

Abstract—Since real manufacturing is dynamic and tends to

suffer a wide range of uncertainties, research on production
scheduling under uncertainty has received much more attention
recently. Although various approaches have been developed for
scheduling under uncertainty, this problem is still difficult to
tackle by any single approach, because of its inherent
difficulties. This paper considers makespan minimisation of a
flexible flow shop (FFS) scheduling problem with stochastic
processing times. It proposes a novel decomposition-based
approach (DBA) to decompose an FFS into several machine
clusters which can be solved more easily by different
approaches. A neighbouring K-means clustering algorithm is
developed to firstly group the machines of an FFS into an
appropriate number of machine clusters, based on a weighted
cluster validity index. A back propagation network (BPN) is
then adopted to assign either the shortest processing time (SPT)
or the genetic algorithm (GA) to generate a sub-schedule for
each machine cluster. If two neighbouring machine clusters are
allocated with the same approach, they are subsequently
merged. After machine grouping and approach assignment, an
overall schedule is generated by integrating the sub-schedules of
the clusters. Computation results reveal that the proposed
approach is superior to SPT and GA alone for FFS scheduling
under stochastic processing times.

Keywords—back propagation network, decomposition,
flexible flow shop, neighbouring K-means clustering algorithm,
stochastic processing times.

I. INTRODUCTION
 Ever since the flexible flow shop (FFS) scheduling

problem was identified in 1970’s [1], it has attracted
considerable attention during the past decades [2]. An FFS
consists of a series of production stages, each of which has
several functionally identical machines operating in parallel.
All the jobs released to an FFS have to visit all the stages in
the same order. Research efforts on FFS scheduling problems
generally consider a static environment with no unexpected
events that would influence the job processing when the
schedule is executed.

Real manufacturing, however, is dynamic and tends to
suffer a wide range of uncertainties, such as stochastic
processing times, machine breakdown, rush orders, job
cancellations, and change of due date. This paper is primarily
concerned with the scheduling problem of FFS with stochastic

K. Wang is with the Department of Industrial and Manufacturing Systems
Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong,
China (phone: 852-6874-0287; fax: 852-2858-6535; e-mail:
wkxy8009@hkusua.hku.hk).

S. H. Choi is with the Department of Industrial and Manufacturing
Systems Engineering, The University of Hong Kong, Pokfulam Road, Hong
Kong, China (e-mail: shchoi@hku.hk).

processing times. The FFS scheduling problem [3] has been
proven NP-hard in nature which is difficult to solve [4, 5].
Consideration of stochastic processing times aggravates its
complexity.

As a research issue, production scheduling under
uncertainty has indeed drawn considerable attention in recent
years. The completely reactive approach, the robust approach,
and the predictive-reactive approach are three fundamental
ways [6, 7] to tackle this issue.

The completely reactive approach changes decisions during
execution when necessary. The dispatching rule is a typical
reactive one, in which jobs are selected by sorting them
according to predefined criteria. It is easy to understand, and
can find a reasonably good solution in a relatively short time.
However, it uses only local information to generate a
schedule, which may not be globally optimal in nature.

 Hunsucker and Shah [8] compared the performance of
dispatching rules in a constrained multiprocessor flow shop,
and concluded that the Shortest Processing Time (SPT)
algorithm was superior for the makespan criterion. Similarly,
Rajendran and Holthaus [9] studied the performance of
dispatching rules in dynamic flow shops and job shops with
stochastic job arrivals and stochastic processing times. The
performance of a variety of dispatching rules was evaluated
with respect to criteria related to flow time and tardiness of
jobs. Experiment results implied that no single dispatching
rules dominated in all criteria.

Although dispatching rules tend to be simple and fast, they
cannot optimise the overall performance of a system.
Therefore, the research focus has shifted from a single
dispatching rule to a set of dispatching rules.

Tang et al. [10] examined the dynamic FFS scheduling
problem with random job arrivals. He applied the neural
network to dynamically select a dispatching rule to generate
schedules. Experiment results indicated that the neural
network approach consistently performed better than a single
traditional dispatching rule. Singh et al. [11] introduced a
multi-criteria methodology by swapping dispatching rules in a
shop with dynamic nature. The swapping of dispatching rules
was determined by the worst performance criteria in the
performance measures. It was evaluated in the presence of
machine breakdown and had been demonstrated to improve
the system performance.

The robust scheduling approach takes into account possible
uncertainties to construct solutions. Uncertainties, known as a
priori, can be modelled by some random variables [12]. If
such uncertainties are difficult to quantify, a range of
scenarios will be considered and a solution is developed to
optimise the performance under different scenarios [13]. In

Decomposition-Based Scheduling for Makespan
Minimisation of Flexible Flow Shop with Stochastic

Processing Times
K. Wang and S.H. Choi

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

this case, the approach is viewed as a form of under-capacity
scheduling to maintain robustness under different scenarios.

Wang et al. [14] presented a class of hypothesis-test-based
genetic algorithms to address flow shop scheduling problems
with stochastic processing times. The solutions were
generated by GA and evaluated by multiple independent
simulations. The hypothesis test was performed to discard the
solutions with no significant difference. They demonstrated
the effectiveness of the proposed algorithm by comparison
with the traditional GA.

Ahmadizar et al. [15] addressed a stochastic group shop
scheduling problem with random release dates and processing
times. They developed a simulation optimisation approach,
which was a hybrid of an ant colony optimisation algorithm, a
heuristic algorithm to generate good solutions, and a discrete
event simulation model to evaluate the solution performance.

