
Abstract — Accurate detection of fault in a hydraulic system 
is a crucial and equally challenging task. A fuzzy logic topology 
is developed for the diagnosis of simulated faults in hydraulic 
power systems. The method proposed is a combination of 
analytical and fuzzy logic approach. Residuals generated by 
nonlinear observer are evaluated using fuzzy logic. The fault 
severity of the system is evaluated based on the membership 
functions and rule base developed by the fuzzy logic system. 
This paper demonstrates the use of fuzzy logic as an extension to 
analytical system to enhance the overall performance of the 
system. The decision of whether ‘a fault has occurred or not?’ is 
upgraded to ‘what is the severity of that fault?’ at the output. 
Simulation results showed that fuzzy logic is more sensitive and 
informative regarding the fault condition, and less sensitive to 
uncertainties and disturbances. 

 Index Terms — Fault detection, fault severity, fuzzy logic, 
hydraulic system. 

 

I. INTRODUCTION 

Hydraulic systems are very commonly used in industry. 
Like any other system these systems too are prone to 
different types of faults. Proportional valves are much less 
expensive in hydraulic control applications; they are more 
suitable for industrial environments. Since proportional 
valves do not contain sensitive, precision components, they 
offer various advantages over servo valves because they are 
less prone to malfunction due to fluid contamination. 
However, these advantages are offset by their nonlinear 
response characteristics.  
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Since proportional valves have less precise manufacturing 
tolerances, they suffer from performance degradation. The 
larger tolerances on spool geometry result in response 
nonlinearities, especially in the vicinity of neutral spool 
position. Proportional valves lack the smooth flow properties 
of “critical center” valves, a condition closely approximated 
by servo valves at the expense of high machining cost. As a 
result, small changes in spool geometry (in terms of lapping) 
may have large effects on the hydraulic system dynamics [4]. 
Especially, a closed-center spool (overlapped) of proportional 
valve, which usually provides the motion of the actuator in a 
proportional hydraulic system, may result in the steady state 
error because of its dead-zones characteristics in flow gain 
[4]. Fig.1 illustrates the characteristics of proportional valve. 
Continuous online monitoring of fault in hydraulic system 
becomes increasingly important day-by-day. 
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Fig.1 Characteristics of 4/3 closed-center proportional valve 

The characteristics of the proportional valve with dead-

zones, ( )g u is described as follow, fig.1: 
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where , 0b a  . a represents the slope of the response 

outside the dead-zone, while the width of the dead-zone 
equals 2b. 

Remarkable efforts have been devoted to develop 
controllers. However, PID controllers are not robust to the 
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parameter variation to the plants being controlled. Moreover, 
it takes time for the automatically self tuned PID controllers 
to online adapt themselves up to their final stable state.  

The fault detection problem can be solved using different 
approaches like Wald’s Sequential Test, as in [4] which is a 
conventional approach or using innovative approaches like 
genetic algorithms as in [12], neural networks as in [7], [8], 
fuzzy logic as in [6] etc. each having its own advantages and 
disadvantages.  

Human experts play central roles in troubleshooting or 
fault analysis. In power systems, it is required to diagnose 
equipment malfunctions as well as disturbances. The 
information available to perform equipment malfunction 
diagnosis is most of the time incomplete. In addition, the 
conditions that induce faults may change with time. 
Subjective conjectures based on experience are necessary. 
Accordingly, the expert systems approach has proved to be 
useful. As stated previously, fuzzy theory can lend itself to 
the representation of knowledge and the building of an expert 
system. In this paper we used fuzzy logic to detect the 
severity of fault at the output. 

The concept of fuzzy logic was first introduced in 1964 by 
Professor Lofti Zadeh in [13] which represented the 
vagueness of human concepts in terms of linguistic variables. 
After the introduction of fuzzy sets, their applications to 
solve real world problems were concentrated [2], [11]. 

Reference [1] concentrates on robust fault detection on an 
aircraft flight control system. A model based fault diagnosis 
method for an industrial robot is proposed in [10]. Residuals 
are calculated by the observer using a dynamic robot model 
and later evaluated using fuzzy logic. 

In this paper we demonstrate a similar model based 
approach for evaluating of severity of fault in the hydraulic 
actuator using fixed threshold approach, [5]. The objective 
knowledge on the system is represented by mathematical 
modeling (calculating the residuals using nonlinear observer), 
[4] while the subjective knowledge is represented using fuzzy 
logic (fuzzy rules and membership functions). 

