
  

  
Abstract—Since real manufacturing is dynamic and tends to 

suffer a wide range of uncertainties, research on production 
scheduling under uncertainty has received much more attention 
recently. Although various approaches have been developed for 
scheduling under uncertainty, this problem is still difficult to 
tackle by any single approach, because of its inherent 
difficulties. This paper considers makespan minimisation of a 
flexible flow shop (FFS) scheduling problem with stochastic 
processing times. It proposes a novel decomposition-based 
approach (DBA) to decompose an FFS into several machine 
clusters which can be solved more easily by different 
approaches.  A neighbouring K-means clustering algorithm is 
developed to firstly group the machines of an FFS into an 
appropriate number of machine clusters, based on a weighted 
cluster validity index. A back propagation network (BPN) is 
then adopted to assign either the shortest processing time (SPT) 
or the genetic algorithm (GA) to generate a sub-schedule for 
each machine cluster. If two neighbouring machine clusters are 
allocated with the same approach, they are subsequently 
merged. After machine grouping and approach assignment, an 
overall schedule is generated by integrating the sub-schedules of 
the clusters. Computation results reveal that the proposed 
approach is superior to SPT and GA alone for FFS scheduling 
under stochastic processing times. 
 

Keywords—back propagation network, decomposition, 
flexible flow shop, neighbouring K-means clustering algorithm, 
stochastic processing times. 
 

I. INTRODUCTION 
  Ever since the flexible flow shop (FFS) scheduling 

problem was identified in 1970’s [1], it has attracted 
considerable attention during the past decades [2]. An FFS 
consists of a series of production stages, each of which has 
several functionally identical machines operating in parallel. 
All the jobs released to an FFS have to visit all the stages in 
the same order. Research efforts on FFS scheduling problems 
generally consider a static environment with no unexpected 
events that would influence the job processing when the 
schedule is executed.  

Real manufacturing, however, is dynamic and tends to 
suffer a wide range of uncertainties, such as stochastic 
processing times, machine breakdown, rush orders, job 
cancellations, and change of due date. This paper is primarily 
concerned with the scheduling problem of FFS with stochastic 
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processing times. The FFS scheduling problem [3] has been 
proven NP-hard in nature which is difficult to solve [4, 5]. 
Consideration of stochastic processing times aggravates its 
complexity.  

As a research issue, production scheduling under 
uncertainty has indeed drawn considerable attention in recent 
years. The completely reactive approach, the robust approach, 
and the predictive-reactive approach are three fundamental 
ways [6, 7] to tackle this issue. 

The completely reactive approach changes decisions during 
execution when necessary. The dispatching rule is a typical 
reactive one, in which jobs are selected by sorting them 
according to predefined criteria. It is easy to understand, and 
can find a reasonably good solution in a relatively short time. 
However, it uses only local information to generate a 
schedule, which may not be globally optimal in nature. 

 Hunsucker and Shah [8] compared the performance of 
dispatching rules in a constrained multiprocessor flow shop, 
and concluded that the Shortest Processing Time (SPT) 
algorithm was superior for the makespan criterion.  Similarly, 
Rajendran and Holthaus [9] studied the performance of 
dispatching rules in dynamic flow shops and job shops with 
stochastic job arrivals and stochastic processing times. The 
performance of a variety of dispatching rules was evaluated 
with respect to criteria related to flow time and tardiness of 
jobs. Experiment results implied that no single dispatching 
rules dominated in all criteria.  

Although dispatching rules tend to be simple and fast, they 
cannot optimise the overall performance of a system. 
Therefore, the research focus has shifted from a single 
dispatching rule to a set of dispatching rules.  

Tang et al. [10] examined the dynamic FFS scheduling 
problem with random job arrivals. He applied the neural 
network to dynamically select a dispatching rule to generate 
schedules. Experiment results indicated that the neural 
network approach consistently performed better than a single 
traditional dispatching rule. Singh et al. [11] introduced a 
multi-criteria methodology by swapping dispatching rules in a 
shop with dynamic nature. The swapping of dispatching rules 
was determined by the worst performance criteria in the 
performance measures. It was evaluated in the presence of 
machine breakdown and had been demonstrated to improve 
the system performance.  

The robust scheduling approach takes into account possible 
uncertainties to construct solutions. Uncertainties, known as a 
priori, can be modelled by some random variables [12]. If 
such uncertainties are difficult to quantify, a range of 
scenarios will be considered and a solution is developed to 
optimise the performance under different scenarios [13]. In 
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this case, the approach is viewed as a form of under-capacity 
scheduling to maintain robustness under different scenarios.  