The predictive-reactive approach is indeed a two-step
process. First, a predictive schedule is generated over the time
horizon considered. This schedule is then rescheduled during
execution in response to unexpected disruptions. This
approach is by far the most studied. Two issues, when and
how to react to disruptions, have to be addressed.

For the first issue, three policies, namely periodic, event
driven, and hybrid, have been introduced [16, 17]. The
periodic policy updates the schedule for a fixed interval based
on the status of the shop. For the event driven policy,
rescheduling is trigged by the disruptions instead of by time
intervals. A hybrid policy reschedules periodically as well as
when a disruption arises.

To address the second issue, the most common
rescheduling methods include the right-shift schedule repair,
the partial schedule repair, and the completed scheduling [18].
The right-shift schedule repair postpones the remaining
operations by the amount of time needed to make the schedule
feasible. The partial schedule repair only reschedules the
operations that are affected by the disruption. The completed
scheduling regenerates a completely new schedule for all the
unprocessed operations. Although the completed scheduling
may construct a better solution in theory, it is rarely applied in
practice due to high computation burden and increasing
scheduling instability [12]. Conversely, the right-shift
schedule repair yields the least scheduling instability with the
lowest computation effort, while the partial schedule repair is
a moderate one in this regard.

Since each of these three approaches has its own strength
and weakness, some research work has focused on comparing
their effectiveness. Lawrence and Sewell [19] studied the
static and dynamic applications of heuristic approach to job
shop scheduling problems when processing times were
uncertain. Experiment results indicated that the predictive
methods based on overall information were highly likely to
perform better than completely reactive approaches in an
environment under little uncertainty. However, the predictive
methods might lead to poor result when the uncertainty in a
system exceeded a certain level. Sabuncuoglu and Bayiz [20]
tested the reactive scheduling approaches under machine
breakdown in a classical job shop system. They showed that
online scheduling rules degraded less than offline scheduling
algorithms in the stochastic environment. This conclusion was
consistent with that of Lawrence and Sewell’s [19].

In order to handle a complex environment, it is beneficial
and imperative to take advantage of mixing these three
approaches to deal with uncertainty. Matsuura et al. [21]
developed a predictive approach on a periodic basis, called
switching. The system switched to using a dispatching rule for
the remaining operations when the deviation between the
realized and predictive schedule exceeded a certain level.
They concluded that the proposed approach dominated the
dispatching rules when the frequency of disruption was low,
but it yielded worse results than the dispatching rules when
the disruption reached some level. A search of available
literature indicates not much research works have been
attempted to address the combination of different approaches.

This paper studies the problem of scheduling an FFS under
the uncertainty of stochastic processing times, with the
objective to minimise the makespan. Enlightened by the work
of Lawrence’s [19], a decomposition-based approach (DBA)
is proposed. In this approach, a neighbouring K-means
clustering algorithm first groups the machines of an FFS into
several machine clusters based on their stochastic nature when
processing jobs. Then the completely reactive approach or the
predictive-reactive approach, determined by the process of
approach assignment, is employed to generate a sub-schedule
for each machine cluster. Finally these sub-schedules are
integrated into an overall solution.

This study contributes to the development of an integrated
approach that combines and takes advantage of the completely
reactive approach with the predictive-reactive approach to
deal with the uncertainty. On the contrary, the techniques
reported in available literature on scheduling under
uncertainty were mostly based on a single approach, yielding
some initial yet limited performance. The proposed DBA
explores a new direction for future research in the field of
scheduling under uncertainty.

The remaining part of this paper is organized as follows.
Section II is devoted to problem description. Section III
describes the framework of DBA, while it is explained in
detail in Section IV. To evaluate the effectiveness of DBA,
simulation is conducted and computation results are analysed
in Section V. Finally, conclusions are summarised and some
directions of future work are discussed in Section VI.

II. PROBLEM DESCRIPTION
In the FFS discussed above, machines sharing a similar

characteristic are arranged into stages in series. Jobs have to
pass all the stages in the same order. In each stage, there are a
number of functionally identical machines in parallel, and a
job is to be processed on one of these machines. The
processing time may be highly uncertain due to quality
problems, equipment downtime, tool wear, and operator
availability [19].

The stochastic processing time can be described by the
expected processing time E[P] and the standard deviation σ.
The coefficient of processing time variation (CPTV), defined
as ()CPTV E Pσ= , can be used as an indicator to
processing time uncertainty; it equals 0 when processing times
are deterministic, and increases as the uncertainty increases.

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

In order to simplify the typical FFS scheduling problem in
consideration of stochastic processing times, the following
assumptions are made:

• Preemption is not allowed for job processing;
• All jobs are released at the same time for the first stage;
• All machines are available when jobs are released to the

FFS. Each machine can process at most one operation at
a time;

• There is no travel time between machines;
• There is no setup time for job processing;
• Infinite buffers exist for machines;
• For the same job, the expected processing time at any

parallel machine at a stage is identical;
• The actual processing time of a job on a machine is

uncertain, and it can be longer or shorter than the
expected one;

• As parallel machines at a stage are functionally identical,
they lead to the same CPTV when processing any jobs,
but the CPTV may be different for other stages;

• Except for stochastic processing times, there are no other
types of uncertainties to disturb job processing.

