

 

 
 

Fig. 1. The GIP is a free standing pendulum. The fulcrum is 
a V-shaped groove at the base allowing one degree of 
freedom. No bearings are used. 
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In modeling a DC motor connected to a load via a shaft, the 
general approach is to neglect the nonlinear effects and build 
a linear transfer function representation for the input–output 
relationship of the DC motor and the load it drives. This 
assumption is satisfactorily accurate as far as conventional 
control problems are concerned. However, when the DC 
motor driven flywheel operates at various speeds and rotates 
in two directions, the assumption that the nonlinear effects on 
the system are negligible resulted in poor control 
performance for the GIP. Indeed, efforts to use a transfer 
function based approach to design a classical PID controller 
resulted in poor stability. A great advantage of fuzzy control 
is that nonlinear and linear systems are equally treated. To 
account for the nonlinearity in the system, membership 
functions can be customized to bring the system to a more 
linear behavior. The remainder of this paper is organized as 
follow: in the next section the dynamical model of GIP is 
explained. In section III, a PID controller for the GIP plant is 
designed using simulation. In section IV, several FLCs are 
designed using two different fuzzification methods: Mamdani 
type [14] and Sugeno type [15]. For each FLC type triangular 
and Gaussian membership functions are tested. Simulation is 
used to test-compare designed FLCs with the PID. 
Experimental tests with the IPNC plant and established 
results are discussed in section V, followed by concluding 
remarks. 

 

II. GIP DYNAMICAL MODEL 
The GIP system has a motor and flywheel mounted atop 

the body (see Figure 2). Assuming such a mechanism is 
present in zero gravity, if the flywheel is made to rotate in the 
clockwise direction, the beam will rotate in the opposite 
direction so that the angular momentum about center of 
gravity of the whole assembly is conserved. Now assume that 
the flywheel increases its angular velocity. Hence the angular 
velocity of beam around the center of gravity increases (i.e. 
an angular acceleration is produced). 

 

 
 

Fig. 2. GIP physical parameters. 
 

The physical parameters of the pendulum assembly are: 
pm : mass of pendulum assembly 

pJ : pendulum’s moment of inertia around fulcrum 

pl : effective length of GIP (fulcrum to centre of gravity) 

fJ : moment of inertia of flywheel and motor’s rotor 

R : motor’s electrical resistance 
L : motor’s inductance 
K : motor’s torque constant 
b : motor’s friction factor 
θ : pendulum’s angular position from the vertical 
α : flywheel’s angular position 
i : motor’s armature current 
V : motor’s drive voltage 

fT : flywheel’s generated torque 

gT : gravitational torque acting on pendulum’s center 

g : acceleration due to gravity 
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Equations (1) to (3) describe the motor-flywheel part of the 

system. Equation (4) describes the non-linear gravitational 
torque that tends to destabilize the GIP system (gravitational 
pull). Equation (5) describes the net torque that governs the 
pendulum movement around the furculum. In the next 
sections a PID controller and a Fuzzy Logic controller FLC 
are designed and evaluated for the GIP control using the 
non-linear GIP model and simulation with Simulink™, 
Mathworks Inc. 

 

III. DESIGN OF LINEAR PID CONTROLLER  
Figure 3 shows an overview of the control model built in 

Simulink™ to test the PID controller at hand and the designed 
FLC under several input. The PID controller model matches 
the analog PID supplied with the plant by the manufacturer. 
The PID controller ensures stabilization using set-point 
adaptation technique. This consists of integrating the error 
value (difference between set-point and the actual angular 
position of pendulum), and in using it to dynamically alter the 
set-point given by the user. 
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Fig. 3. GIP control model with Simulink™. 
 

The input signal for the PID controller is fed by the 
position sensor measuring the deviation "θ " of GIP from the 
vertical, and the output signal is the control signal in volts to 
the motor-flywheel assembly which stabilize the GIP.  

 

 
 

Fig. 4. Pulse response for GIP under PID control. 
 