Wang et al. [14] presented a class of hypothesis-test-based 
genetic algorithms to address flow shop scheduling problems 
with stochastic processing times. The solutions were 
generated by GA and evaluated by multiple independent 
simulations. The hypothesis test was performed to discard the 
solutions with no significant difference. They demonstrated 
the effectiveness of the proposed algorithm by comparison 
with the traditional GA. 

Ahmadizar et al. [15] addressed a stochastic group shop 
scheduling problem with random release dates and processing 
times. They developed a simulation optimisation approach, 
which was a hybrid of an ant colony optimisation algorithm, a 
heuristic algorithm to generate good solutions, and a discrete 
event simulation model to evaluate the solution performance. 

The predictive-reactive approach is indeed a two-step 
process. First, a predictive schedule is generated over the time 
horizon considered. This schedule is then rescheduled during 
execution in response to unexpected disruptions. This 
approach is by far the most studied. Two issues, when and 
how to react to disruptions, have to be addressed. 

For the first issue, three policies, namely periodic, event 
driven, and hybrid, have been introduced [16, 17]. The 
periodic policy updates the schedule for a fixed interval based 
on the status of the shop. For the event driven policy, 
rescheduling is trigged by the disruptions instead of by time 
intervals. A hybrid policy reschedules periodically as well as 
when a disruption arises.  

To address the second issue, the most common 
rescheduling methods include the right-shift schedule repair, 
the partial schedule repair, and the completed scheduling [18]. 
The right-shift schedule repair postpones the remaining 
operations by the amount of time needed to make the schedule 
feasible. The partial schedule repair only reschedules the 
operations that are affected by the disruption. The completed 
scheduling regenerates a completely new schedule for all the 
unprocessed operations. Although the completed scheduling 
may construct a better solution in theory, it is rarely applied in 
practice due to high computation burden and increasing 
scheduling instability [12]. Conversely, the right-shift 
schedule repair yields the least scheduling instability with the 
lowest computation effort, while the partial schedule repair is 
a moderate one in this regard. 

Since each of these three approaches has its own strength 
and weakness, some research work has focused on comparing 
their effectiveness. Lawrence and Sewell [19] studied the 
static and dynamic applications of heuristic approach to job 
shop scheduling problems when processing times were 
uncertain. Experiment results indicated that the predictive 
methods based on overall information were highly likely to 
perform better than completely reactive approaches in an 
environment under little uncertainty.  However, the predictive 
methods might lead to poor result when the uncertainty in a 
system exceeded a certain level. Sabuncuoglu and Bayiz [20] 
tested the reactive scheduling approaches under machine 
breakdown in a classical job shop system. They showed that 
online scheduling rules degraded less than offline scheduling 
algorithms in the stochastic environment. This conclusion was 
consistent with that of Lawrence and Sewell’s [19]. 

In order to handle a complex environment, it is beneficial 
and imperative to take advantage of mixing these three 
approaches to deal with uncertainty. Matsuura et al. [21] 
developed a predictive approach on a periodic basis, called 
switching. The system switched to using a dispatching rule for 
the remaining operations when the deviation between the 
realized and predictive schedule exceeded a certain level. 
They concluded that the proposed approach dominated the 
dispatching rules when the frequency of disruption was low, 
but it yielded worse results than the dispatching rules when 
the disruption reached some level. A search of available 
literature indicates not much research works have been 
attempted to address the combination of different approaches.  

This paper studies the problem of scheduling an FFS under 
the uncertainty of stochastic processing times, with the 
objective to minimise the makespan. Enlightened by the work 
of Lawrence’s [19], a decomposition-based approach (DBA) 
is proposed. In this approach, a neighbouring K-means 
clustering algorithm first groups the machines of an FFS into 
several machine clusters based on their stochastic nature when 
processing jobs. Then the completely reactive approach or the 
predictive-reactive approach, determined by the process of 
approach assignment, is employed to generate a sub-schedule 
for each machine cluster. Finally these sub-schedules are 
integrated into an overall solution.  

This study contributes to the development of an integrated 
approach that combines and takes advantage of the completely 
reactive approach with the predictive-reactive approach to 
deal with the uncertainty. On the contrary, the techniques 
reported in available literature on scheduling under 
uncertainty were mostly based on a single approach, yielding 
some initial yet limited performance. The proposed DBA 
explores a new direction for future research in the field of 
scheduling under uncertainty.  

The remaining part of this paper is organized as follows. 
Section II is devoted to problem description. Section III 
describes the framework of DBA, while it is explained in 
detail in Section IV. To evaluate the effectiveness of DBA, 
simulation is conducted and computation results are analysed 
in Section V. Finally, conclusions are summarised and some 
directions of future work are discussed in Section VI. 

