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Abstract— We performed several numerical simu-
lations of a co-axial particle-laden swirling air flow
in a vertical circular pipe. The air flow is mod-
eled using the unsteady Favre-averaged Navier-Stokes
equations. A Lagrangian model is used for the par-
ticle motion. The results of the simulations using
three versions of the k − ε turbulence model (stan-
dard, re-normalization group - RNG, and realizable)
are compared with experimental mean velocity pro-
files. The standard model achieved the best over-
all performance. The realizable model was unable to
satisfactorily predict the radial velocity; it is also the
most computationally-expensive model. The simula-
tions using the RNG model predicted extra recircula-
tion zones. We also compared the particle and parcel
approaches in solving the particle motion. In the lat-
ter, multiple similar particles are grouped in a single
parcel, thereby reducing the amount of computation.

Keywords: flow, parcel, particle, swirl, turbulence

model

1 Introduction

The use of computational fluid dynamics (CFD) to ac-
curately model energy production systems is a challeng-
ing task [1]. Of current interest, due to every increasing
energy demands, are coal-based energy systems such as
pulverized coal (PC) boilers and gasifiers with an em-
phasis on systems which provide for carbon capture and
storage (e.g. PC-oxyfuel). Turbulence and particle sub-
models are one of many sub-models which are required
to calculate the behavior of these gas-solid flow systems.

The particle-laden swirling flow experiment studied by
Sommerfeld and Qiu [2] was selected as a test-case to
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assess the performance of three versions of the k − ε
turbulence model for gas-solid flows. Previous numer-
ical investigations of this experiment include, Euler-
Lagrange (EL)/Reynolds-average Navier-Stokes (RANS-
steady) [3], EL/large eddy simulations (LES) [4], Euler-
Euler (EE)/RANS-unsteady [5], and EE/LES [6]. The
extensive experimental measurements make this experi-
ment a good test-case for gas-solid CFD.

A schematic of the experiment is shown in Fig. 1. The
co-axial flow consists of a primary central jet, laden with
particles at a loading of 0.034 kg-particles/kg-air and an
annular secondary jet with a swirl number of 0.47 based
on the inlet condition. Co-axial combustors have a similar
configuration to this system. Generating a swirling flow
is an approach used to stabilize combustion and main-
tain a steady flame [7]. Swirl entrains and recirculates a
portion of the hot combustion products. It also enhances
the mixing of air and fuel. The inlet swirl number was
calculated as the ratio between the axial flux of angular
momentum to the axial flux of linear momentum

S =
2
∫ Rsec

0
ρUθ Ux r2 dr

Dcyl

∫ Rsec

0 ρU2
x r dr

(1)

where Ux and Uθ are the axial and tangential (swirl) ve-
locities, Rsec = 32 mm is the outer radius of the swirling
secondary jet, and Dcyl = 197 mm is internal diameter of
the cylinder into which the jets enter. The inlet Reynolds
number (Re) is approximately 52400 based on the outer
diameter of the secondary jet, thus

Re =
ρ Ûx (2 Rsec)

µ
(2)

where ρ is the density, µ is the dynamic viscosity, and
Ûx is an equivalent axial velocity that accounts for the
total volume flow rate from both primary and secondary
jets. The particles were small spherical glass beads, with
a density of 2500 kg/m3, which were injected according to
a log-normal distribution, with a mean number diameter
of 45 µm.

In addition to investigating the effects of the turbulence
modeling, we also study the effect of grouping similar
particles in a parcel. In this approach, the equations of
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Figure 1: Illustration of the co-axial jet flow (with swirl and particles).

motion are integrated for each parcel, with a possibil-
ity of significant reduction in the computational resource
required to simulate systems with a large number of par-
ticles (e.g., sprays).

