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Abstract—In this paper, we implement the Discontinuous
Galerkin (DG) method, proposed and well-analyzed for linear
and nonlinear problems by Adjerid et.al, to study the response
of a multi-story building seismically excited. In fact, we adopt
the DG method to solve a system of second order ordinary dif-
ferential equations. The unknowns are the time response of the
inter-story displacement of each level of the building. Simulation
results show the effectiveness and robustness of the DG method.
A comparison of the results obtained through the DG method and
through traditional numerical schemes is conducted. The results
reveal the efficacy of the DG method, which lends it as an attrac-
tive alternative instead of currently used numerical techniques.
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Introduction

The discontinuous Galerkin (DG) finite element method was
studied for initial-value problems for first-order ordinary dif-
ferential equations [2, 4, 7, 8, 10]. Cockburn and Shu [5] ex-
tended the DG method to solve first-order hyperbolic partial
differential equations of conservation laws. Initial value prob-
lems for 1st-order ordinary differential systems were solved
using standard DG methods [2, 6].

In this manuscript we present a new numerical scheme to solve
the resulting system of ordinary differential equations from the
force-analysis scope by [11], [1]. We apply the DG method
developed by [3] on the resulting system. The DG method is
very appealing regarding its efficiency proven for several types
of problems in terms of its robustness, stability [9], higher
order accuracy (pointwise error is hp+1, where h is the step
size and p is the degree of approximation) and approximation
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by polynomials of different degrees in different elements. We
apply the method to a 100-story building and we derive the
displacement and the acceleration of each floor.

1 Structural Model

Consider an n-story 1-D building, subjected to earthquake
ground acceleration. It is assumed that the structure under-
study verifies the shear type representation: ”structure with
flexible massless columns and mass concentrated at rigid
beams” as shown in Figure 1. Thus, our structure can be
viewed as an n-degree of freedom structure, considering the
horizontal displacement of each story. It is further assumed
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Figure 1: Modelisation of the 1-D structure.

that the structure is characterized by a stiffness and a damping
coefficient in the x−direction. The formulation of the equa-
tions of motion will be presented in terms of the inter-story
drift coordinates xi, as shown in Figure 2. Thus, we have:

{ ∀i > 1; xi(t) = xa
i (t)− xa

i−1(t)
x1(t) = xa

1(t)− xg(t)
(1)

where xa
i is the absolute story displacement.

The damping in the structure is assumed to be linear viscous,
i.e, the damping force is assumed to be proportional to the
magnitude of the velocity and opposite to the direction of mo-
tion. In addition, we suppose that the restoring force is pro-
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Figure 2: Absolute and inter-story drift coordinates of the
structure.

portional to the magnitude of the inter-story drift and opposite
to the direction of motion. The equivalent mechanical model
for this structure is shown in Figure 3.
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Figure 3: Mechanical model of the linear 1-D structure.

Thus, the total force (sum of damping and restoring forces)
exerted by the (i− 1)th story on the ith story is given by:

Fi(t) = −kixi(t)− ciẋi(t) (2)

The governing differential equation of motion for an uncon-
trolled (unforced) linear structure under an earthquake excita-
tion is given by:

MẌ(t) + CẊ(t) + KX(t) = Eẍg(t) (3)

where

◦ X(t) = [x1(t), x2(t), · · · , xn−1, xn(t)]T is the vector of
inter-story drift displacements.

◦ T: denotes the transpose of the matrix.

◦ M is the mass matrix of the system:

M =




m1 m1 · · · m1

0 m2 · · · m2

0 0
. . .

...
0 0 · · · mn




n×n

◦ C is the damping matrix of the system:

C =




c1 0 0 0 0
−c1 c2 0 0 0
0 −c2 c3 0 0

0 0
...

. . .
...

0 0 0 · · · cn




n×n

◦ K is the stiffness matrix of the system:

K =




k1 0 0 0 0
−k1 k2 0 0 0
0 −k2 k3 0 0

0 0
...

. . .
...

0 0 0 · · · kn




n×n

◦ E = −[m1 m2 · · ·mn]T

◦ and ẍg is the ground acceleration.