 

II. PROBLEM DESCRIPTION 
In the FFS discussed above, machines sharing a similar 

characteristic are arranged into stages in series. Jobs have to 
pass all the stages in the same order. In each stage, there are a 
number of functionally identical machines in parallel, and a 
job is to be processed on one of these machines. The 
processing time may be highly uncertain due to quality 
problems, equipment downtime, tool wear, and operator 
availability [19].  

The stochastic processing time can be described by the 
expected processing time E[P] and the standard deviation σ. 
The coefficient of processing time variation (CPTV), defined 
as ( )CPTV E Pσ= , can be used as an indicator to 
processing time uncertainty; it equals 0 when processing times 
are deterministic, and increases as the uncertainty increases. 
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In order to simplify the typical FFS scheduling problem in 
consideration of stochastic processing times, the following 
assumptions are made:  

• Preemption is not allowed for job processing;  
• All jobs are released at the same time for the first stage; 
• All machines are available when jobs are released to the 

FFS. Each machine can process at most one operation at 
a time;  

• There is no travel time between machines;  
• There is no setup time for job processing;  
• Infinite buffers exist for machines; 
• For the same job, the expected processing time at any 

parallel machine at a stage is identical;  
• The actual processing time of a job on a machine is 

uncertain, and it can be longer or shorter than the 
expected one;  

• As parallel machines at a stage are functionally identical, 
they lead to the same CPTV when processing any jobs, 
but the CPTV may be different for other stages;  

• Except for stochastic processing times, there are no other 
types of uncertainties to disturb job processing. 

 
The scheduling objective is to determine the processing 

sequence of operations on each machine such that the 
makespan, which is equivalent to the completion time of the 
last job to leave the FFS, is minimised without violating any of 
the assumptions above. This FFS scheduling problem can also 
be described as follows.  
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Where  

k:  stage index, 1 ≤  k  ≤  t 
mk:  number of parallel machines at stage k 
Mk:  set of parallel machines at stage k  
i, i1, i2:  machine index, 1 ≤ i, i1, i2 ≤ mk 

j, j1, j2:  job index,  1 ≤  j,  j1,  j2  ≤  n 
Ckj:  completion time of Job j at stage k 

1 2kij jB :  a Boolean variable, 1 if Job j2 is scheduled 
immediately after Job j1 on machine i at stage 
k, and 0 otherwise      

Ukij:  a Boolean variable, 1 if Job j is the first job on 
machine i at stage k, and 0 otherwise      

Pkj:  stochastic processing time of Job j at stage k                    
Pkij:  stochastic processing time of Job j on 

machine i at stage k       
STkij:  start time of Job j on machine i at stage k             

 
For the first stage, (2) and (3) give the completion time of 

the first job and that of each subsequent job on the machines, 
respectively.  

Similarly for all other stages, (4) and (5) determine the 
completion time of the first job and that of each subsequent 
job on the machines, respectively.  

While (6) ensures non-negative start time of job processing, 
(7) stipulates that each of the parallel machines at a stage takes 
equal time to process the same job.  

Lastly, (8) requires the processing sequence of each stage to 
satisfy the processing time, and (9) guarantees that each 
machine can process only one job at a time. 

 

III. THE FRAMEWORK OF THE PROPOSED   
DECOMPOSITION-BASED APPROACH (DBA) 

The predictive approaches are likely to perform better than 
the completely reactive approaches in a low stochastic 
environment, but they may lead to poor result in a high 
stochastic environment [19, 20]. Based on this observation, a 
decomposition-based approach (DBA) is proposed to provide 
better performance for FFS scheduling problems in any 
stochastic environment. The DBA framework consists of 
three modules, as shown in Fig. 1.  

 
 
 
 
 
 
 
 
 
 

 
Figure 1.  The framework of the proposed 

decomposition-based approach  (DBA) 

A. FFS Decomposition 
An FFS is firstly decomposed by a clustering algorithm into 

machine clusters, each of which contains a number of 
machines sharing a similar stochastic nature. The stochastic 
nature of a machine results from the uncertainties which occur 
during job processing and when a schedule deviates from the 
planned one. The high stochastic nature of a machine usually 
leads to a large difference between the actual and the planned 
schedule. As the actual processing times of jobs on a machine 

Assign an appropriate approach to each machine cluster 

Generate and integrate sub-schedules of machine clusters

Decompose FFS into machine clusters 
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may be non-deterministic, the processing time uncertainty 
during job processing is used to describe the stochastic nature 
of a machine.  

Clustering is the classification of objects into different 
groups, such that the objects in each group would share some 
common trait. Quite a few algorithms, such as K-means, fuzzy 
C-means, and self-organization maps etc., have been 
proposed to perform the classification. Since the K-means 
clustering algorithm is simple and widely used, a 
neighbouring K-means clustering algorithm is proposed and 
adopted to decompose an FFS in this paper.  