2 Governing Equations

The continuity and momentum equations for the resolved
fields are expressed and solved in Cartesian coordinates
as

∂ ρ

∂ t
+

∂(ρUj)

∂ xj
= 0 (3)

∂(ρUi)

∂ t
+

∂(ρUiUj)

∂ xj
= − ∂ p

∂ xi
+

∂(σij + τij)

∂ xj
+ ρ gi + Sp

(4)
where Ui is the velocity vector, p is the pressure, σij and
τij are the viscous and Reynolds (or turbulent) stress
tensors, gi is gravitational vector (we only have g1 =
9.81m/s2), and SP is a source term accounting for the
momentum from the particle-phase. As for Newtonian
fluids, σij is calculated as

σij = 2µ Sdev
ij

where Sdev
ij is the deviatoric (traceless) part of the strain-

rate tensor Sij

Sij =
1

2

(

∂ Ui

∂ xj
+

∂ Uj

∂ xi

)

Sdev
ij =

1

2

(

∂ Ui

∂ xj
+

∂ Uj

∂ xi
− 2

3
δij

∂ Uk

∂ xk

)

The tensor τij is not resolved directly. Instead, its effects
are represented using the gradient transport hypothesis

τij = 2µt

(

Sdev
ij

)

− 2

3
ρ k δij (5)

where µt is the turbulent (or eddy) viscosity. Differ-
ent eddy-viscosity turbulence models propose different
strategies to calculate µt. In the case of k − ε models,
it is calculated as

µt = Cµ ρ
k2

ε
(6)

where k is the turbulent kinetic energy per unit mass
and ε is its dissipation rate. They are obtained by solv-
ing two coupled transport equations. The forms of these
equations vary depending on the model implementation.
We consider here three implementations, which are de-
scribed in the following subsections. The wall-function
approach is used to model the near wall behavior for all
three turbulence models.

2.1 Standard k − ε Model

The standard k − ε model refers to the Jones-Launder
form [8], without wall damping functions, and with the
empirical constants given by Launder and Sharma [9].
The k and ε equations are

∂(ρ k)

∂ t
+

∂(ρUj k)

∂ xj
=

∂

∂ xj

[(

µ +
µt

σk

)

∂ k

∂ xj

]

+ P − ρ ε

(7)

∂(ρ ε)

∂ t
+

∂(ρUj ε)

∂ xj
=

∂

∂ xj

[(

µ +
µt

σε

)

∂ ε

∂ xj

]

+
ε

k
(Cε1G − Cε2 ρε) −

(

2

3
Cε1 + Cε3

)

ρ ε
∂ Uk

∂ xk
(8)

where P is the production rate of kinetic energy (per unit
volume) due to the gradients in the resolved velocity field

P = τij
∂ Ui

∂ xj
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which is evaluated as

P = G − 2

3
ρ k

∂ Uk

∂ xk

with

G = 2µt Sdev
ij

∂ Ui

∂ xj
= 2µt

(

SijSij −
1

3

[

∂ Uk

∂ xk

]2
)

The addition of Cε3 in the last term on the right-hand
side of (8) is not in the standard model. It was pro-
posed [10], [11] for compressible turbulence. However, we
will refer to this implementation as the standard model.
The model constants are

Cµ = 0.09, σk = 1.0, σε = 1.3, Cε1 = 1.44,

Cε2 = 1.92, Cε3 = −0.33

2.2 Re-Normalization Group k − ε Model

The RNG model was developed [12], [13] using techniques
from re-normalization group theory with scale expansions
for the Reynolds stress. The k and ε equations have the
same form in (7) and (8), but the constants have different
values. In addition, the constant Cε1 is replaced by C∗

ε1,
which is no longer a constant, but is determined from an
auxiliary function as

C∗
ε1 = Cε1 −

η(1 − η/η0)

1 + β η3

where

η =
k

ε

√

2 Sij Sij

is the expansion parameter (ratio of the turbulent to
mean-strain time scales). The model constants are

Cµ = 0.0845, σk = 0.7194, σε = 0.7194, Cε1 = 1.42,

Cε2 = 1.68, Cε3 = −0.33, η0 = 4.38, β = 0.012

We should mention here that another version (e.g.,
in [14]) of the RNG model replaces the constant Cε2 by
a function C∗

ε2 while keeping Cε1 constant at 1.42. Both
versions have been used in different studies and were re-
ferred to as RNG k − ε model. The version considered
here was used, for example, in a recent study [15] that
involves not only turbulence, but also combustion, soot
formation, and radiation.