2 Implementation of The DG Method

In order to find the response of a building to an earthquake
excitation, we need to solve the following system of linear
ordinary differential equations,

MẌ(t) + CẊ(t) + KX(t) = Eẍg(t), 0 ≤ t ≤ T,

Xi(0) = 0, Ẋi(0) = 0, i = 1, · · · , n
(4)

In this work, we adopt the DG method to solve (4). Our so-
lutions will be the response of each story as displacement and
acceleration. For convenience, and without any loss of gener-
ality, we can rewrite the problem presented in (4) as

Ẍ(t) + M−1CẊ(t) + M−1KX(t) = M−1Eẍg(t),
xi(0) = 0, ẋi(0) = 0, i = 1, ..., n

(5)

Let C̃ = M−1C, K̃ = M−1K and Ẽ = M−1E so we obtain

Ẍ(t) + C̃Ẋ(t) + K̃X(t) = Ẽẍg(t), 0 ≤ t ≤ T,
xi(0) = 0, ẋi(0) = 0, i = 1, ..., n

(6)

Now let us write the ith equation of (6),

ẍi(t) +
n∑

j=1

C̃i,j ẋj(t) +
n∑

j=1

K̃i,jxj(t) = Ẽiẍg(t) (7a)

subject to the initial conditions

xi(0) = 0, ẋi(0) = 0, i = 1, ..., n (7b)

To start implementing the DG method, we first create a par-
tition, tk = k ∆t, k = 0, 1, 2, · · · , n, ∆t = T/n with
Ij = (tj , tj + 1) and define the piecewise polynomial spaces

Sn,p = {U : U |Ij ∈ Pp}, (8)

Sn,p
0 = {U ∈ Sn,p : U(t−i ) = U ′(t−i ) = 0, 1 ≤ i ≤ n},

(9)
where Pp denotes the space of Legendre polynomials of de-
gree p. Each Legendre polynomial Pn(x) is an nth degree
polynomial. It can be expressed using Rodrigues’ formula

Pn(x) =
1

2nn!
dn

dxn
[(x− 1)2]
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An important property of the Legendre polynomials is that
they are orthogonal with respect to the L2 inner product on
the interval −1 ≤ x ≤ 1:

∫ 1

−1

Pm(x)Pn(x)dx =
2

2n + 1
δmn

where δmn denotes the Kronecker delta, equal t 1 if m = n
and to 0 otherwise.
Furthermore, Pn(x) is an even function or an odd function
whether n is even or n is odd, and we have

Pn(−x) = (−1)nPn(x)

the Legendre polynomials’ definitions are ”standardized” by
being scaled so that

Pn(1) = 1

The derivative at the end point is given by

P ′n(1) =
n(n + 1)

2
Moreover, Legendre-polynomials can be constructed using
the three term recurrence relations

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

And
x2 − 1

n

d

dx
Pn(x) = xPn(x)− Pn−1(x)

We define the weak discontinuous Galerkin (DG) formulation
for (7) by multiplying (7a) by a test function, and then integrat-
ing over Ik. After integrating by parts, we obtain n equations
of the form

ẋiv|tk+1
tk

− xiv̇|tk+1
tk

+
n∑

j=1

(C̃i,jxjv|tk+1
tk

) +
∫

Ik

xiv̈dt−

n∑

j=1

(
C̃i,j

∫

Ik

xj v̇dt− K̃i,j

∫

Ik

xjvdt
)

=
∫

Ik

Ẽiẍgvdt. (10)

Let’s replace xi by Xi,k(t) = Xi|[tk,tk+1] ∈ Pp for i =
1, · · · , n and v by V ∈ Pp in (10). Moreover, let’s choose
the flux terms that will define the DG method to be the infor-
mation that is propagating from the left since we are dealing
with an initial value problem:
For i = 1, · · · , n

Xi,k(tk+1) = Xi,k(t−k+1), Xi,k(tk) = X ′
i,k−1(t

−
k )

The discrete formulation consists of determining Xi,k(t) =
Xi|[tk,tk+1] ∈ Pp, such that for i = 1, · · · , n

Ẋi,k(t−k+1)V (t−k+1)− Ẋi,k−1(t−k )V (t+k )−
Xi,k(t−k+1)V̇ (t−k+1) + Xi,k−1(t−k )V̇ (t+k ) +

n∑

j=1

C̃i,j

(
Xj,k(t−k+1)V (t−k+1)−Xj,k−1(t−k )V (t+k )