Figure 4 shows the GIP response with PID controller for an 
impulse at time 0.1 s of 5 deg. amplitude around vertical with 
duration of 0.01 s. The PID controller ensures stability, and 
fast response with a settling time Ts=0.59 s. While the PID 
performs well it requires complex tuning when applied to the 
real non-linear plant, here the PID parameters are P=10, 
I=0.5, D=0.1 and an approximate derivative factor of N=500. 
Thus, in the next section a fuzzy controller is designed to 
address the limitation of the PID controller. 

 

IV. FUZZY CONTROLLER DESIGN FOR GIP 
This section is focused on the design of a FLC for GIP 

system stabilisation around fulcrum. Figure 5 below shows 
the FLC controller model for the GIP. 

Fuzzy logic is a computing approach that is based on 

"degrees of truth" rather than the usual "true or false" (1 or 0) 
Boolean logic on which modern computers are based. It was 
first advanced by Dr. Lotfi Zadeh of the University of 
California at Berkeley in the 1960. Based on the intuitive 
understanding of controlling the GIP with a flywheel torque 
several Mamdani and Sugeno types FLC are designed below. 
The performance of each FLC is investigated via simulation 
before testing on the real GIP plant. Fuzzy Inference Systems 
(FIS) for all FLC have two inputs: error and its derivative 
error rate, and one output called control. 

 

 
 

Fig. 5. GIP system FLC controller model. 
 

The input signal error is the difference between the actual 
position of the pendulum and the set point (vertical position). 
The error signal and its derivative are conditioned using 
amplifier gain Ke and Kde respectively. The output variable 
control needs to be limited between +/- 10 V (MultiQ PCI I/O 
board hardware restriction) using saturation blocks. 

For an FLC with two inputs and seven linguistic values for 
each input, there are 72=49 possible rules with all 
combinations of the inputs. The set of linguistic values for 
two inputs and one output with 49 rules are negative big 
(NB), negative medium (NM), negative small (NS), zero 
(ZO), positive small (PS), positive medium (PM) and positive 
big (PB). The input fuzzy variable error characterizes GIP 
angular displacement from the vertical position while the 
input fuzzy variable error rate characterizes the DC motor 
rotation speed level and direction. The output can vary from 2 
to 17 V. The FLC rule base (49 rules) of the GIP system is 
represented by Table 1, the lines are the input error values, 
the columns are the input error rate values, and the 
corresponding argument for a line and column is the output 
control value.  
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The fuzzification stage is completed using the linguistic 
values to describe the inputs and output of the FLC to specify 
a set of rules and to quantify this knowledge on how to 
control the GIP plant. All membership functions have been 
defined using a normalised universe of discourse [-1, 1]. 
Different methods for fuzzy intersection (t-norm) and union 
(s-norm), different membership functions (triangular, 
Gaussian) and different fuzzy inference methods (Mamdani, 
Sugeno) have been investigated to explore the effectiveness 
of the designed FLC using simulation. In Matlab’s Fuzzy 
Logic toolbox, aggregation refers to the methods of 
determining the combination of the consequents of each rule 
in a Mamdani fuzzy inference system in preparation for 
defuzzification. Implication refers to the process of shaping 
the fuzzy set in the consequent based on the results of the 
antecedent in a Mamdani-type fuzzy inference system. Two 
built in t-norm (AND) operations are supported: minimum 
(MIN) and product (PROD). Two built in s-norm (OR) 
operations are supported: maximum (MAX) and probabilistic 
OR method (PROBOR). The probabilistic OR method is 
calculated according to: PROBOR(a, b) = a+b-ab. Thus, four 
different FLC controllers were designed and simulated 
according to the 49 rules base and to the different options 
offered by the Matlab Fuzzy Logic toolbox. These controllers 
are designated by GIP-FIS-M49, GIP-FIS-M49-GMF, 
GIP-FIS-S49, and GIP-FIS-S49-GMF. Controller designs are 
detailed in the following case studies. 