2.3 Realizable k − ε Model

The realizable k − ε model was formulated [16] such
that the calculated normal (diagonal) Reynolds stresses
are positive definite and shear (off-diagonal) Reynolds
stresses satisfy the Schwarz inequality. Similar to the
RNG model, the form of the k equation is the same as the
one in (7). In addition to altering the model constants,
the two main modifications lie in replacing the constant

Cµ used in calculating the eddy viscosity in (6) by a func-
tion, and in changing the right-hand side (the production
and destruction terms) of the ε equation. The last term
in (8) is dropped. With this, the ε equation becomes

∂(ρ ε)

∂ t
+

∂(ρUj ε)

∂ xj
=

∂

∂ xj

[(

µ +
µt

σε

)

∂ ε

∂ xj

]

+ C1 ρ ε S − Cε2 ρ
ε2

k +
√

(µ/ρ)ε
(9)

where

C1 = max

(

0.43,
η

η + 5

)

η =
k

ε

√

2 Sij Sij (as in the RNG model)

Cµ =
1

A0 + AS(U∗ k/ε)

U∗ =
√

SijSij + ΩijΩij

Ωij is rate-of-rotation tensor =
1

2

(

∂ Ui

∂ xj
− ∂ Uj

∂ xi

)

AS =
√

6 cos(φ); φ =
1

3
arccos

(√
6 W

)

W = min

[

max

(

2
√

2
Sij Sjk Sik

S3
,− 1√

6

)

,
1√
6

]

The model constants are

σk = 1.0, σε = 1.2, Cε2 = 1.9, A0 = 4.0

2.4 Wall Function

In wall-bounded flows, a very thin viscous (laminar) sub-
layer exists near the wall. Whereas it is possible to solve
the flow equations all the way to the wall (including the
viscous sublayer), this requires modifications in the tur-
bulence models described in the previous subsections be-
cause they are based on fully-turbulent (high Reynolds
number) flows. In addition, resolving the flow in this
thin region with appropriate resolution (at least five cells
within the steep-gradient viscous sublayer [17]) requires
very fine meshes that incur an extensive amount of cal-
culations per time step.

The high-Reynolds number version of the turbulence
models are examined here and thus the wall-function
treatment is required. This approach avoids the solution
of the governing equations of the flow inside the viscous
sublayer by utilizing empirical laws which relate the wall
conditions to values of the dependent variables just out-
side the viscous sublayer. In the current implementation
(related to the work in [18], [19], [20]), the ε equation is
not solved and an algebraic expression is used instead.
The term G in the production term P in the k equation
is evaluated from another expression, but the k equation
is still solved. Finally, the turbulent viscosity is evaluated
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from an expression other than the one in (6), which does
not require ε. The treatment is applied at the first cell
node next to a wall. If this node is found (estimated) to
lie within the viscous sublayer, µt is set to zero, which is
consistent with the physics of the problem.

The subsequent expressions describe the wall-function
treatment as implemented in the 1.5 version of the finite
volume open source code OpenFOAM [21], [22] (we used
this code to perform all the simulations in this study).
The coordinate normal to a wall is denoted by y. In ad-
dition, the subscript P refers to values at the cell node ad-
jacent to a wall. The wall-function treatment requires an
auxiliary nondimensional variable, y+

P , which is a nondi-
mensional measure of the normal distance from the wall,
and is calculated (using old kP from the available k field)
as

y+
P =

C
1/4
µ

√
kP yP

µP/ρP
(10)

The turbulent viscosity at yP is evaluated from

(µt)P = µP











0

y+

P κ

ln(E y+

P )
− 1

, y+
P ≤ y+

Lam

, y+
P > y+

Lam

(11)

where E = 9.0 is a nondimensional constant and κ =
0.4187 is the von Kármán constant. These two parame-
ters are used to estimate the location of interface between
the viscous sublayer and the log-layer, y+

Lam, through the
following iterative formula:

y+
Lam =

ln
(

E y+
Lam

)

κ
(12)

which converges to 10.967.