)
−

n∑

j=1

(
C̃i,j

∫

Ik

Xj,kV̇ dt− K̃i,j

∫

Ik

Xj,kV dt
)

∫

Ik

Xi,kV̈ dt =
∫

Ik

ẼiẍgV dt, ∀ V ∈ Pp. (11)

On the initial step, [t0, t1], we use Xi,−1(t−0 ) = 0 and
Ẋi,−1(t−0 ) = 0.
On another hand, we can rewrite (11) to obtain for i =
1, · · · , n

Ẋi,k(t−k+1)V (t−k+1)−Xi,k(t−k+1)V̇ (t−k+1)

+
n∑

j=1

C̃i,jXj,k(t−k+1)V (t−k+1) +
∫

Ik

Xi,kV̈ dt−

n∑

j=1

(C̃i,j

∫

Ik

Xj,kV̇ dt− K̃i,j

∫

Ik

Xj,kV dt)

=
∫

Ik

ẼiẍgV dt + Ẋi,k−1(t−k )V (t+k )−Xi,k−1(t−k )V̇ (t+k )

+
n∑

j=1

C̃i,jXj,k−1(t−k )V (t+k ), ∀ V ∈ Pp. (12)

A clear advantage of the DG method noticed from the pre-
vious formulation is that we are solving this problem locally
on each step Ik and the inter-element continuity is weakly en-
forced, therefore the displacement of each story Xi,k−1(tk)
will be an initial condition for Ik.
Let’s call D0

i,k = Xi,k−1(tk) and D1
i,k = Ẋi,k−1(tk) (rep-

resenting the information coming from the previous element),
so the discrete formulation comes to determining Xi,k(t) =
Xi|[tk,tk+1] ∈ Pp, such that for i = 1, · · · , n

Ẋi,k(t−k+1)V (t−k+1)−Xi,k(t−k+1)V̇ (t−k+1) +
∫

Ik

Xi,kV̈ dt

+
n∑

j=1

(C̃i,jXj,k(t−k+1)V (t−k+1)− C̃i,j

∫

Ik

Xj,kV̇ dt +

K̃i,j

∫

Ik

Xj,kV dt) =
∫

Ik

ẼiẍgV dt + D1
i,kV (t+k )−

D0
i,kV̇ (t+k ) +

n∑

j=1

C̃i,jD
0
j,kV (t+k ), ∀ V ∈ Pp. (13)

We note that the DG solutions on each element Ik is of the
following form

Xi,k(t) =
p∑

j=0

λi,k,jψj(t), i = 1, · · · , n (14)

where ψj(t) are Legendre polynomial of degree j on the in-
terval Ik. Now, we start our matrix formulation to show the
computational process of this method. Let’s choose our test
function V to be ψl for l = 0, ..., p and substitute (14), there-
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fore (13) becomes for i = 1, ..n and l = 0, ..., p,
p∑

j=0

λi,k,j(ψ̇j(t−k+1)ψl(t−k+1)− ψj(t−k+1)ψ̇l(t−k+1))−

n∑

j=1

p∑
m=0

λj,k,m(C̃i,j

∫

Ik

ψmψ̇ldt− K̃i,j

∫

Ik

ψmψldt +

C̃i,jψm(t−k+1)ψl(t−k+1)) +
p∑

j=0

(λi,k,j

∫

Ik

ψj=̈ψldt)

Ẽi

∫

Ik

ẍgψldt + D1
i,kψl(t+k )−D0

i,kψ̇l(t+k ) +

n∑

j=1

C̃i,jD
0
j,kψl(t+k ), ∀ψl ∈ Pl. (15)

Let’s introduce the following matrices M1,M2,M3,M4 and
M5 such that for i, j = 0, ..., p

M1(i, j) = [ψi(t−k+1)ψ̇j(t−k+1)](p+1,p+1) (16)

M2(i, j) = [ψi(t−k+1)ψj(t−k+1)](p+1,p+1) (17)

M3(i, j) = [
∫ tk+1

tk

ψ̈iψjdt](p+1,p+1) (18)

M4(i, j) = [
∫ tk+1

tk

ψ̇iψjdt](p+1,p+1) (19)

M5(i, j) = [
∫ tk+1

tk

ψiψjdt](p+1,p+1) (20)

And let also

Λi,k =




λi,k,0

λi,k,1

...
λi,k,p−1

λi,k,p




(p+1)