II. SYSTEM UNDER CONSIDERATION 

The schematic of the hydraulic system under 
consideration, the mathematical model and the design of 
nonlinear observer can be found in [4]. General nonlinear 
dynamical systems can be described as follows: 
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where ( ) ( ) ( ) ( ) ( )h x l x x u t T x      ; , and l  

are unknown smooth functions. 1 2 3( , , ,..., )nx x x x x is the 

state vector, nx R , u and y R ; ˆz y is the observer 

output vector; ( )x represents the uncertainty in the system 

dynamics that may include parameter perturbations, external 
disturbances, noise, etc. All long this study, we consider 

abrupt fault at time T. As a result, ( )t T  is the time 

profile of failures as shown in fig. 2. 
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Fig.2 Function ( )t T   in (2) 

 ( )x is another function which represent a failure in the 

system. Mathematical description of the nonlinear observer 
as follows:  
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where ˆ ˆ ˆ( ) ( ) ( ) ( )f f f fh x l x x u x        ; K is 

the observer gain matrix which is selected such as 

0
TA A KC  is strictly Hurwitz matrix.  

In the discrete time system, consider from (2) and (3) 

( ) ( ) ( )e k y k z k  . The actual state of the system y(k) is 

known through the sensors. The residual e(k) is calculated as 
follows: 

( ) ( )( ) y k M z kp pe k M                          (4) 

Mp is an identity matrix of size m n , 4 1M Ip    

It is perceived that the performance of the actuated system 
is selected based on four parameters having a range of value 
from zero (0) to one (1). The elements of the state vector z ≈ 

[v Pi Po xsp] 
T are: velocity x v , input pressure Pi, output 

pressure Po and xsp spool displacement. The residual of these 
four can be measured. In this paper we have concentrated on 
the velocity residual and the identity matrix Mp = [1 0 0 0]. 
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Theoretically, these residuals should be zero under no fault 
condition. However, in practical context, due to noise, 
inexact mathematical modeling and system nonlinearity, this 
residual is never zero even under no fault condition. 
Reference [4] uses a conventional method called Wald’s 
Sequential Test to detect fault. In this method, the cumulative 
residual error is calculated over a period of time and fault is 
detected using the fixed threshold concept.  

This conventional method has some disadvantages. A 
value just below the threshold is not considered as a fault 
while some value just above the threshold will be considered 
as a fault. This can also lead to missing alarms and false 
triggers. This information could be potentially misguiding to 
the operators working on the hydraulic system. This is the 
drawback of binary logic. The conventional method is rigid 
and does not consider a smooth transition between the faulty 
and the no fault condition. The probability assignment 
procedure is heuristic and depends on the number of 
Zeros/Ones in the failure signature. This does not give any 
information about the fault in between the thresholds. In 
order to take care of this condition we try to replace this 
binary logic by multi-valued one using fuzzy logic. 
Evaluating these residuals using fuzzy logic replaces the 
yes/no decision of fault by the severity of fault at the output. 

III. ROLE OF FUZZY LOGIC 

From the point of view of human–machine cooperation, it 
is desirable that faults classification process would be 
interpretable by humans in such a way that experts could be 
able to evaluate easily the classifier solution. Another interest 
of an intelligent interface lies in the implementation of such a 
system in a control room. Operators have to be informed very 
quickly if a fault is occurring. They have to understand what 
exactly the process situation is, in order to make the right 
counteraction if possible or to stop the system if necessary. 

For instance, as shown in fig.3, the fuzzification vector 
can be assigned to an index of a color map, representing a 
color code, by defuzzification. 

Figure 3depicts the overall architecture of the hydraulic 
system fault detection where u(t) is the control input. The 
mapping of the inputs to the outputs for the fuzzy system is 
in part characterized by a set of condition → action rules (If-
Then) form: 

 premise  consequentIf then    (7) 

The inputs of the fuzzy system are associated with the 
premise, and the outputs are associated with the consequent. 
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Fig. 3 The structure of Fuzzy fault diagnosis  

As already seen, the difference between the expected state 
z(k) and the actual state of the system y(k) gives the residual 
e(k). The value of residual is added over a period of time 
which gives the cumulative residual ∑e(k). This value is 
subtracted from the predicted threshold and is called 
cumulative residual difference. The lower the value of this 
cumulative residual difference, higher is the fault severity, 
indicating that the cumulative residual is approaching the 
threshold and vice versa. The threshold is determined through 
observations. It will vary depending upon the fault tolerance 
of the application in which the hydraulic system is used. 
Even if there is no fault, the modeling errors or noise drive 
several residuals beyond their threshold. This is usually 
indicated by all suspect residuals being weak. The residual is 
bounded between the upper and the lower threshold. As soon 
as it approaches these thresholds, the fault severity increases. 
Thus, the residual and the cumulative residual difference are 
given as two inputs to the fuzzy logic controller. Based on 
these two inputs, the controller decides the fault severity at 
the output. 