The scheduling objective is to determine the processing

sequence of operations on each machine such that the
makespan, which is equivalent to the completion time of the
last job to leave the FFS, is minimised without violating any of
the assumptions above. This FFS scheduling problem can also
be described as follows.

min{max[] }t jC

(1)

Subject to the following constraints:

1

1 1 1
1

, 0
m

j j ij
i

C P if U
=

= >∑
(2)

 ()
1 1

2 1 2 1 2 2
2

1 1 1 1 1
1 1 1

, 0
m mn

j ij j j j ij
i j i

C B C P if U
= = =

= × + =∑ ∑ ∑
(3)

 ()-1
1

, 1 & 0
km

kj kj kijk j
i

C C P if k U
=

= + > >∑
(4)

() ()2 1 2 1 22

2

2

-1
1 1

1

max{ , } ,

 1 & 0

k

k

m n

kj kij j kj kjk j
i j

m

kij
i

C B C C P

if k U

= =

=

= × +

> =

∑ ∑

∑

(5)

 0k ijS T ≥
(6)

 ()
1 2 1 2,ki j ki j kj kP P P i i M= = ∈，

(7)

 () 2 211 ki j ki jk i jST ST P+ − ≥
(8)

 1 2 2 2 1 1
[()] [()]kij kij kij kij kij kijST ST P or ST ST P− ≥ − ≥ (9)

Where

k: stage index, 1 ≤ k ≤ t
mk: number of parallel machines at stage k
Mk: set of parallel machines at stage k
i, i1, i2: machine index, 1 ≤ i, i1, i2 ≤ mk

j, j1, j2: job index, 1 ≤ j, j1, j2 ≤ n
Ckj: completion time of Job j at stage k

1 2kij jB : a Boolean variable, 1 if Job j2 is scheduled
immediately after Job j1 on machine i at stage
k, and 0 otherwise

Ukij: a Boolean variable, 1 if Job j is the first job on
machine i at stage k, and 0 otherwise

Pkj: stochastic processing time of Job j at stage k
Pkij: stochastic processing time of Job j on

machine i at stage k
STkij: start time of Job j on machine i at stage k

For the first stage, (2) and (3) give the completion time of

the first job and that of each subsequent job on the machines,
respectively.

Similarly for all other stages, (4) and (5) determine the
completion time of the first job and that of each subsequent
job on the machines, respectively.

While (6) ensures non-negative start time of job processing,
(7) stipulates that each of the parallel machines at a stage takes
equal time to process the same job.

Lastly, (8) requires the processing sequence of each stage to
satisfy the processing time, and (9) guarantees that each
machine can process only one job at a time.

III. THE FRAMEWORK OF THE PROPOSED
DECOMPOSITION-BASED APPROACH (DBA)

The predictive approaches are likely to perform better than
the completely reactive approaches in a low stochastic
environment, but they may lead to poor result in a high
stochastic environment [19, 20]. Based on this observation, a
decomposition-based approach (DBA) is proposed to provide
better performance for FFS scheduling problems in any
stochastic environment. The DBA framework consists of
three modules, as shown in Fig. 1.

Figure 1. The framework of the proposed

decomposition-based approach (DBA)

A. FFS Decomposition
An FFS is firstly decomposed by a clustering algorithm into

machine clusters, each of which contains a number of
machines sharing a similar stochastic nature. The stochastic
nature of a machine results from the uncertainties which occur
during job processing and when a schedule deviates from the
planned one. The high stochastic nature of a machine usually
leads to a large difference between the actual and the planned
schedule. As the actual processing times of jobs on a machine

Assign an appropriate approach to each machine cluster

Generate and integrate sub-schedules of machine clusters

Decompose FFS into machine clusters

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

may be non-deterministic, the processing time uncertainty
during job processing is used to describe the stochastic nature
of a machine.

Clustering is the classification of objects into different
groups, such that the objects in each group would share some
common trait. Quite a few algorithms, such as K-means, fuzzy
C-means, and self-organization maps etc., have been
proposed to perform the classification. Since the K-means
clustering algorithm is simple and widely used, a
neighbouring K-means clustering algorithm is proposed and
adopted to decompose an FFS in this paper.

After decomposition of an FFS, machines in the same
machine cluster share a similar stochastic nature of job
processing and can be scheduled by the same approach.
Machine clusters with low stochastic natures are solved by the
predictive-reactive approach, while those with high stochastic
natures are scheduled by the completely reactive approach.
Due to their better performance, the Genetic Algorithm (GA)
and the Shortest Processing Time (SPT) algorithm are
identified as the predictive-reactive approach and the
completely reactive approach, respectively.

B. Approach Assignment
In order to assign an appropriate approach to a machine

cluster, it is critical to establish an effective model to estimate
the makespan difference (MDSG) when generating the
schedule by both SPT and GA. Artificial neural networks
(ANNs) have been widely used in various areas due to its
capability of identifying complex nonlinear relationships
between input and output. The back propagation network
(BPN) is a commonly used ANN structure and has been
successfully applied for system modelling, prediction, and
classification [22]. It is therefore adopted to estimate the
MDSG for each machine cluster, and the positive or negative
sign of the MDSG determines the approach to be assigned to
the machine cluster.

Fig. 2 shows the decomposition result of an FFS with 7
stages and 3 parallel machines at each stage. Geometric
figures with the same shape represent the parallel machines.
One of the two approaches, GA or SPT, is assigned to each
machine cluster.

Figure 2. Machine clusters in an FFS

C. Sub-schedule Generation and Integration
After approach assignment above, the sub-schedule for

each of the machine clusters is generated by either SPT or GA,
and subsequently integrated into an overall schedule.