After decomposition of an FFS, machines in the same 
machine cluster share a similar stochastic nature of job 
processing and can be scheduled by the same approach.   
Machine clusters with low stochastic natures are solved by the 
predictive-reactive approach, while those with high stochastic 
natures are scheduled by the completely reactive approach. 
Due to their better performance, the Genetic Algorithm (GA) 
and the Shortest Processing Time (SPT) algorithm are 
identified as the predictive-reactive approach and the 
completely reactive approach, respectively.  

B. Approach Assignment 
In order to assign an appropriate approach to a machine 

cluster, it is critical to establish an effective model to estimate 
the makespan difference (MDSG) when generating the 
schedule by both SPT and GA. Artificial neural networks 
(ANNs) have been widely used in various areas due to its 
capability of identifying complex nonlinear relationships 
between input and output. The back propagation network 
(BPN) is a commonly used ANN structure and has been 
successfully applied for system modelling, prediction, and 
classification [22]. It is therefore adopted to estimate the 
MDSG for each machine cluster, and the positive or negative 
sign of the MDSG determines the approach to be assigned to 
the machine cluster. 

Fig. 2 shows the decomposition result of an FFS with 7 
stages and 3 parallel machines at each stage. Geometric 
figures with the same shape represent the parallel machines. 
One of the two approaches, GA or SPT, is assigned to each 
machine cluster. 
 

 
Figure 2.  Machine clusters in an FFS 

C. Sub-schedule Generation and Integration 
After approach assignment above, the sub-schedule for 

each of the machine clusters is generated by either SPT or GA, 
and subsequently integrated into an overall schedule.  

The major feature of DBA is its decomposition strategy – 
combining and taking advantage of GA and SPT to generate a 
better result when scheduling in any stochastic environment. 

 

IV. DETAILED ALGORITHM 

A. Neighbouring K-means Clustering Algorithm 
For the purpose of decomposing an FFS, the machines of 

an FFS are grouped into a few machine clusters in which 
machines share a similar stochastic nature. Since the CPTV 
represents processing time uncertainty, it is adopted to form 
the stochastic vector Ui to group machines into machine 
clusters of similar stochastic natures, giving  
 

 [ ]i iU CPTV=
 

(10) 

 
Where CPTVi is the CPTV of the parallel machines at stage 

i. Ui represents the stochastic nature of machines at stage i. A 
machine with a large CPTV indicates a high stochastic nature 
of job processing. 

As the Euclidean distance is one of the most commonly 
used methods to measure the distance between a pair of data, 
it serves to define the machine distance ( ),i jD U U , which 

represents not the physical distance but the difference of 
stochastic nature between the parallel machines at stages i and 
j.  The machine distance is calculated as follows.  
 

 ( ) ( )2

2
,i j i j i jD U U U U CPTV CPTV= − = −  

(11) 

 

For the parallel machines at stages i and j, the larger 
the ( ),i jD U U , the more is their dissimilarity and the less 

likely of their being in the same machine cluster.  
Considering ( ),i jD U U , the FFS can be decomposed into 

machine clusters by K-means clustering algorithm. The major 
problem to apply K-means clustering algorithm is the choice 
of machine cluster number. Neither a small nor a large 
machine cluster number can offer a satisfactory classification 
of the data objects. Recently, cluster validity indices (CVIs), 
indicating how well the clustering algorithm classifies the 
given data set, have attracted much attention as an approach to 
determining the optimal cluster number.  

Most CVIs are defined by combining the intra-cluster 
distances and inter-cluster distances. The former one 
measures the distances of objects within a cluster to represent 
its compactness, while the latter one computes the distance 
between two different clusters and acts as an indicator of 
cluster separability. Therefore, a good clustering algorithm 
should have small intra-cluster distances and large 
inter-cluster distances. Dunn [23], DB [24], Vsv [25] and DVI 
[26] are some typical CVIs. 

However, the FFS decomposition above is different from 
the traditional clustering problem. Since this study aims to 
schedule neighbouring machine clusters by different 
approaches, a good clustering algorithm should encourage 
large inter-cluster distances between neighbouring machine 
clusters rather than that between non-neighbouring machine 
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clusters. For this purpose, a modified DB (MDB), giving the 
weight to the inter-cluster distance, is proposed as follows:  

 

 
1

1 max
n

i j

i ji ij ij
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⎛ ⎞
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Where n is the number of machine clusters; Si denotes the 

intra-cluster distance, which measures the average machine 
distance of all objects from the machine cluster i to their 
cluster centre; Dij represents the inter-cluster distance, which 
measures the machine distance between machine cluster centre i 
and j; Wij is the weight of Dij; Fi is the first stage of ith machine 
cluster. A small value of MDB indicates a good clustering. 