(21)

Therefore (15) becomes (for i = 1, · · · , n),

M1Λi,k −MT
1 Λi,k +

n∑

j=1

C̃i,jM2Λj,k + M3Λi,k −

n∑

j=1

C̃i,jM4Λj,k +
n∑

j=1

K̃i,jM5Λj,k = Bi (22)

where

Bi(l) = Ẽi

∫

Ik

ẍgψldt + D1
i,kψl(t+k )−D0

i,kψ̇l(t+k ) +

n∑

j=1

C̃i,jD
0
j,kψl(t+k ). (23)

Now define the following: M = M1 − MT
1 + M3 and

N = M2 −M4. Finally, in order to find the response of each
story, we need to solve the following linear system on each
subinterval Ik

RΛk = B (24)

where

R =




M + L1,1 L1,2 ... L1,n

L2,1 M + L2,2 ... L2,n

...
...

...

Ln,1 Ln,2 ... M + Ln,n




(25)
with Li,j = C̃i,jN + K̃i,jM5 for i, j = 1, ..., n

Λk =




Λ1,k

Λ2,k

...

Λn,k




n(p+1)

and B =




B1

B2

...

Bn




n(p+1)

(26)

3 Error Analysis and Computational Aspects
of the Numerical Methods

3.1 DG Method

In this section, we start by restating the asymptotic behavior
of the local DG error then a priori error bound in L2 and at
the mesh points provided in [3].

In the analysis of the DG method, we will use Jacobi polyno-
mials defined by the Rodrigues formula

Pα,β
k (τ) =

(−1)k

2kk!
(1−τ)−α(1+τ)−β dk

dτk
[(1−τ)α+k(1+τ)β+k],

α, β > −1, k = 0, 1, · · · . (27)

We note Jacobi polynomials satisfy the orthogonality condi-
tion

∫ 1

−1

(1− τ)α(1 + τ)βPα,β
k (τ)Pα,β

l (τ)dτ = ckδkl, (28)

where ck > 0 and δkl is the Kronecker symbol equal to 1 if
k = l and 0, otherwise. We further note that P 0,0

k = Pk, the
kth-degree Legendre polynomial.
In the following theorem, we state our first result on the
asymptotic behavior of the local error.

Theorem 1. Let xi ∈ C2p+2 and Xi,k ∈ Pp, p ≥ 2, for
i = 1, 2, ..., n be the solutions of (4) and (14), respectively.
Then the local error satisfies

ε =
∞∑

k=p+1

Qk(τ)∆tk, (29a)

where Qk(τ) ∈ Pk and

Qp+1(τ) = αp+1(1− τ)2P 2,0
p−1(τ). (29b)
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Next, we state a superconvergence result for the DG solution
and its derivative at interior points.

Theorem 2. Under the conditions of Theorem (1), the DG
solution is superconvergent at interior points

ε(l)(t̄lj) = O(∆tp+2−l), j = 1, · · · , p− 1− l, l = 0, 1,

where 0 < t̄lj < ∆t, j = 1, · · · , p−1− l, are the shifted roots
of ((1− τ)2P 2,0

p−1)
(l), l = 0, 1.

Let us recall the definition of Sobolev Spaces

Hs = {u :
∫ T

0

|u(l)|2dt < ∞, 0 ≤ l ≤ s}.

equipped with the norm

||u||2s =
n∑

j=1

||u||2s,j ,

where

||u||2s,j =
s∑

l=0

||u(l)||2j , ||u||2j =
∫ tj

tj−1

|u|2dt.

The L2 norm is denoted by ||.||.
Moreover, let us define the maximum norm at the downwind
end-points by

||u−||∞,∗ = max
1≤i≤n

|u(t−i )|, (30)

The following theorem provides an L2 error bound for the DG
method.

Theorem 3. If xi ∈ Hp+1 and Xi for i = 1, 2, ..., n are
respectively solutions of (4) and (14), we have

||xi −Xi|| ≤ C∆tp+1. (31)

Next, we state global superconvergence result for the DG
method.