In a cell adjacent to a wall, GP is evaluated using

GP =











0

C1/4
µ

√
kP

κ yP
[(µt)P + µP ] |UP |

yP

, y+
P ≤ y+

Lam

, y+
P > y+

Lam

(13)

where |UP |/yP approximates ∂ |Utangent|/∂ y at yP . Also,
εP is evaluated from

εP =
C

3/4
µ k

3/2
P

κ yP
(14)

This expression is based on the assumption of local tur-
bulence equilibrium, P = ε (as in the log-layer), giv-
ing [14], [23]

εP =
u3

τ

κ yP
(15)

where uτ is the friction velocity, which is formally defined
as
√

τw/ρw. However, under the assumption of local tur-
bulence equilibrium, uτ is evaluated from

uτ = C1/4
µ

√
k (16)

The expression in (14) follows from (15) and (16). In
fact, (16) was used to eliminate uτ from (10) and (13).

3 Particle Motion

The Lagrangian equations of motion of a particle (in vec-
tor forms) are

dx

d t
= u (17a)

m
du

d t
= f (17b)

where m is the constant mass of the particle, u is the
particle velocity, and f is the force acting on the parti-
cle. In this study; the drag, gravity, and buoyancy are
considered, thus the force f has the following form [24]:

f = −π d2

8
ρCD |u −U∗| (u −U∗) + mg− ρ∀g (18)

where d is the particle diameter, CD is the drag coefficient
(which is a function of the particle Reynolds number, Red

as will be described later), ∀ is the particle volume and
U∗ is the instantaneous fluid velocity

U∗ ≡ U + U′ (19)

The vector U is the resolved velocity of the fluid (in-
terpolated at the particle location) which is calculated
after solving the governing equations of the flow, cou-
pled with the turbulence model. The fluctuating veloc-
ity, U′, is estimated using the discrete random walk al-
gorithm [25], [26]. In this algorithm, uncorrelated eddies
are generated randomly, but the particle trajectory is de-
terministic within the eddy. The fluctuating velocity af-
fects the particle over an interaction time, Tinterac, which
is the minimum of the eddy life time (Lagrangian inte-
gral time scale of turbulence), Teddy, and the residence or
transit time, Tcross. The latter is the time needed by the
particle to traverse the eddy. These characteristic times
are calculated as

Teddy =
k

ε
(20a)

Tcross = Ccross
k3/2

ε
∣

∣u − U− U′∣
∣

(20b)

Tinterac = min (Teddy , Tcross) (20c)

In (20b), U′ is lagged from the previous time step, and
Ccross = 0.093/4 = 0.16432. The turbulence informa-
tion, thus the characteristic times in (20), are updated
every time step to account for the fact that the turbu-
lence encountered by the particle in its trajectory is not
homogeneous.

The drag coefficient for a sphere is determined from
the following two-region formula [10], which is very
similar to the Schiller-Naumann [27] expression for
Red ≤ 1000, and uses a constant Newton drag coef-
ficient for Red > 1000

CD =











24

Red

(

1 + 1
6
Re

2/3
d

)

0.424

, Red ≤ 1000

, Red > 1000
(21)
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where the particle Reynolds number is defined as

Red =
ρ |u −U

∗|d
µ

(22)

Combining (17) and (18), and using m = ρs π d3/6 (ρs

is the particle density), the particle equations of motion
become

dx

d t
= u (23a)

du

d t
= −u − U

∗

τ
+

(

1 − ρ

ρs

)

g (23b)

where

τ =
4

3

ρs d

ρCD |u− U∗| =
ρs d2

18 µ

24

Red CD

is the momentum relaxation time of the particle.