In order to avoid specifying the machine cluster number, a 
neighbouring K-means clustering algorithm, incorporated 
with MDB, is established. Its procedure is shown in Fig. 3.  

 

For k=2 to Kmax (Kmax = number of stages/2) 
    For i=1 to Imax (Imax = 10) 

Apply the K-means clustering algorithm to decompose an FFS 
into k machine clusters; 
Compute the MDB for ith iteration of decomposing an FFS into 
k machine clusters; 

End 
End 
Return machine clusters where the MDB is minimal over all i and 
all k. 

Figure 3.  The proposed neighbouring K-means clustering 
algorithm 

B. Back Propagation Network for Approach Assignment  
After decomposition of an FFS, the machine clusters can be 

scheduled by either SPT or GA. The assigned approach for 
each machine cluster can be determined by the makespan 
difference of the schedules generated by SPT and GA 
(MDSG), giving  
 
 ( )_ _SPT S GA S GAMDSG M M M= −   (14)  

 
Where MSPT_S and MGA_S are the makespans generated 

respectively by SPT and GA with stochastic processing times, 
while MGA is the makespan generated by GA with 
deterministic processing times.  

In order to accurately estimate the MDSG for each machine 
cluster, the back propagation network (BPN) is adopted in this 
study. For a machine cluster, if the MDSG is predicted to be 
positive, GA is allocated to address the scheduling problem of 
the machine cluster. Otherwise, SPT is used to generate the 
schedule for the machine cluster. 

Under the assumptions we made on the FFS scheduling 
problem, jobs are released simultaneously in the first stage. 
However, in subsequent stages, they are allocated by the FIFO 
rule and may arrive non-simultaneously. Therefore, two 
scenarios have to be considered when establishing models to 

predict the MDSG. The first scenario assumes the jobs to be 
released simultaneously, while the other allows the jobs arrive 
non-simultaneously.  

Accordingly, two BPNs, each corresponds to a scenario, 
are generated. Their architectures are identical, as illustrated 
in Fig. 4. The details of BPN establishment for each scenario 
are as follows:  

• Inputs: Four parameters, namely CPTV, stage size, job 
size, and parallel machine size. These parameters are 
found to affect the performance of MDSG significantly 
according to the experiment results in Section V.  The 
first input is the mean of CPTVs for all the machines in a 
machine cluster. All the four inputs are normalised in the 
range of {0, 1} for input into a BPN; 

• Number of single hidden layers: Generally one hidden 
layer is capable of approximating any function with a 
finite number of discontinuities. Therefore, the BPN 
only consists of one hidden layer;  

• Number of hidden neurons: There is no concrete rule to 
find the optimal number. If inadequate hidden neurons 
are adopted, it may introduce a greater risk of modelling 
the complex data poorly. If too many hidden neurons are 
used, the network may fit the training data extremely 
well, but would perform poorly to new and unseen data. 
For these reasons, the number of hidden neurons is 
intentionally selected from the interval {2, 20} in this 
study. For each scenario, the BPNs with different 
number of hidden neurons are generated and evaluated 
by the mean square error (MSE), and the one that 
corresponds to the number of hidden neurons that give 
rise to the least minimal MSE is termed the optimal 
BPN. 

• Output: MDSG. For the same FFS scheduling problem 
with stochastic processing times, GA and SPT are used 
to obtain the makespan by the simulation, respectively. 
The MDSG is subsequently computed by (14); 

• Number of epochs per replication: 10000;  
• Number of replications: 100. The performance of a BPN 

is sensitive to the initial condition of network. Therefore, 
for a specific number of hidden neurons, 100 BPNs with 
different initial conditions will be trained and evaluated 
respectively. Among these BPNs, only the one with 
minimal MSE is kept for the purpose to further identify 
the optimal BPN. 

• Training examples: A training example consists of a set 
of values for the input neurons and the output neurons, 
including CPTV, stage size, job size, parallel machine 
size, and the expected MDSG. The details of training 
example generation are described in Section V. 

Both the number of epochs per replication and the number 
of replications are chosen empirically to ensure generation of 
BPNs with satisfactory performance within an acceptable 
training time. 

After training, validation, and testing, the optimal BPN can 
be identified and used to determine the MDSG for each 
scenario. The optimal BPN generated in the scenario of 
simultaneous job arrivals is used to compute the MDSG of the 
first machine cluster, while the optimal BPN established in the 
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scenario of non-simultaneous job arrivals is adopted to 
estimate the MDSG of all other machine clusters.  
 