Theorem 4. If xi ∈ Hp+1 and Xi for i = 1, 2, ..., n are solu-
tions of (4) and (14), respectively, Then, there exists a constant
C, C̃ > 0 independent of ∆t such that

||(xi −Xi)−||∞,∗ < C∆t2p (32)

and
||(x′i −X ′

i)
−||∞,∗ < C̃∆t2p (33)

Next, in order to complete the presentation of the new DG
numerical method, we present the following example where
we expect the numerical results to be in full agreement with
the stated theory. Let us consider now the following system of
second order ordinary differential equations.

MŸ + KY = F (t) 0 ≤ t <≤ 2, (34)

where

M =




1 2 ... Nsys − 1 Nsys

2 3 ... Nsys 1
...

...
...

...
...

Nsys − 1 Nsys ... Nsys − 3 Nsys − 2
Nsys 1 ... Nsys − 2 Nsys − 1




K =




Nsys Nsys − 1 ... 2 1
Nsys − 1 Nsys − 2 ... 1 Nsys

...
...

...
...

...
2 1 ... 4 3
1 Nsys ... 3 2




Fi(t) = (Nsys + 1)
1− e

1− eNsys
e
t+ 1

Nsys , i = 1, 2, ..., Nsys.

Subject to the following initial conditions

yi(0) = e
i

Nsys , ẏi(0) = e
i

Nsys , i = 1, 2, ..., Nsys, (35)

for that specific choice of F (t) the exact solution is

yi(t) = e
t+ i

Nsys , i = 1, 2, ..., Nsys.

We solve the problem (34) for Nsys = 100, on uniform
meshes having Nstep = 5, 6, .., 25 steps and p = 1, 2, ..., 5. In
Figure 4 and 5, we plot the maximum error at the Jacobi points
versus Nstep to observe an O(∆tp+2) superconvergence rate
at the roots of Jacobi polynomial P 2,0

p−1.
The global L2 norm of error u− U presented in Figure 6 ver-
sus the number of steps Nstep converges algebraically at the
expected optimal rate of p + 1 for i = 7, 39, 72.
Moreover, the maximum error at the downwind end-points
||e−||∞,∗ and the maximum of the derivative of the error at the
downwind end-points ||e′−||∞,∗ versus the number of steps
Nstep shown in Figure 7 and 8 confirm the O(∆t2p) super-
convergence rate at the end points.
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Figure 4: the 7th component of maximum error u−U at Jacobi
points on all steps versus Nstep in log-log scale.
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Figure 5: the 39th, 72th and 98th (top to bottom) component
of maximum error u − U at Jacobi points on all steps versus
Nstep in log-log scale.

3.2 Runge-Kutta Method

In order to have a better evaluation of the DG method, we
present a short reminder for the numerical integrator used in
the MATLAB Simulink

TM
tool. Runge-Kutta methods are very

popular because of their good efficiency and are used in most
computer programs for differential equations. They are single-
step methods, as the Euler methods. Higher order differential
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Figure 6: The L2 of the 7th, 39th and 72th (top to bottom)
component of the error u− U versus Nstep in log-log scale.

equations can be treated as if they were a set of first-order
equations. Let us recall the following equation

x′i = f(t, xi)
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Figure 7: The 7th, 39th and 72th (top to bottom) component
of the maximum error ||e−||∞,∗ at the end-points versus Nstep
in log-log scale.

Then, the numerical solution obeys

∆x = 1
6 [k1 + 2k2 + 2k3 + k4]

k1 = ∆t [f (t, xi)]
k2 = ∆t

[
f

(
t + 1

2∆t, xi + 1
2k1

)]
k3 = ∆t

[
f

(
t + 1

2∆t, xi + 1
2k2

)]
k4 = ∆t [f (t + ∆t, xi + k3)]
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Figure 8: The 7th, 39th and 72th (top to bottom) component
of the maximum of the derivative of the error ||e′−||∞,∗ at the
end-points versus Nstep in log-log scale.

Xi(tn+1) = Xi(tn) + ∆x (36)

This method results in a local error of O(∆t5) and a global
error of O(∆t4).
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4 Response of a Multi-Story Seismically Ex-
cited Building

In the following section we are investigating the response of a
hundred-story building excited by to the S00E component of
El-Centro, Imperial Valley Earthquake, 1940, normalized to a
peak ground acceleration of 0.4g (g = 9.81m/s2). In order to
apply our DG method, we transform the data recorder by the
seismograph to a piecewise linear functions that will generate
a quasi-real linear signal as shown in Figure 9.
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Figure 9: El-Centro Earthquake scaled to 0.4g (NS compo-
nents).