The major feature of DBA is its decomposition strategy –
combining and taking advantage of GA and SPT to generate a
better result when scheduling in any stochastic environment.

IV. DETAILED ALGORITHM

A. Neighbouring K-means Clustering Algorithm
For the purpose of decomposing an FFS, the machines of

an FFS are grouped into a few machine clusters in which
machines share a similar stochastic nature. Since the CPTV
represents processing time uncertainty, it is adopted to form
the stochastic vector Ui to group machines into machine
clusters of similar stochastic natures, giving

 []i iU CPTV=

(10)

Where CPTVi is the CPTV of the parallel machines at stage

i. Ui represents the stochastic nature of machines at stage i. A
machine with a large CPTV indicates a high stochastic nature
of job processing.

As the Euclidean distance is one of the most commonly
used methods to measure the distance between a pair of data,
it serves to define the machine distance (),i jD U U , which

represents not the physical distance but the difference of
stochastic nature between the parallel machines at stages i and
j. The machine distance is calculated as follows.

 () ()2

2
,i j i j i jD U U U U CPTV CPTV= − = −

(11)

For the parallel machines at stages i and j, the larger
the (),i jD U U , the more is their dissimilarity and the less

likely of their being in the same machine cluster.
Considering (),i jD U U , the FFS can be decomposed into

machine clusters by K-means clustering algorithm. The major
problem to apply K-means clustering algorithm is the choice
of machine cluster number. Neither a small nor a large
machine cluster number can offer a satisfactory classification
of the data objects. Recently, cluster validity indices (CVIs),
indicating how well the clustering algorithm classifies the
given data set, have attracted much attention as an approach to
determining the optimal cluster number.

Most CVIs are defined by combining the intra-cluster
distances and inter-cluster distances. The former one
measures the distances of objects within a cluster to represent
its compactness, while the latter one computes the distance
between two different clusters and acts as an indicator of
cluster separability. Therefore, a good clustering algorithm
should have small intra-cluster distances and large
inter-cluster distances. Dunn [23], DB [24], Vsv [25] and DVI
[26] are some typical CVIs.

However, the FFS decomposition above is different from
the traditional clustering problem. Since this study aims to
schedule neighbouring machine clusters by different
approaches, a good clustering algorithm should encourage
large inter-cluster distances between neighbouring machine
clusters rather than that between non-neighbouring machine

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

clusters. For this purpose, a modified DB (MDB), giving the
weight to the inter-cluster distance, is proposed as follows:

1

1 max
n

i j

i ji ij ij

S S
MDB

n W D≠=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

+
=

×∑ (12)

 ()=1 +ij i jw F F (13)

Where n is the number of machine clusters; Si denotes the

intra-cluster distance, which measures the average machine
distance of all objects from the machine cluster i to their
cluster centre; Dij represents the inter-cluster distance, which
measures the machine distance between machine cluster centre i
and j; Wij is the weight of Dij; Fi is the first stage of ith machine
cluster. A small value of MDB indicates a good clustering.

In order to avoid specifying the machine cluster number, a
neighbouring K-means clustering algorithm, incorporated
with MDB, is established. Its procedure is shown in Fig. 3.

For k=2 to Kmax (Kmax = number of stages/2)
 For i=1 to Imax (Imax = 10)

Apply the K-means clustering algorithm to decompose an FFS
into k machine clusters;
Compute the MDB for ith iteration of decomposing an FFS into
k machine clusters;

End
End
Return machine clusters where the MDB is minimal over all i and
all k.

Figure 3. The proposed neighbouring K-means clustering
algorithm

B. Back Propagation Network for Approach Assignment
After decomposition of an FFS, the machine clusters can be

scheduled by either SPT or GA. The assigned approach for
each machine cluster can be determined by the makespan
difference of the schedules generated by SPT and GA
(MDSG), giving

 ()_ _SPT S GA S GAMDSG M M M= − (14)

Where MSPT_S and MGA_S are the makespans generated

respectively by SPT and GA with stochastic processing times,
while MGA is the makespan generated by GA with
deterministic processing times.

In order to accurately estimate the MDSG for each machine
cluster, the back propagation network (BPN) is adopted in this
study. For a machine cluster, if the MDSG is predicted to be
positive, GA is allocated to address the scheduling problem of
the machine cluster. Otherwise, SPT is used to generate the
schedule for the machine cluster.

Under the assumptions we made on the FFS scheduling
problem, jobs are released simultaneously in the first stage.
However, in subsequent stages, they are allocated by the FIFO
rule and may arrive non-simultaneously. Therefore, two
scenarios have to be considered when establishing models to

predict the MDSG. The first scenario assumes the jobs to be
released simultaneously, while the other allows the jobs arrive
non-simultaneously.

Accordingly, two BPNs, each corresponds to a scenario,
are generated. Their architectures are identical, as illustrated
in Fig. 4. The details of BPN establishment for each scenario
are as follows:

• Inputs: Four parameters, namely CPTV, stage size, job
size, and parallel machine size. These parameters are
found to affect the performance of MDSG significantly
according to the experiment results in Section V. The
first input is the mean of CPTVs for all the machines in a
machine cluster. All the four inputs are normalised in the
range of {0, 1} for input into a BPN;

• Number of single hidden layers: Generally one hidden
layer is capable of approximating any function with a
finite number of discontinuities. Therefore, the BPN
only consists of one hidden layer;

• Number of hidden neurons: There is no concrete rule to
find the optimal number. If inadequate hidden neurons
are adopted, it may introduce a greater risk of modelling
the complex data poorly. If too many hidden neurons are
used, the network may fit the training data extremely
well, but would perform poorly to new and unseen data.
For these reasons, the number of hidden neurons is
intentionally selected from the interval {2, 20} in this
study. For each scenario, the BPNs with different
number of hidden neurons are generated and evaluated
by the mean square error (MSE), and the one that
corresponds to the number of hidden neurons that give
rise to the least minimal MSE is termed the optimal
BPN.