A. Case 1: FLC Controller GIP-FIS-M49 
In this case a Mamdani type FLC is used with triangular 

membership functions for the inputs and output. The FLC 
uses MIN for t-norm operation, MAX for s-norm operation, 
MAX for aggregation, MIN for implication, and CENTROID 
for defuzzification. This is shown by Figures 6 and 7. 

 

 
 

Fig. 6. GIP-FIS-M49 controller parameters. 
 

 
 

Fig. 7. GIP-FIS-M49 membership functions. 
 
Figure 8 shows the PID controller response compared to 

the FLC GIP-FIS-M49 for a pulse input at time 0.1 s of 5 
degree amplitude around vertical of 0.01s duration. The 
settling time needed by the FLC to stabilise the GIP is 
Ts=0.38 s compared to Ts=0.59 s with the PID controller. 
 

 
 

Fig. 8. GIP-FIS-M49 and PID responses. 
 

B. Case 2: FLC Controller GIP-FIS-M49-GMF  
In this case a Mamdani type FLC is used with Gaussian 

membership functions for both inputs and output. The FLC 
uses PROD for t-norm operation, PROBOR for s-norm 
operation, MAX for aggregation, PROD for implication and 
CENTROID for defuzzification. This is shown by Figure 9. 
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Fig. 9. GIP-FIS-M49-GMF membership functions. 
 
Figure 10 shows the PID controller response compared to 

the FLC GIP-FIS-M49-GMF for the similar pulse input of 5 
degree amplitude. The limit cycle response was obtained for 
an error derivative factor Kde=1 at the input of the FLC. 

 

 
 

Fig.10. PID and GIP-FIS-M49-GMF (Kde=1) responses. 
 

The FLC response was improved by increasing the value of 
Kde to Kde=5 as shown by Figure 11 where the settling time 
is Ts= 0.04 s compared to Ts=0.59 s with the PID controller. 

 

 
 

Fig.11. PID and GIP-FIS-M49-GMF (Kde=5) responses. 

C. Case 3: FLC Controller GIP- FIS-S49 
In this case a Sugeno type FLC is used with triangular 

membership functions for inputs and output. It uses PROD 
for t-norm operation, MAX for s-norm operation, and 
WTAVER for defuzzification. This is shown by Figures 12 
and 13. 

 

 
 

Fig. 12. GIP-FIS-S49 controller parameters. 
 

 
 

Fig. 13. GIP-FIS-S49 triangular membership functions. 
 

Figure 14 shows the PID controller response compared to 
the FLC GIP-FIS-S49 for the same pulse input. The settling 
time needed by the FLC to stabilise the GIP is Ts=0.49 s 
compared to Ts=0.59 s with the PID controller. 

D. Case 4: FLC Controller GIP-FIS-S49-GMF 
In this case a Sugeno type FLC is used with Gaussian 

membership functions for both inputs and output. The FLC 
uses PROD for t-norm operation, MAX for s-norm operation, 
and WTAVER for defuzzification. See Figure 15. 
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Fig.14. GIP-FIS-S49 and PID responses. 
 

 
 

Fig. 15. GIP-FIS-S49-GMF membership functions. 
 

Figures 16 and 17 show GIP responses under PID and 
GIP-FIS-S49-GMF control, for a similar pulse input of 5 
degree amplitude. The value of Ts obtained for an error 
derivative factor Kde=1 is 1.475 s, and 0.065 s for Kde=5. 
Compared with the GIP-FIS-M49-GMF controller, the GIP 
response, in this case, was stable for both values of Kde. 

 

 
 

Fig. 16. PID and GIP-FIS-S49-GMF (Kde=1) responses.  
 

 
 

Fig. 17. PID and GIP-FIS-S49-GMF (Kde=5) responses. 
  