 
Figure 4.  The architecture of BPNs 

The neighbouring K-means clustering algorithm cannot 
avoid the possibility that two neighbouring machine clusters 
are to be suitably solved by the same approach. Therefore, it is 
reasonable to conduct a machine cluster merging process 
(MCMP) to integrate neighbouring machine clusters if 
necessary, using the following steps:  

(1) Identify the two neighbouring machine clusters which 
are to be solved by the same approach;  

(2) Merge the two neighbouring machine clusters and 
determine the approach for the new machine cluster by 
optimal BPNs;  

(3) Repeat steps 1 and 2 until any two neighbouring 
machine clusters are allocated with different approaches.  

Integrating with MCMP, the complete process of approach 
assignment is summarised as follows:  

(1) Generate training examples for both scenarios.  
(2) Train, validate and test the BPNs;  
(3) Estimate the MDSG for each machine cluster by 

optimal BPNs;  
(4) Assign either SPT or GA to each machine cluster 

according to the positive or negative sign of its estimated 
MDSG, respectively;  

(5) Conduct MCMP. 
Although the BPN provides a powerful way to model any 

complex relationship between input and output data, it has its 
own disadvantage. In order to improve the prediction 
accuracy, a large number of training examples are required 
and a long training time therefore is unavoidable. Moreover, 
the scale of training examples and training time grows with 
the increasing number of BPN inputs and their levels. 
Although it is time-consuming to train the BPNs, it is a 
one-off and the computation cost of DBA based on the trained 
BPNs is comparable to that of GA or SPT. 

C. Machine Cluster Scheduling 
After FFS decomposition and approach assignment, 

sub-schedules are generated by either SPT or GA for all 
machine clusters and then integrated into an overall solution. 

SPT, firstly handling the job with the shortest processing 
time, performs better with low computation cost when the 
machines in a machine cluster with a high stochastic nature. It 
consists of the following two main steps:  

(1) Determine the job sequence based on the SPT rule for 
the first stage.  

(2) Allocate the finished job from the previous stage to the 
current stage by the FIFO rule until all the jobs are processed 
at each stage. 

GA, a typical local search algorithm, is used prior to the 
dispatching rules when scheduling a machine cluster with a 
low stochastic nature. The overall structure of our GA is 
briefly described as follows:  

• Coding: The job sequence is used as the chromosome for 
the FFS scheduling problem. Integer coding scheme is 
adopted for chromosome representation in the study. For 
example, job sequence {2, 3, 5, 1, 4, 9, 8, 6, 7, 10} is a 
chromosome with ten jobs in an FFS; 

• Initialization: The initial population is randomly 
generated; 

• Fitness function: For the purpose to minimise the 
makespan, the fitness function is formulated as 

  maxfitness C= , where Cmax is the maximum 
completion time of jobs at the last stage in an FFS;  

• Selection strategy: Roulette wheel selection is applied to 
reproduce the next generation;  

• Crossover operation: Order preserved crossover (OPX) 
is adopted. The OPX emphasizes the relative order of the 
genes from both parents. To create the first child, a gene 
segment from the first parent is firstly randomly selected 
and placed into the first child corresponding to the first 
parent position, and then the genes of the second parent, 
not included in the segment, are put into the first child 
according to the second parent order. To generate the 
second child, the gene in the segment are copied to the 
second child and preserves the relative positions 
corresponding to the second parent, and then the genes 
of the first parent, except for the ones in the segment, are 
filled in the second child according to the first parent 
order. For instance, {2, 3, 5, 1, 4, 9, 8, 6, 7, 10} and {1, 2, 
4, 5, 6, 7, 8, 3, 9, 10} are randomly selected as parents, 
and the gene segment is {4, 9, 8, 6}. Such crossover 
operation produces the children as {1, 2, 4, 9, 8, 6, 5, 7, 3, 
10} and {2, 3, 4, 5, 6, 1, 8, 7, 9, 10}; 

• Mutation operation: Shift move mutation (SM) is used. 
The SM changes the relative position of one job. This 
operation shifts a gene from the current position to a new 
one while leaving all other relative gene orders 
unchanged. For instance, one parent, {9, 8, 6, 7, 10, 2, 3, 
5, 1, 4}, is randomly selected, and the couple of genes at 
position 3and 7 are selected to performing the operation. 
The offspring will be {9, 8, 7, 10, 2, 3, 6, 5, 1, 4}; 

• The crossover rate and mutation rate: The rates are 
analysed by setting different values on the same FFS 
scheduling problem. A crossover rate of 0.8 and a 
mutation rate of 0.2 are found to give good performance;  

• Termination criterion: The algorithm continues until 200 
generations have been examined. This value is chosen 
empirically. 