The hundred-story building considered in this paper has the
following features for each floor:

◦ 1st story: m1=6.00 105 Kg, k1=10.180 106 KN/m and
c1=6.50 107 kN.sec/m.

◦ 2nd story: m2=6.00 105 Kg, k2=10.080 106 KN/m and
c2=6.435 107 kN.sec/m.

◦ ...

◦ ith story: mi=6.00 105 Kg, ki=(10.180-0.1(i-1)) 106 KN/m
and ci=(6.50-0.065(i-1)) 107 kN.sec/m.

◦ ...

◦ 100th story: m100=6.00 105 Kg, k100=5.28 106 KN/m and
c100=3.315 107 kN.sec/m.

We are solving the problem posed for (4) between t = 0
and t = 50 seconds which is the duration of earthquake
signal in order to investigate the behavior of the structure
which the worst during the excitation, with a number of steps
Nstep = 1000 (∆t=0.05 sec) and using a degree of approxi-
mation p = 3.
Since we are getting the information from the downwind end
point where the error of the DG method is O(∆t2p) super-
convergent at the end of each step (Theorem 4). Then, the
accuracy of the method is
Accuracy=∆t2p=0.056=1.5 10−8.

To check the efficiency of the proposed method, we adopt
the MATLAB Simulink

TM
tool to compare it with our

method using as the ODE45 Runge-Kutta numerical integra-
tor with Tolerence=10−8. The following diagram exhibits the
Simulink

TM
block diagram use to obtain the numerical results

presented in this work.

X''(t) X(t)X'(t)

X'a'(t)

X

simt

driftA

simx

simtnocont

groundA

simxnocont

Time

Sum

Ke/M

K*u

Integrator-2

1/s

Integrator-1

1/s

Ground Excitation 
Force

Earthquake

[Time,FT]

Clock

0

C/M

K*u

Figure 10: MATLAB Simulink
TM

block diagram.

In order to show the result of the earthquake excitation on the
behavior of the structure, we plot in Figure 11 and 12, the
inter-story displacement of the highest levels where we expect
the major effect to happen using the DG method and the MAT-
LAB Simulink

TM
tools.

Moreover, the acceleration of each floor is also an efficient
indicator of the behavior of the building to the proposed ex-
citation. In Figure 13, we exhibit the acceleration of the 99th

and 100th stories.
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Figure 11: The inter-story displacement of 97th story.
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(a) Displacement of 98th story.
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(b) Displacement of 99th story.
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(c) Displacement of 100th story.

Figure 12: The inter-story displacement.

The following Table 1 presents the efficiency of the DG
method compared to the MATLAB Simulink

TM
tool in term

of Time consumed to solve the problem computed on a Pen-
tium M processor 1.6 GHz with a RAM of 1GHz. In addition
to the stability, robustness and approximation flexibility, the
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(a) Acceleration of 99th story.
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(b) Acceleration of 100th story.

Figure 13: The inter-story acceleration

Table 1: Comparison between the two methods.

Story TimeDG (s) TimeMATLAB(s)
10 1.2418 2.3133
20 2.5236 3.4950
30 4.0959 5.5880
40 5.6782 8.2318
50 7.4006 11.1661
60 9.2433 14.2305
70 11.1360 17.3550
80 13.2290 20.9601
90 14.9415 24.7456

100 17.2748 28.9116
130 24.2449 41.1291
160 32.0160 60.0664
200 42.7815 90.2698

elapsed time for the DG solver is smaller than the efficient
MATLAB

TM
tools. Therefore the DG method remain very at-

tractive to the engineers, however, it is not as known as the
classical continuous finite element methods.
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5 Conclusion

In this paper we adopted the Discontinuous Galerkin (DG)
method to solve for the response of a seismically excited build-
ing model. This is a new scheme to solve a large system of
ordinary differential equations as the proposed technique ex-
hibits high efficiency and stability when compared with tra-
ditional numerical techniques. The efficiency of the method
proposed is demonstrated through numerical simulations. In
this paper, the DG method was used to solve for the response
of a linear, one dimensional structure. However, this work can
be extended to nonlinear systems as well as three dimensional
structural models. The DG method can also be used to solve
nano-scale problems where high accuracy and stability of the
numerical solution are highly demanded.
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