The particle position is tracked using the algorithm de-
scribed by Macpherson et al. [28]. The algorithm consists
of a series of substeps in which the particle position, x,
is tracked within a cell using a forward (explicit) Euler
scheme followed by integration of the particle momen-
tum equation using a backward (implicit) Euler scheme
to update the particle velocity, u. When calculating the
resultant force due to the particle on the fluid phase, the
algorithm takes into account the particle residence time in
each cell. Interaction with the wall is represented through
elastic frictionless collisions.

4 Mesh and Boundary Conditions

The problem is treated as axisymmetric (although the
results are mirrored in some figures for better visualiza-
tion). The domain starts at the expansion location with
x = 0 in Fig. 1 and extends to x = 1.0 m. The domain
is a 3D wedge (opening angle 5◦), with a front area of
1.0 m×0.097 m, and 240 and 182 mesh points in the ax-
ial and radial directions. The mesh is nonuniform both
axially and radially, with finer resolution near walls and
between the two jets. The mesh has 40080 cells. The in-
let condition for the velocity in the primary (inner) jet is
specified in terms of the mass flow rate (9.9 g/s). For the
secondary (outer) jet, the inlet velocity is specified using
the experimental velocity profile. A zero-gradient condi-
tion is applied to the pressure at the inflow. The specific
turbulent kinetic energy, k, is set to 0.211 m2/s2 and
0.567 m2/s2 in the primary and secondary jets, respec-
tively; and the dissipation rate, ε, is set to 0.796 m2/s3

and 3.51 m2/s3 in the primary and secondary jets, respec-
tively. The inflow k was estimated assuming 3% turbu-
lence intensity (the experimental value was not specified,
but 3% is a reasonable medium-turbulence level [29]) and
the inflow ε was then estimated from [19], [30]

ε = C3/4
µ k1.5/l (24)

where the standard value 0.09 is used for Cµ, and l is the
turbulence length scale, which is approximated as ≈10%
of the cylinder diameter (l = 0.02 m). At the outflow,
zero-gradient conditions are applied for all variables ex-
cept the pressure, where a constant value of 105 N/m2

is imposed. At the walls, the wall-function treatment is
used for the turbulence, and a zero-gradient condition is
used for the pressure.

The PISO (pressure implicit splitting of operators)
scheme was used to solve the governing flow equations.
A variable time step is adjusted dynamically to limit the
maximum CFL to 0.3. The backward Euler scheme is
used for the time integration of the flow equations. Up-
wind differencing is used for the convective terms. Linear
(second-order central difference) interpolation is used to
find the mass fluxes at the face centers from the nodal
values, and is also used for the diffusion terms.

The particle mass flow rate is 0.34 g/s, which corresponds
to 0.00472 g/s for our case of 5◦ wedge. The particle are
injected at a speed of 12.5 m/s, which is the nominal axial
inflow velocity in the primary jet. The current particle
injection model implemented in OpenFOAM does not al-
low one to specify both a constant mass injection rate
and constant particles-per-parcel, (ppp) due to the distri-
bution of the particles diameter (thus the mass), which is
sampled from a log-normal PDF. Therefore, if the mass
flow rate of particles is fixed, then ppp can be below or
above the target value. On the other hand if ppp is fixed
then instantaneous particle mass injection will vary about
the specified mean.

5 Results

The simulated flow time is 0.6s for the results presented
in this paper. We have found that this time interval is
sufficient for all particles to traverse the domain and to
achieve a stationary flow in the gas-phase. The last 0.1s
is used to obtain the mean gas-phase velocities.

Fig. 2 shows three snapshots of the parcels after 0.05s,
0.1s, and 0.15s using the standard k − ε model (the di-
ameters of the parcels are evenly scaled by a factor of
100). This figure illustrates that the model captures well
the expected dynamics of the particles. The larger par-
ticles (with larger inertia) maintain their axial motion,
penetrating the central recirculation bubble; they are not
affected strongly by the swirl and radial velocity of the
gas-phase. Smaller particles are entrained due to smaller
relaxation times, and directed to the walls.