One of the equations of fuzzy equality can be written as: 
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where n is the dimension number of the discrete 

space, A is the membership function of fuzzy set A, B is the 

membership function of fuzzy set B. 
Suppose that a fuzzy rule set to be detected F represents 

the current working class of the actuated hydraulic system, 
and the other fuzzy reference rule set Fi stands for one 
working class of the system. Since both the fuzzy reference 
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rule sets and fuzzy rule set to be detected have the same 
hypersphere subspaces, the equation (6) can be used for their 
contrasts. As a result, in this study, the approximate 
measurement of the fuzzy reference rule set Fi can be 
expressed by: 

                                

( )
( )

e kis ki ei
                                 (8) 

where ei(k) is the ith residual; si(k) is the residual-to-
threshold ratio. 

Obviously si(k) is greater than or equal to 1 if the test is 
fired on the residual and si(k) is less than 1 if it did not. 

IV. DESIGN OF FUZZY LOGIC CONTROLLER 

On the one hand, note that fuzzy reference rule sets 
impossibly cover the whole plant faults; on the other hand, 
the fuzzy rule set to be detected may bring forward the 
undefined symptoms which can’t be distinguished from fuzzy 
reference rule sets, as shown in fig. 3. How can we solve this 
problem?  

To solve this problem, we include in the evaluation 
procedure an additional credit degree of unknown classes 
which is expressed as follows: 

1

1 ,max( )
i

n

e

i
A BS



   

Obviously, 0 1,SA B 

 

    (9)

 

 

A. Inputs 

Fig. 4 illustrates the actual and the estimate velocities. The 
difference is due to the error introduced in the actual system 
by adding random noise to the velocity during simulation. 
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Fig.  4 Graph showing Actual velocity and observed velocity vs time 

The plot of residual, cumulative residual, cumulative 
residual difference along with the thresholds can be seen in 
the fig. 5 and fig. 6. As seen earlier, the residual and the 
cumulative residual difference are the two inputs to the fuzzy 
logic controller. 

Fault isolation thresholds are very important parameters; 
their values are also decided by the statistical analysis of the 
fault credit degrees (9). As for unknown fault type, 
consulting fault isolation thresholds are selected upon our 
knowledge on the system. The detection results of the normal 
data of the space propulsion system are shown in fig. 5. 
Because normal credit degree does not exceed the threshold, 
the detection results are that no fault exists, and working 
conditions are normal. 
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Fig 5. Graph showing ‘Residual’ along with the upper and lower thresholds 

vs ‘number of observations’ 
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Fig 6. Graph showing the cumulative residual and the cumulative residual 

difference along with the upper and lower thresholds vs the number of 
observations 

B.   Membership Functions 

    The first input which is residual is divided into 7 
membership functions namely, Big Negative (BN), 
Negative(N), Small Negative(SN), Zero(Z), Small 
Positive(SP), Positive(P) and Big Positive(BP) shown below. 

 
Fig 7.  Membership functions for the first input 'Residual' 
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    Similarly, we developed 5 membership functions for the 
second input which is cumulative residual difference. They 
are Large Negative(LNeg), Medium Negative(MNeg), Small 
Negative(SNeg), Zero(Zero) and Positive(POS) as seen in the 
following fig.  

 

Fig 8. Membership functions for the second input 'Cumulative Residual 
Difference’ 

As already seen there are 4 parameters which can be used 
to calculate the residuals. Among them the velocity is the 
most concerned parameter in this case of study. Hence, the 
velocity residual is selected to determine the fault severity at 
the output.  

The membership functions for the output i.e. fault severity 
are F0, F1, F2, F3, F4, F5 and F6 where F0 represents the 
lowest fault severity and F6 represents the highest fault 
severity. The shapes of the membership functions which are 
triangular and trapezoidal were selected based on the simple 
guidelines suggested in [3]. This can be seen in the following 
fig. 