To react to job processing delay caused by stochastic 
processing times, SPT and GA adopt different policies for 
machine cluster scheduling. For SPT, job allocation follows 
an initial sequence at the first stage and FIFO rule at all other 
stages. For GA, considering reducing computation effort and 
scheduling instability, the right-shift scheduling repair is used, 
which postpones the operations affected without changing the 
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job sequence in comparison with that of the schedule with 
deterministic processing times. 

 

V. COMPUTATION RESULTS AND ANALYSIS 

A. Experiment Design 
Two experiments are designed and conducted for the 

performance evaluation of the proposed DBA. The first 
experiment aims at establishing the BPNs for the MDSG 
estimation. The second experiment focuses on analysing the 
performance of DBA on makespan criterion. All the two 
experiments have been implemented in Java and run on a PC 
with Intel Pentium 4 2.80GHz processor and 1.00GB of 
RAM.   

In the two experiments above, the expected processing 
times of operations are generated uniformly in the time unit 
interval {1, 20} and their average value P equals 10 time units, 
while the actual processing times are uncertain and follow the 
gamma distribution with the expected processing time E(P) 
and standard deviation ( ) jE P CPTVσ = × , where CPTVj is 

the coefficient of processing time variation at stage j.  
In order to evaluate the proposed DBA in the second 

experiment, a test-bed, containing 27 (3*3*3 = 27) problems 
with different stages, jobs and parallel machines, is 
established and shown in Table II. The number of jobs is 
chosen to be 20, 30, and 40. The stage can be 6, 10, and 15. 
The number of parallel machines ranges from 2 to 4. For each 
problem, ten instances with different expected processing 
times of operations are randomly generated and the simulation 
is iterated 50 times for each instance. 

B. Experiment I: Generation of BPNs for MDSG Estimation 
In order to train, validate, and test the BPNs, it is necessary 

to firstly generate training examples. Corresponding to the 
two scenarios of simultaneous and non-simultaneous job 
arrivals, two sets of training examples are generated, 
respectively.  

The levels of BPN input used in the experiment, including 
CPTV, stage size, job size, and parallel machine size are 
shown in Table I.  

 
TABLE I.  BPN INPUTS AND THEIR LEVELS  
Factors Levels 
CPTV 10 levels {0.1, 0.2, …, 1} 

Stage size 10 levels {1, 2, …, 10} 

Job size 20, 25, 30, 35, 40, 45 

Parallel machine size 2, 3, 4, 5, 6, 7 
 

 
For each scenario, by exploring all possible combinations 

(10×10×6×6 = 3,600) of BPN inputs, the experimental 
FFS scheduling problems to minimise makespans with 
stochastic processing times are firstly generated, in each of 
which all the parallel machines share the same CPTV. 
Subsequently, these problems are solved by GA and SPT, 
respectively. Lastly, the MDSG, which is the output of BPN, 

can be obtained by (14) for each problem. Thus, this 
procedure results in a total of 3,600 training examples for each 
scenario. 

Based on the data of the training examples, scatter plots are 
generated to visualize the relationship of four factors, 
including CPTV, stage size, job size and parallel machine 
size, on the MDSG. As shown in Fig. 5, circles and squares 
represent the results derived by the scenarios of simultaneous 
job arrivals and non-simultaneous job arrivals, respectively. 
For a specific x-value in Fig. 5, the y-value is the mean of 
MDSGs of all the corresponding training examples.  
Accordingly the following conclusions are drawn from the 
scatter plots:  

• The MDSG decreases with the increasing of CPTV, 
stage size and job size. Parallel machine size affects the 
MDSG as well. Therefore, it is reasonable to adopt these 
four factors as BPN inputs; 

•  The MDSG is different for the two scenarios of 
simultaneous and non-simultaneous job arrivals. Hence, 
two BPNs are needed to estimate the MDSG.  

Now, two types of BPNs, corresponding to the two 
scenarios of simultaneous and non-simultaneous job arrivals, 
can be obtained on the basis of the training examples. In order 
to identify the optimal BPN for each scenario, BPNs with 
different number of hidden neurons are established and their 
prediction accuracy is measured by MSE.  

Fig 6 shows the relationship of the minimal MSE with 
various numbers of hidden neurons. It is apparent that the 
numbers of hidden neurons that give rise to the least MSEs for 
simultaneous and non-simultaneous job arrivals are 12 and 14, 
respectively. Accordingly, the two BPNs corresponding to 
these two numbers of hidden neurons are optimal ones and 
used to estimate the MDSGs. 

