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Abstract - Effective performance testing techniques are 

essential for understanding whether a Web-based application 

will meet its performance objectives when deployed in the real 

world. The workload of such an application has to be 

characterized in terms of sessions; a session being a sequence of 

inter-dependent requests submitted by a single user.  

Dependencies arise because some requests depend on the 

responses of earlier requests in a session.  To exercise 

application functions in a representative manner, these 

dependencies should be reflected in the synthetic workloads 

used to test Web-based applications.  The need to handle these 

dependencies makes performance testing a time consuming 

process.  Specifically, since the nature of these dependencies 

varies across systems considerable effort needs to be dedicated 

towards tailoring a set of test tools that will work for a given 

system.  Furthermore, the traditionally followed approach of 

manually developing test scripts that handle dependencies 

makes it difficult to achieve fine-grained control over a 

synthetic workload’s characteristics.   In this paper, we propose 

a new model-based approach to address these issues.  Our 

approach uses an application model that captures the 

dependencies for a Web-based application system under study. 

The application model provides an indirection that allows a 

common set of workload generation tools to be used for testing 

different applications. Consequently, less effort is needed for 

developing and maintaining the testing tools and more effort 

can be dedicated towards the performance testing process.  

Furthermore, the application model can be used to obtain a 

large set of valid request sequences representing how users 

typically interact with the application.  This feature facilitates 

techniques that can manipulate the set of sequences to achieve 

automated control over the characteristics of the synthetic 

workloads used in a testing exercise.  The utility of the toolset is 

demonstrated by applying it to model two different Web 

applications and through a study that systematically 

investigates the impact of various workload characteristics on 

the performance of an e-commerce application. 
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I. INTRODUCTION 

Enterprises are increasingly relying on Web-based 

systems to support critical business functions.  Such systems 

often host complex, multi-tier applications such as e-

commerce and business process management.  With these 

systems, responses to user requests are typically generated 

dynamically by invoking the service of one or more server 

tiers.  The system workload has to be characterized in terms 

of sessions; a session being a sequence of inter-dependent 

requests submitted by a single user.  Dependencies arise 

because some requests depend on the responses of earlier 

requests in a session.  For example, an order cannot be 

submitted to an e-commerce system unless the previous 

requests have resulted in an item being ordered.  We define 

this phenomenon as inter-request dependency and refer to 

this class of systems as session-based systems. 

Poor performance of session-based systems can adversely 

impact the profitability of an enterprise.  As a result, 

effective performance testing techniques are essential for 

understanding whether a session-based system will meet its 

performance objective when deployed in the real world.  

Performance testing is a technique where synthetic 

workloads [7] are submitted to a system under study within a 

controlled environment.  The synthetic workload used in a 

performance test serves to mimic the request patterns of real 

system users.  Synthetic workloads are constructed from a 

workload model.  A workload model specifies statistical 

characterizations for a set of workload attributes that are 

expected to affect performance the most.  Measurements 

such as user response times and server utilizations are 

collected during the tests and used to support capacity 

planning and service level assessment exercises.   

In general, a performance testing methodology must 

address several requirements with respect to synthetic 

workloads.  Firstly, to reach reliable conclusions based on 

the results of a performance test, the synthetic workloads 

used must be representative of real workloads.  A synthetic 

workload is said to be representative of a real workload if 

both workloads result in similar performance when 

submitted to a system.  The representativeness of a synthetic 

workload is significantly influenced by the attributes in the 

workload model and the characterizations used for them [7].  

Furthermore, for session-based systems requests within a 

session in the synthetic workload must reflect the correct 

inter-request dependencies to exercise application functions 

representatively.  Krishnamurthy et al. experimentally 

showed that incorrect performance estimates can result when 

inter-request dependencies are ignored while constructing 
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synthetic workloads [12].  Secondly, since it is very difficult 

to know precisely what a real workload’s characteristics will 

be, a performance testing methodology must provide the 

flexibility to conduct a controlled sensitivity analysis on the 

characterizations of the workload model’s attributes. 