The mean axial, radial, and tangential velocities of the
gas-phase are shown in Fig. 3. The negative mean ax-
ial velocity along the centerline and the walls identify
the regions of recirculation. The strong variations in all
velocities are confined to a distance of 150 mm after the
inlet. Axial and tangential velocities exhibit an initial de-
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Figure 2: Parcel motion with the standard k − ε model at t = 0.05s (left), t = 0.10s (middle), and t = 0.15s (right).

Figure 3: Mean gas-phase velocity components near the inlet with the standard k − ε model.
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cay, whereas the radial velocity increases at the upstream
boundary of the central recirculation bubble.

A comparison between the mean streamlines obtained
with the three turbulence models is given in Fig. 4. Be-
sides the central bubble, there are secondary recirculation
zones (due to the sudden expansion) at the top of the
cylinder. The standard model gives the shortest recircu-
lation bubble, with best agreement with the experimental
results. The realizable model gives a longer bubble, but
with a qualitatively similar structure. The RNG model
resolves, in addition to the central and two secondary
recirculation zones, two noticeable tertiary recirculation
zones at the beginning (top) of the central bubble. This
feature was not reported in the experimental results.

The mean velocity fields are sampled at different axial
stations. We compare the mean velocity components
from the three turbulence models with the measured val-
ues at 4 stations in Figs. 5−8, located at x = 3 mm,
52 mm, 112 mm, and 155 mm. The first two stations
are located upstream of the central bubble, whereas the
last two span it. At x = 3 mm, all models predict axial
and tangential velocities that are in agreement with the
measured ones. The radial velocity using the realizable
model shows considerable disparity, with excessively neg-
ative (inward) velocity in the region away from the jets,
followed by an outward flow near the wall, which is op-
posite to the inward flow observed experimentally. The
standard model has a slightly better agreement with the
measurements than the RNG model at this axial loca-
tion. At x = 52 mm, the standard and realizable mod-
els behave similarly except for the radial velocity, where
the realizable model overpredicts the radial velocity in
the region r > 70 mm. The RNG model gives a higher
axial velocity in the region r < 20 mm than the other
models, which is closer to the measurements. Unfortu-
nately, this is accompanied by underprediction of the ra-
dial velocity for r < 30 mm. At x = 112 mm, the RNG
predictions deviate considerably from the measurements.
This is a direct consequence of the tertiary recirculation
shown in Fig. 4. As in the earlier stations, the standard
and realizable models provide similar results except for
the radial velocity, with the realizable model failing to
capture the measured peak at r ≈ 80 mm. The standard
model provides better prediction of the axial velocity in
the vicinity of the wall than the other two models. At
x = 155 mm, the realizable model underpredicts the ax-
ial velocity near the centerline. This can be explained by
the longer central bubble. The standard model provides
better agreement with the measurements. The standard
and realizable models provide similar predictions for the
tangential velocity, which agree well with the measure-
ments for r < 50 mm. The RNG model underpredicts
this velocity. The standard model shows the best agree-
ment for the radial velocity, and the RNG model provides
the poorest prediction.

On a computing machine with two processors: quad
core Intel Xeon L5335 2.00GHz, a simulation interval of
0.5s required 17.13hr CPU time for the standard model,
19.44hr for the RNG model, and 24.81hr for the realiz-
able model. The standard model has the lowest com-
putational demand due to its relative simplicity. The
realizable model is the most computationally-expensive
version, with CPU time equal to 145% and 128% of the
CPU times in the case of the standard and RNG models,
respectively.