• Output: MDSG. For the same FFS scheduling problem
with stochastic processing times, GA and SPT are used
to obtain the makespan by the simulation, respectively.
The MDSG is subsequently computed by (14);

• Number of epochs per replication: 10000;
• Number of replications: 100. The performance of a BPN

is sensitive to the initial condition of network. Therefore,
for a specific number of hidden neurons, 100 BPNs with
different initial conditions will be trained and evaluated
respectively. Among these BPNs, only the one with
minimal MSE is kept for the purpose to further identify
the optimal BPN.

• Training examples: A training example consists of a set
of values for the input neurons and the output neurons,
including CPTV, stage size, job size, parallel machine
size, and the expected MDSG. The details of training
example generation are described in Section V.

Both the number of epochs per replication and the number
of replications are chosen empirically to ensure generation of
BPNs with satisfactory performance within an acceptable
training time.

After training, validation, and testing, the optimal BPN can
be identified and used to determine the MDSG for each
scenario. The optimal BPN generated in the scenario of
simultaneous job arrivals is used to compute the MDSG of the
first machine cluster, while the optimal BPN established in the

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

scenario of non-simultaneous job arrivals is adopted to
estimate the MDSG of all other machine clusters.

Figure 4. The architecture of BPNs

The neighbouring K-means clustering algorithm cannot
avoid the possibility that two neighbouring machine clusters
are to be suitably solved by the same approach. Therefore, it is
reasonable to conduct a machine cluster merging process
(MCMP) to integrate neighbouring machine clusters if
necessary, using the following steps:

(1) Identify the two neighbouring machine clusters which
are to be solved by the same approach;

(2) Merge the two neighbouring machine clusters and
determine the approach for the new machine cluster by
optimal BPNs;

(3) Repeat steps 1 and 2 until any two neighbouring
machine clusters are allocated with different approaches.

Integrating with MCMP, the complete process of approach
assignment is summarised as follows:

(1) Generate training examples for both scenarios.
(2) Train, validate and test the BPNs;
(3) Estimate the MDSG for each machine cluster by

optimal BPNs;
(4) Assign either SPT or GA to each machine cluster

according to the positive or negative sign of its estimated
MDSG, respectively;

(5) Conduct MCMP.
Although the BPN provides a powerful way to model any

complex relationship between input and output data, it has its
own disadvantage. In order to improve the prediction
accuracy, a large number of training examples are required
and a long training time therefore is unavoidable. Moreover,
the scale of training examples and training time grows with
the increasing number of BPN inputs and their levels.
Although it is time-consuming to train the BPNs, it is a
one-off and the computation cost of DBA based on the trained
BPNs is comparable to that of GA or SPT.

C. Machine Cluster Scheduling
After FFS decomposition and approach assignment,

sub-schedules are generated by either SPT or GA for all
machine clusters and then integrated into an overall solution.

SPT, firstly handling the job with the shortest processing
time, performs better with low computation cost when the
machines in a machine cluster with a high stochastic nature. It
consists of the following two main steps:

(1) Determine the job sequence based on the SPT rule for
the first stage.

(2) Allocate the finished job from the previous stage to the
current stage by the FIFO rule until all the jobs are processed
at each stage.

GA, a typical local search algorithm, is used prior to the
dispatching rules when scheduling a machine cluster with a
low stochastic nature. The overall structure of our GA is
briefly described as follows:

• Coding: The job sequence is used as the chromosome for
the FFS scheduling problem. Integer coding scheme is
adopted for chromosome representation in the study. For
example, job sequence {2, 3, 5, 1, 4, 9, 8, 6, 7, 10} is a
chromosome with ten jobs in an FFS;

• Initialization: The initial population is randomly
generated;

• Fitness function: For the purpose to minimise the
makespan, the fitness function is formulated as

 maxfitness C= , where Cmax is the maximum
completion time of jobs at the last stage in an FFS;

• Selection strategy: Roulette wheel selection is applied to
reproduce the next generation;

• Crossover operation: Order preserved crossover (OPX)
is adopted. The OPX emphasizes the relative order of the
genes from both parents. To create the first child, a gene
segment from the first parent is firstly randomly selected
and placed into the first child corresponding to the first
parent position, and then the genes of the second parent,
not included in the segment, are put into the first child
according to the second parent order. To generate the
second child, the gene in the segment are copied to the
second child and preserves the relative positions
corresponding to the second parent, and then the genes
of the first parent, except for the ones in the segment, are
filled in the second child according to the first parent
order. For instance, {2, 3, 5, 1, 4, 9, 8, 6, 7, 10} and {1, 2,
4, 5, 6, 7, 8, 3, 9, 10} are randomly selected as parents,
and the gene segment is {4, 9, 8, 6}. Such crossover
operation produces the children as {1, 2, 4, 9, 8, 6, 5, 7, 3,
10} and {2, 3, 4, 5, 6, 1, 8, 7, 9, 10};

• Mutation operation: Shift move mutation (SM) is used.
The SM changes the relative position of one job. This
operation shifts a gene from the current position to a new
one while leaving all other relative gene orders
unchanged. For instance, one parent, {9, 8, 6, 7, 10, 2, 3,
5, 1, 4}, is randomly selected, and the couple of genes at
position 3and 7 are selected to performing the operation.
The offspring will be {9, 8, 7, 10, 2, 3, 6, 5, 1, 4};

• The crossover rate and mutation rate: The rates are
analysed by setting different values on the same FFS
scheduling problem. A crossover rate of 0.8 and a
mutation rate of 0.2 are found to give good performance;

• Termination criterion: The algorithm continues until 200
generations have been examined. This value is chosen
empirically.