C. Experiment II: DBA Analysis 
In order to evaluate the effectiveness of the proposed DBA, 

it is analysed and compared with SPT and GA in a stochastic 
environment, in which CPTV is uniformly distributed in the 
interval {0.1, 1}. The experiment results of these three 
algorithms with stochastic processing times (denoted by 
SPT_S, GA_S, and DBA_S respectively) are shown in Table 
II. The results of SPT and GA with deterministic processing 
times (denoted by SPT, and GA respectively) are also given. 

All the results are the ratios of the average makespan of 
various scheduling algorithms to that of GA. From the 
experiment results, the following conclusion can be drawn: 

• SPT_S performs better than GA_S. The reason for such 
poor performance of GA lies in using the right-shift 
schedule repair in response to job processing delay 
caused by stochastic processing times. 

• DBA_S gives the best performance in most cases, 
decreasing the makespan by about 3% and 13% in 
comparison with SPT_S and GA_S, respectively. 
Although DBA_S does not always perform best, it is the 
only algorithm that can consistently give good 
performance. The good performance of DBA is due to its 
decomposition strategy, which combines the strengths of 
GA and SPT to deal with stochastic processing times.                  
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Figure 5.  Scatter plots of the MDSG with (a) coefficient of processing time variation (CPTV), (b) stage size, (c) job size, (d) 
parallel machine size.  
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Figure 6.  The minimal MSE with various numbers of hidden neurons for (a) simultaneous job arrivals, (b) non-simultaneous 
job arrivals. 
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TABLE II.  COMPARISON OF PERFORMANCE OF VARIOUS SCHEDULING ALGORITHMS a  

 

Problem size (No. of jobs x no. of 
stages) 

No. of Parallel Machines in each 
stage SPT GA SPT_S GA_S DBA_S 

20×6 2 1.170 1.000 1.318 1.384 1.257 
20×6 3 1.202 1.000 1.345 1.395 1.276 
20×6 4 1.220 1.000 1.396 1.557 1.350 

20×10 2 1.120 1.000 1.321 1.450 1.305 
20×10 3 1.165 1.000 1.296 1.409 1.277 
20×10 4 1.119 1.000 1.302 1.504 1.292 
20×15 2 1.144 1.000 1.290 1.413 1.255 
20×15 3 1.114 1.000 1.265 1.459 1.246 
20×15 4 1.083 1.000 1.170 1.295 1.158 
30×6 2 1.099 1.000 1.246 1.358 1.212 
30×6 3 1.165 1.000 1.309 1.415 1.246 
30×6 4 1.163 1.000 1.341 1.535 1.271 

30×10 2 1.135 1.000 1.320 1.459 1.298 
30×10 3 1.153 1.000 1.287 1.425 1.249 
30×10 4 1.121 1.000 1.279 1.504 1.280 
30×15 2 1.157 1.000 1.291 1.404 1.261 
30×15 3 1.159 1.000 1.284 1.475 1.255 
30×15 4 1.125 1.000 1.295 1.499 1.279 
40×6 2 1.134 1.000 1.242 1.265 1.199 
40×6 3 1.129 1.000 1.257 1.354 1.188 
40×6 4 1.139 1.000 1.296 1.514 1.291 

40×10 2 1.165 1.000 1.314 1.375 1.249 
40×10 3 1.158 1.000 1.326 1.508 1.256 
40×10 4 1.086 1.000 1.266 1.528 1.252 
40×15 2 1.147 1.000 1.297 1.402 1.255 
40×15 3 1.116 1.000 1.265 1.472 1.237 
40×15 4 1.118 1.000 1.276 1.538 1.272 

Average 1.141 1.000 1.292 1.441 1.258 

   a. All the results are the ratios of the average makespan of various scheduling algorithms to that of GA. 

     

VI. CONCLUSION 
This paper proposed a decomposition-based approach 

(DBA) to minimise the makespan of an FFS scheduling 
problem with stochastic processing times. In this approach, 
machines are grouped into several machine clusters by a 
neighbouring K-means clustering algorithm without 
predefining the number of machine clusters, and each 
machine cluster is scheduled by either SPT or GA.  

The effectiveness of DBA was validated with experiment 
results. For most problems in the test-bed, DBA is superior to 
SPT and GA. The better performance of DBA results from the 
decomposition strategy – to schedule with GA in a low 
stochastic environment and with SPT in a high stochastic 
environment. This strategy ensures DBA’s good performance 
when addressing FFS scheduling problems in any stochastic 
environment. 

The proposed DBA provides a promising way to address 
FFS scheduling under stochastic processing times. Further 

research can be devoted to evaluating the performance of 
DBA by optimising the FFS scheduling problem with respect 
to tardiness-related criteria, such as minimising the mean 
tardiness of jobs. In addition, as a job shop is essentially more 
complex than an FFS, another possible research area can 
focus on extending the proposed DBA to solve job shop 
scheduling problems with stochastic processing times. 
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