Among the four investigated design cases it is found that 
FLC with Gaussian membership functions give the best 
simulation results. The output response was further improved 
by adjusting the error rate factor Kde for both Mamadani and 
Sugeno FLC types.  

Tuning Kde allows adjusting the universe of discourses for 
the input membership functions and provides a GIP response 
with a faster settling time Ts. Tuning Kde factor was not 
necessary for FLC with triangular membership functions: 
GIP-FIS-M49 and GIP-FIS-S49. These FLCs lead to a good 
GIP response compared to the PID controller. 

 The GIP model was submitted to an additional test of 
tracking a square wave of 0.1 degree around vertical with a 
0.5 Hz frequency. Figure 18 and Figure 19 give the FLC 
GIP-FIS-M49-GMF and GIP-FIS-S49-GMF responses in 
comparison with the PID controller. Both FLCs display a 
good tracking performance compared to the PID.  

 

 
 

Fig.18. Tracking with GIP-FIS-M49-GMF (Kde=5) and 
PID controllers. 
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Fig. 19. Tracking test for GIP-FIS-S49-GMF (Kde=5) and 
PID controllers. 

 
In the next section, the designed digital PID and FLCs will 

be applied to the control of a GIP plant called the Inverted 
Pendulum New Class IPNC [12]. 

 

V. APPLICATION TO IPNC REAL TIME CONTROL  
The IPNC comes with its analog PID controller (see Figure 

20). The analog PID is shutdown during these tests. Thus, the 
digital PID and FLCs built in Simulink™ are compiled to 
generate a real time control code using Wincon™ 5 software. 
The IPNC plant is connected as hardware in the loop with the 
computer to these controllers by using Quanser™ MultiQ 
PCI card and I/O board. 

 

 
 

Fig. 20. The IPNC connected to an analog controller. The 
analog controller has a built-in PID controller. It also allows 
connecting external controllers and overriding its PID via an 
external channel. 

 

 
 

Fig. 21. Real time tracking test with the digital PID. 
 

 
 

Fig.22. Real time tracking test with the FLC GIP-FIS-S49. 
 
Figure 21 and Figure 22 show the output behavior of the 

IPNC under the digital PID, and the GIP-FIS-S49 controller 
respectively. The electrical image of the angular position is 
provided by the infrared sensor mounted at the GIP base.  

 

 
 

Fig.23. Digital PID control signal to the IPNC. 
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Fig.24. GIP-FIS-S49 control signal to the IPNC. 
 

We observe good control action, as expected, and stability 
was satisfied by both controllers. The IPNC under digital PID 
controller displays fewer oscillations compared to the 
GIP-FIS-S49 controller. This can be caused by delays due to 
the computing time required by the FLC in real time. 

Figures 23 and 24 show the control signal generated by the 
PID and the FLC. The FLC shows a better voltage delivery to 
the DC motor and the supplied voltage is denser and of lower 
amplitude. A denser control signal stabilise better the IPNC 
system by providing quicker restoring flywheel momentum 
around fulcrum. The digital fuzzy controller performance is 
better than the analog PID in term of power delivery to the 
DC motor and vibration sensed on the GIP rode.  

 

VI. CONCLUDING REMARKS 
The GIP plant introduces a novel way of balancing an 

inverted pendulum by the gyroscopic action of a flywheel. 
PD-like FLCs with two inputs, error signal and error signal 
derivative were designed for stabilising the GIP system. A 
rule set of 49 rules was formulated for each FLC controller. 
The FLC inputs are fuzzified in linguistic terms designed 
based on the expertise gained from several interactions with 
the IPNC GIP plant. Comparison studies of the FLC 
performances with two different inference methods, two 
different membership functions, different t-norm and s-norm 
operations, and different defuzzification methods have been 
investigated via simulation before real time control 
experiments. Simulation results show that all designed FLCs 
lead to good system performances. Among all investigated 
cases, it is found that FLC with Gaussian membership 
function provides the best simulation results (case 2, and case 
4). The output response can further be improved (faster 
settling time Ts) by adjusting the error rate factor Kde, which 
will adjust the universe of discourses for the input and output 
membership functions. Real time control tests of the FLC 
controller were successful in stabilising the IPNC GIP. The 
FLC shows a better voltage delivery and less oscillation 