To react to job processing delay caused by stochastic
processing times, SPT and GA adopt different policies for
machine cluster scheduling. For SPT, job allocation follows
an initial sequence at the first stage and FIFO rule at all other
stages. For GA, considering reducing computation effort and
scheduling instability, the right-shift scheduling repair is used,
which postpones the operations affected without changing the

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

job sequence in comparison with that of the schedule with
deterministic processing times.

V. COMPUTATION RESULTS AND ANALYSIS

A. Experiment Design
Two experiments are designed and conducted for the

performance evaluation of the proposed DBA. The first
experiment aims at establishing the BPNs for the MDSG
estimation. The second experiment focuses on analysing the
performance of DBA on makespan criterion. All the two
experiments have been implemented in Java and run on a PC
with Intel Pentium 4 2.80GHz processor and 1.00GB of
RAM.

In the two experiments above, the expected processing
times of operations are generated uniformly in the time unit
interval {1, 20} and their average value P equals 10 time units,
while the actual processing times are uncertain and follow the
gamma distribution with the expected processing time E(P)
and standard deviation () jE P CPTVσ = × , where CPTVj is

the coefficient of processing time variation at stage j.
In order to evaluate the proposed DBA in the second

experiment, a test-bed, containing 27 (3*3*3 = 27) problems
with different stages, jobs and parallel machines, is
established and shown in Table II. The number of jobs is
chosen to be 20, 30, and 40. The stage can be 6, 10, and 15.
The number of parallel machines ranges from 2 to 4. For each
problem, ten instances with different expected processing
times of operations are randomly generated and the simulation
is iterated 50 times for each instance.

B. Experiment I: Generation of BPNs for MDSG Estimation
In order to train, validate, and test the BPNs, it is necessary

to firstly generate training examples. Corresponding to the
two scenarios of simultaneous and non-simultaneous job
arrivals, two sets of training examples are generated,
respectively.

The levels of BPN input used in the experiment, including
CPTV, stage size, job size, and parallel machine size are
shown in Table I.

TABLE I. BPN INPUTS AND THEIR LEVELS
Factors Levels
CPTV 10 levels {0.1, 0.2, …, 1}

Stage size 10 levels {1, 2, …, 10}

Job size 20, 25, 30, 35, 40, 45

Parallel machine size 2, 3, 4, 5, 6, 7

For each scenario, by exploring all possible combinations

(10×10×6×6 = 3,600) of BPN inputs, the experimental
FFS scheduling problems to minimise makespans with
stochastic processing times are firstly generated, in each of
which all the parallel machines share the same CPTV.
Subsequently, these problems are solved by GA and SPT,
respectively. Lastly, the MDSG, which is the output of BPN,

can be obtained by (14) for each problem. Thus, this
procedure results in a total of 3,600 training examples for each
scenario.

Based on the data of the training examples, scatter plots are
generated to visualize the relationship of four factors,
including CPTV, stage size, job size and parallel machine
size, on the MDSG. As shown in Fig. 5, circles and squares
represent the results derived by the scenarios of simultaneous
job arrivals and non-simultaneous job arrivals, respectively.
For a specific x-value in Fig. 5, the y-value is the mean of
MDSGs of all the corresponding training examples.
Accordingly the following conclusions are drawn from the
scatter plots:

• The MDSG decreases with the increasing of CPTV,
stage size and job size. Parallel machine size affects the
MDSG as well. Therefore, it is reasonable to adopt these
four factors as BPN inputs;

• The MDSG is different for the two scenarios of
simultaneous and non-simultaneous job arrivals. Hence,
two BPNs are needed to estimate the MDSG.

Now, two types of BPNs, corresponding to the two
scenarios of simultaneous and non-simultaneous job arrivals,
can be obtained on the basis of the training examples. In order
to identify the optimal BPN for each scenario, BPNs with
different number of hidden neurons are established and their
prediction accuracy is measured by MSE.

Fig 6 shows the relationship of the minimal MSE with
various numbers of hidden neurons. It is apparent that the
numbers of hidden neurons that give rise to the least MSEs for
simultaneous and non-simultaneous job arrivals are 12 and 14,
respectively. Accordingly, the two BPNs corresponding to
these two numbers of hidden neurons are optimal ones and
used to estimate the MDSGs.

C. Experiment II: DBA Analysis
In order to evaluate the effectiveness of the proposed DBA,

it is analysed and compared with SPT and GA in a stochastic
environment, in which CPTV is uniformly distributed in the
interval {0.1, 1}. The experiment results of these three
algorithms with stochastic processing times (denoted by
SPT_S, GA_S, and DBA_S respectively) are shown in Table
II. The results of SPT and GA with deterministic processing
times (denoted by SPT, and GA respectively) are also given.

All the results are the ratios of the average makespan of
various scheduling algorithms to that of GA. From the
experiment results, the following conclusion can be drawn:

• SPT_S performs better than GA_S. The reason for such
poor performance of GA lies in using the right-shift
schedule repair in response to job processing delay
caused by stochastic processing times.