 

Fig 9.  Membership functions for the output 'Fault Severity' 

C.  Rule Based Inference 

Inference rules were developed which relate the two inputs 
to the output. They are summarized in the Table I. As seen 
from the table, there are in all 35 rules. For example, if the 
residual is Big Positive (BP) and the cumulative residual 
difference is Large Negative (LNeg) then the output fault 

severity is the highest (F6). Similarly, if the residual is Zero 
(Z) and the cumulative residual difference is Positive (Pos) 
then the output fault severity is the lowest (F0). 

TABLE І: RULE BASED INFERENCE 
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Residual ‐>

BN NEG SN Z SP POS BP

Pos F3 F2 F1 F0 F1 F2 F3

Zero F4 F3 F2 F1 F2 F3 F4

SNeg F5 F4 F3 F2 F3 F4 F5

MNe
g

F6 F5 F4 F3 F4 F5 F6

LNeg F6 F6 F5 F4 F5 F6 F6

 
D. Defuzzification 

After converting the crisp information into fuzzy the last 
step is to reverse that. Converting the fuzzy information to 
crisp is known as defuzzification. The center of area/centroid 
method was used to defuzzify these sets which can be 
represented mathematically as follows: 

                      

( )

( )

f fi iDefuzzified value
fi











                      (10) 

Where fi is the fault severity at the output and µ(fi) is the 
output membership function. 

E.  Rule Viewer 

The rules can also be seen from the rule viewer using the 
fuzzy logic toolbox in MATLAB software. When the residual 
is 0.01, it is far away from both the upper and lower 
thresholds (almost at the center) and hence, has lower fault 
severity. Also, the cumulative residual difference is 9 which 
means the difference between the actual value of cumulative 
residual and threshold is high i.e. cumulative residual is far 
away from the threshold. Hence, the fault severity should be 
low. A combination of these values of residual and 
cumulative residual gives fault severity percentage of 9.96% 
which is low. Similarly, when the residual is 0.089 it 
indicates that it is very close to the threshold. A cumulative 
residual difference of -9 indicates that the threshold has been 
already crossed by the cumulative residual (hence it is 
negative). Both of these conditions lead to a very high fault 
severity of 98.4%. This can be seen with the help of the rule 
viewer facility in the fuzzy logic toolbox. These examples are 
shown in fig. 10 and fig. 11 respectively with the help of rule 
viewer. 
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Fig. 10 Test Results for low fault severity 

 

Fig. 11 Test results for high fault severity

 

Fig 12. MATLAB/SIMULINK mode 
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V. SIMULATION 
This simulation was carried out in MATLAB 

SIMULINK using fuzzy logic controller from the fuzzy 
logic toolbox as shown in fig. 12. The upper subsystem 
represents the actual system (actual state of the hydraulic 
system) and the lower subsystem is the nonlinear observer 
(which predicts the state of the system). The SIMULINK 
diagram is the implementation of the block diagram shown 
in fig. 1. The simulation is carried out for a unit step input. 
Fault is introduced in the actual system by adding noise to 
the velocity in the actual system and different fault 
severities are tested at the output.  

VI. CONCLUSION 

The main goal here was to provide maintenance engineers 
continuous online information about the systems health 
which would guide them to make decisions. This information 
needs to be given at an incipient stage in order to avoid any 
further serious damage to the system. This also helps in 
avoiding false triggers and missing alarms. This work shows 
that fuzzy logic when used in combination with analytical 
methods like non linear observer can enhance the output. It 
acts as a good extension to upgrade the system 

With the fuzzy match results between the fuzzy rule set to 
be detected and fuzzy reference rule sets, diagnosis logic 
module automatically judged whether the plant working 
condition is normal or not. Moreover while fuzzy rule sets 
are set up, the fuzzy reference rule set generated is used for 
representing the normal working condition, which is 
supposed to be the first fuzzy reference rule set.  

Simulation results showed what we all know: whatever 
fault type the plant generates, its symptoms always depart 
from the characteristics of the fuzzy reference rule set 
standing for the normal working condition. And thus, with 
the credit degree representing the normal working, we judged 
whether the plant working condition is normal, further obtain 
the fault degree. This study helped to assure that the plant 
fault existed and to report the system conditions. Future work 
will be developed to identify the fault type and predict the 
equipment remaining life. 
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