around GIP stable position compared to the PID. The Sugeno 
type fuzzy controller with Gaussian membership functions 
(case 2, with Kde=5) gives the best performance for real time 
GIP control. Further improvements will be made by 
designing a trainable fuzzy controller which adjusts its 
membership functions according to the GIP motion. This 
study is intended to constitute a basis for the ongoing research 
on intelligent control of mechanical systems using nonlinear 
approaches.  

REFERENCES 
[1] T. Sugie, and K. Fujimoto, “Controller design for an inverted pendulum 

based on approximate linearization,” Int. J. of robust and nonlinear 
control, vol. 8, no 7, pp. 585-597, 1998. 

[2] P.L. Kapitsa, “Dynamical stability of a pendulum with an oscillating 
suspension point,” Zh. Eksp. Teor. Fiz., vol. 24, # 5, pp. 588-597, 1951. 

[3] D. Maravall, C. Zhou, and J. Alonso, “Hybrid fuzzy control of the 
inverted pendulum via vertical forces,” International Journal of 
Intelligent Systems, vol.20, no 2, pp. 195-211, 2005. 

[4] A. Stephenson, “On a new type of dynamical stability,” Mem. Proc. 
Manch. Lit. Phil. Soc., vol. 52, no 8, pp. 1-10, 1908. 

[5] I. Fantoni, and R. Lozani, “Nonlinear control for underactuated 
mechanical systems,” Appl. Mech. Rev., vol. 55, # 4, pp. 67-68, 2002. 

[6] E.S. Saznov, P. Klinkhachorn, and R.L. Klein, “Hybrid LQG-Neural 
controller for inverted pendulum system,” in 2003 Proc. 35th 
Southeastern Symposium on System Theory, Morgantown, WV, 2003. 

[7] A. Asgarie-Raad, “Intelligent control of two dimensional inverted 
pendulum,” M.S. thesis, Sharif University of Technology, Iran, 1998. 

[8] M. Esmailie-Khatier, “Construction and control of a two-dimensional 
inverted pendulum,” M.S. thesis, Sharif University of Technology, Iran, 
1994. 

[9] A. Ghanbarie, “Neuro-fuzzy control of two dimensional inverted 
pendulums,” M.S. thesis, Iran University of Science and Technology, 
Iran, 2000. 

[10] P.J. Larcombe, “On the control of a two-dimensional multi-link 
inverted pendulum: the form of the dynamic equations from choice of 
co-ordinate system,” Int. J. Syst. Sci., vol. 23, no 12, pp. 2265-2289, 
1992. 

[11] F. Chetouane, and S. Darenfed, “Neural network NARMA control of a 
gyroscopic inverted pendulum,” Engineering Letters, vol.16, no 3, pp. 
274-279, 2008. 

[12] Extra Dimension Technologies (http://www.xdtech.com), Inverted 
Pendulum New Class: operating manual, 2001. 

[13] A. Shiriaev, A. Pogoromsky, H. Ludvigsen, and O. Egeland, “On global 
properties of passivity-based control of an inverted pendulum,” 
International Journal of Robust and Nonlinear Control, vol.10, pp. 
283-300, 2000. 

[14] L.X. Wang, and J.M. Mendel, “Fuzzy basis functions, universal 
approximation, and orthogonal least-squares learning,” IEEE 
Transaction on Neural Networks, vol.3, no 5, pp. 807-814, 1992. 

[15] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its 
applications to modeling and control,” IEEE trans. on systems, man, 
and cybernetics, vol. 15, no 1, pp. 116-132, 1985. 

Engineering Letters, 18:1, EL_18_1_02
______________________________________________________________________________________

(Advance online publication: 1 February 2010)