• DBA_S gives the best performance in most cases,
decreasing the makespan by about 3% and 13% in
comparison with SPT_S and GA_S, respectively.
Although DBA_S does not always perform best, it is the
only algorithm that can consistently give good
performance. The good performance of DBA is due to its
decomposition strategy, which combines the strengths of
GA and SPT to deal with stochastic processing times.

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Coefficient of Processing Time Variation (CPTV)

M
ak

es
pa

n
D

iff
er

en
ce

 (M
D

S
G

)

Non-simultaneous Job Arrivals
Simultaneous Job Arrivals

1 2 3 4 5 6 7 8 9 10
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

Stage Size

M
ak

es
pa

n
D

iff
er

en
ce

 (M
D

S
G

)

Non-simultaneous Job Arrivals
Simultaneous Job Arrivals

 (a) (b)

20 25 30 35 40 45
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

Job Size

M
ak

es
pa

n
D

iff
er

en
ce

 (M
D

S
G

)

Non-simultaneous Job Arrivals
Simultaneous Job Arrivals

2 3 4 5 6 7
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

Parallel Machine Size

M
ak

es
pa

n
D

iff
er

en
ce

 (M
D

S
G

)

Non-simultaneous Job Arrivals
Simultaneous Job Arrivals

(c) (d)

Figure 5. Scatter plots of the MDSG with (a) coefficient of processing time variation (CPTV), (b) stage size, (c) job size, (d)
parallel machine size.

2 4 6 8 10 12 14 16 18 20
0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10-3

Number of hidden neurons

M
in

im
um

 M
ea

n
S

qu
ar

e
E

rro
r (

M
S

E
)

2 4 6 8 10 12 14 16 18 20

3

3.5

4

4.5

5

5.5

6

6.5
x 10

-4

Number of hidden neurons

M
in

im
um

 M
ea

n
S

qu
ar

e
E

rro
r (

M
S

E
)

 (a) (b)

Figure 6. The minimal MSE with various numbers of hidden neurons for (a) simultaneous job arrivals, (b) non-simultaneous
job arrivals.

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

TABLE II. COMPARISON OF PERFORMANCE OF VARIOUS SCHEDULING ALGORITHMS a

Problem size (No. of jobs x no. of
stages)

No. of Parallel Machines in each
stage SPT GA SPT_S GA_S DBA_S

20×6 2 1.170 1.000 1.318 1.384 1.257
20×6 3 1.202 1.000 1.345 1.395 1.276
20×6 4 1.220 1.000 1.396 1.557 1.350

20×10 2 1.120 1.000 1.321 1.450 1.305
20×10 3 1.165 1.000 1.296 1.409 1.277
20×10 4 1.119 1.000 1.302 1.504 1.292
20×15 2 1.144 1.000 1.290 1.413 1.255
20×15 3 1.114 1.000 1.265 1.459 1.246
20×15 4 1.083 1.000 1.170 1.295 1.158
30×6 2 1.099 1.000 1.246 1.358 1.212
30×6 3 1.165 1.000 1.309 1.415 1.246
30×6 4 1.163 1.000 1.341 1.535 1.271

30×10 2 1.135 1.000 1.320 1.459 1.298
30×10 3 1.153 1.000 1.287 1.425 1.249
30×10 4 1.121 1.000 1.279 1.504 1.280
30×15 2 1.157 1.000 1.291 1.404 1.261
30×15 3 1.159 1.000 1.284 1.475 1.255
30×15 4 1.125 1.000 1.295 1.499 1.279
40×6 2 1.134 1.000 1.242 1.265 1.199
40×6 3 1.129 1.000 1.257 1.354 1.188
40×6 4 1.139 1.000 1.296 1.514 1.291

40×10 2 1.165 1.000 1.314 1.375 1.249
40×10 3 1.158 1.000 1.326 1.508 1.256
40×10 4 1.086 1.000 1.266 1.528 1.252
40×15 2 1.147 1.000 1.297 1.402 1.255
40×15 3 1.116 1.000 1.265 1.472 1.237
40×15 4 1.118 1.000 1.276 1.538 1.272

Average 1.141 1.000 1.292 1.441 1.258

 a. All the results are the ratios of the average makespan of various scheduling algorithms to that of GA.

VI. CONCLUSION
This paper proposed a decomposition-based approach

(DBA) to minimise the makespan of an FFS scheduling
problem with stochastic processing times. In this approach,
machines are grouped into several machine clusters by a
neighbouring K-means clustering algorithm without
predefining the number of machine clusters, and each
machine cluster is scheduled by either SPT or GA.

The effectiveness of DBA was validated with experiment
results. For most problems in the test-bed, DBA is superior to
SPT and GA. The better performance of DBA results from the
decomposition strategy – to schedule with GA in a low
stochastic environment and with SPT in a high stochastic
environment. This strategy ensures DBA’s good performance
when addressing FFS scheduling problems in any stochastic
environment.

The proposed DBA provides a promising way to address
FFS scheduling under stochastic processing times. Further

research can be devoted to evaluating the performance of
DBA by optimising the FFS scheduling problem with respect
to tardiness-related criteria, such as minimising the mean
tardiness of jobs. In addition, as a job shop is essentially more
complex than an FFS, another possible research area can
focus on extending the proposed DBA to solve job shop
scheduling problems with stochastic processing times.