The standard k − ε model was selected to examine the
effect of the number of particles-per-parcel, ppp. This
model was selected based on the results of the previous
subsection, in which it had the best overall performance.
The three selected values of ppp are: 1, 10, and 100. The
first value corresponds to the particle approach, where
each particle is tracked individually. Large values of ppp
may adversely affect the resolution of the particle-phase
and as a consequence, the accuracy of the simulations. In
addition, the point-force (also called point-mass) treat-
ment, used here for the particles, requires that the parcel
is smaller than the cell in which it is located. This puts
an additional limitation on the ppp parameter.

In Fig. 9, three snapshots of the parcels are shown at
t = 0.2s. The parcels are scaled by the particle diam-
eter times factors of 100, 215, and 464 for ppp = 1,
10, and 100; respectively. These factors correspond to
3
√

ppp times an arbitrary constant of 100 to provide con-
sistent scaling. As shown in the figure, the case with
ppp =100 has lost some of the particle-phase character-
istics, in terms of shortened convection of the heavier
parcels and weakened entrainment (outside the central
bubble) of the smaller parcels. Therefore, we suspect
that this case is representative with regard to particles
motion. However, it is a good test-case serving our ob-
jective of examining the sensitivity of the mean gas-phase
field to ppp. To this end, we considered the axial profiles
of the mean axial velocity at the centerline (middle of
the primary jet) and the radial and tangential velocities
at r = 25 mm (approximately the middle of the secondary
annular jet). The profiles are given in Figs. 10 and 11, re-
spectively. The profiles are almost identical and therefore
there is no discernible effect of ppp.

Lastly, we compare the computational time (for 0.5s flow
time) for the the simulated cases with ppp=1 and 100.
The corresponding CPU times (on a machine with two
processors: dual core AMD Opteron 265 1.8GHz) are
31.15hr and 29.84hr, respectively. The corresponding
numbers of injected parcels over this simulation interval
are 12099 and 143. At the end of the simulation inter-
val, there were 12017 and 142 parcels in the domain, re-
spectively. Therefore, the computing-time saving is only
4.2% when ppp is increased by two orders of magnitude.
This indicates that most of the computing time is spent
in solving the gas-phase equations as a result of the low
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Figure 4: Comparison of the mean streamlines with 3 k − ε models: standard (left), RNG (middle), and realizable
(right).
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Figure 5: Comparison of the mean velocity components at x = 3 mm with three k − ε turbulence models.
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Figure 6: Comparison of the mean velocity components at x = 52 mm with three k − ε turbulence models.
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Figure 7: Comparison of the mean velocity components at x = 112 mm with three k − ε turbulence models.
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Figure 8: Comparison of the mean velocity components at x = 155 mm with three k − ε turbulence models.
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Figure 9: Comparison of parcels motion at t = 0.2s with different values of particles-per-parcel, ppp: 1 (left), 10
(middle), and 100 (right).
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Figure 10: Comparison of the mean axial velocity with different particles-per-parcel at the centerline.
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Figure 11: Comparison of the mean radial and tangential velocities with different particles-per-parcel at r = 25 mm.
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particle loading.

6 Conclusions and Remarks

We simulated a co-axial air flow with a particle-laden
primary jet and a swirling annular jet, entering a sudden
expansion. Three versions of the k − ε model: standard,
re-normalization group (RNG), and realizable were ap-
plied. The standard model had the best overall perfor-
mance based on the mean gas-phase velocities. The RNG
model showed considerable deviations from the measure-
ments in some regions. The main drawback of the re-
alizable model was its erroneous prediction of the radial
velocity. The main differences in the predicted velocity
profiles were related to the different flow structures and
mean streamlines. The finding that the more compli-
cated models did not outperform the simpler one should
be examined in light of the assumptions and the condi-
tions under which the models were developed. The RNG
model was developed with the assumption of turbulence
equilibrium (production equal to dissipation), and it for-
mally applies to high-speed flows. The realizable model
targets flows with large mean-strain, which is apparently
not the case here. For the low particle loading considered
here, the mean gas-phase velocity field was not sensitive
to whether a particle or parcel approach is used.
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