REFERENCES
[1] T. S. Arthanari and K. S. Ramamurthy, "An extension of two machines

sequencing problem," Opsearch, 8, pp. 10-22, 1971.
[2] H. Wang. "Flexible flow shop scheduling: optimum, heuristics and

artificial intelligence solutions," Expert Systems, 22(2), pp.78-85,
2005.

[3] R. Linn and W. Zhang, "Hybrid flow shop scheduling: a survey,"
Computers and Industrial Engineering, vol. 37, pp. 57-61, 1999.

[4] M. R. Garey, Computers and intractability: a guide to the theory of
NP-completeness. New York: W. H. Freeman, 1979.

[5] J. N. D. Gupta, "Two-stage, hybrid flowshop scheduling problem,"
Journal of the Operational Research Society, vol. 39, pp. 359-364,
1988.

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

[6] H. Aytug, M. A. Lawley, K. McKay, S. Mohan, and R. Uzsoy,
"Executing production schedules in the face of uncertainties: A review
and some future directions," European Journal of Operational
Research, vol. 161, pp. 86-110, 2005.

[7] T. Vidal, "The many ways of facing temporal uncertainty in planning
and scheduling," Tatihou, France, 2004, pp. 9-12.

[8] J. L. Hunsucker and J. R. Shah, "Comparative performance analysis of
priority rules in a constrained flow shop with multiple processors
environment," European Journal of Operational Research, vol. 72, pp.
102-114,1994.

[9] C. Rajendran and O. Holthaus, “A comparative study of dispatching
rules in dynamic flowshops and jobshops,” European Journal of
Operational Research, 116 (1), pp. 156-170, 1999.

[10] L. Tang, W. Liu, and J. Liu, “A neural network model and algorithm for
the hybrid flow shop scheduling problem in a dynamic environment,”
Journal of Intelligent Manufacturing, 16 (3), pp. 361-370, 2005.

[11] A. Singh, N. Mehta, and P. Jain, “Multicriteria dynamic scheduling by
swapping of dispatching rules,” The International Journal of Advanced
Manufacturing Technology, 34 (9), pp. 988-1007, 2007.

[12] L. Liu, H. Y. Gu, and Y. G. Xi, "Robust and stable scheduling of a
single machine with random machine breakdowns," The International
Journal of Advanced Manufacturing Technology, vol. 31, pp. 645-654,
2007.

[13] P. Kouvelis, R. L. Daniels, and G. Vairaktarakis, "Robust scheduling of
a two-machine flow shop with uncertain processing times," IIE
Transactions, vol. 32, pp. 421-432, 2000.

[14] L. Wang, L. Zhang, and D.Z. Zheng, “A class of hypothesis-test-based
genetic algorithms for flow shop scheduling with stochastic processing
time,” The International Journal of Advanced Manufacturing
Technology, 25(11), pp. 1157-1163, 2005.

[15] F. Ahmadizar, M. Ghazanfari, and S. M. T. Fatemi Ghomi, “Group
shops scheduling with makespan criterion subject to random release
dates and processing times,” Computers & Operations Research, 37(1),
pp. 152-162, 2010.

[16] L. K. Church, and R. Uzsoy, “Analysis of periodic and event-driven
rescheduling policies in dynamic shops,” International Journal of
Computer Integrated Manufacturing, 5 (3), pp. 153-163, 1992.

[17] G. E. Vieira, J. W. Herrmann, and E. Lin, “Predicting the performance
of rescheduling strategies for parallel machine systems,” Journal of
Manufacturing Systems, 19 (4), pp. 256-266, 2000.

[18] G. E. Vieira, J. W. Herrmann, and E. Lin, "Rescheduling
manufacturing systems: A framework of strategies, policies, and
methods," Journal of Scheduling, vol. 6, pp. 39-62, 2003.

[19] S. R. Lawrence and E. C. Sewell, "Heuristic, optimal, static, and
dynamic schedules when processing times are uncertain," Journal of
Operations Management, vol. 15, pp. 71-82, 1997.

[20] I. Sabuncuoglu, and M. Bayiz, “Analysis of reactive scheduling
problems in a job shop environment,” European Journal of
Operational Research, 126 (3), pp. 567-586, 2000.

[21] H. Matsuura, H. Tsubone, and M. Kanezashi, "Sequencing, dispatching,
and switching in a dynamic manufacturing environment," International
Journal of Production Research, vol. 31, pp. 1671-1688, 1993.

[22] D. Y. Lin and S. L. Hwang, "Use of neural networks to achieve
dynamic task allocation: a flexible manufacturing system example,"
International Journal of Industrial Ergonomics, 24(3), 281-298, 1999.

[23] J. C. Dunn, "Fuzzy relative of iosdata process and its use in detecting
compact well-separated clusters," J Cybern, vol. 3, pp. 32-57, 1973.

[24] D. L. Davies and D. W. Bouldin, "A Cluster Separation Measure,"
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.
PAMI-1, pp. 224-227, 1979.

[25] D. J. Kim, Y. W. Park, and D. J. Park, "A novel validity index for
determination of the optimal number of clusters," IEICE Transactions
on Information and Systems, vol. E84-D, pp. 281-285, 2001.

[26] J. Shen, S. I. Chang, E. S. Lee, Y. Deng, and S. J. Brown,
"Determination of cluster number in clustering microarray data,"
Applied Mathematics and Computation, vol. 169, pp. 1172-1185, 2005.

Engineering Letters, 18:1, EL_18_1_09
__

(Advance online publication: 1 February 2010)