The need to satisfy inter-request dependencies makes it 

difficult to satisfy the representativeness and flexibility 

requirements.  Typically, a small set of system-specific 

scripts is manually developed to create synthetic workloads.  

In a given test, each script has an execution weight that 

determines the number of times that script is executed and 

hence the overall characteristics of the synthetic workload 

generated.  Different synthetic workload characteristics are 

achieved by manually selecting different sets of script 

execution weights.  Such an approach can be time 

consuming especially when the characterizations of 

workload attributes need to be varied in a fine-grained and 

controlled manner.  Furthermore, since the scripts developed 

are system-specific they need to be modified when changes 

are made to a system (e.g., changes in inter-request 

dependency, addition of new functionality). The manual 

selection of execution weights for the new set of modified 

scripts needs to be repeated again to construct the various 

desired synthetic workloads further increasing the 

performance testing effort.  As a result, very often ad-hoc 

workloads are used and insufficient sensitivity analysis is 

carried out.  Consequently, results from such tests are not 

likely to provide reliable insights into system performance. 

In this paper, we propose a new model-based approach 

that addresses these limitations.  Our approach uses an 

application model that captures the application logic of a 

session-based system under study.  Essentially, the 

application model can be used to obtain a large set of user 

request sequences that satisfy the correct inter-request 

dependencies for the system under study in an automated 

manner.  The ability to generate a large set of valid 

sequences, i.e., scripts, makes it possible to apply techniques 

[12] that can automatically determine the script execution 

weights needed to construct a synthetic workload with 

desired characteristics.  Specifically, the advantages of the 

model-based approach over the traditional performance 

testing approach are as follows: 

• The approach provides automated support for fine-

grained control of workload characteristics.  Many different 

synthetic workloads can be automatically constructed to 

support flexibility with respect to workload characteristics.  

For example, the approach would make it easy to create 

controlled workloads to study how varying the 

characteristics of a particular workload attribute impacts 

system performance. 

• Lesser effort is needed to adapt the synthetic workload 

generation tools to handle changes made to a given system 

or to use them for testing other systems.  This improved 

portability is a result of the indirection provided by the 

application model.  The application model essentially makes 

the workload generation tools independent of the system 

under study.  For example, by using different application 

models the same set of tools can be used to test an e-

commerce system, a modified version of the e-commerce 

system and an online auction system. 

To the best of our knowledge, we are not aware of 

existing work that addresses the research issues we have 

considered in this paper.  As described in Section II, other 

model-based approaches do not support certain types of 

dependencies that occur commonly in Web applications.  

Furthermore, in contrast to our toolset described in Section 

III, tools that are frequently used to test Web applications do 

not support the ability to automatically control synthetic 

workload characteristics.     

The rest of the paper is organized as follows.  Section II 

discusses background and related work.  An overview of the 

proposed approach is provided in Section III.  Section IV 

discusses a methodology to construct application models for 

the purpose of performance testing.  Section V briefly 

describes the implementation of a toolset embodying the 

proposed methodology.  Section VI presents a case study 

that shows the ability of our approach to model two different 

Web applications.  Section VII demonstrates the utility of 

the toolset through a performance evaluation case study of 

the Java Pet Store [9] e-commerce application.  Section VIII 

provides conclusions and discusses future work. 

II. BACKGROUND AND RELATED WORK 

Knowledge of the characteristics of workloads observed 

at real systems can provide insights for creating 

representative synthetic workloads for performance testing.  

Menasce et al. characterized the workloads from an online 

bookstore and an online auction site [15].  Analysis of the 

bookstore revealed that over 70% of the total requests were 

for browsing books.  Only 1.19% of the requests were 

associated with purchases.  The auction site also displayed 

predominance of browse-related requests but not to the 

extent seen in the bookstore site. Furthermore, the authors 

found a significant percentage of sessions that had a very 

large number of requests.  These were found to originate 

from automated robots that crawled the system endlessly to 

collect information such as the pricing of products. 

Arlitt et al. characterized the workload of a large Web-

based shopping system [3]. Over 95% of total requests in the 

workload they studied are for dynamically generated objects.  

An analysis of object popularity revealed that a large 

fraction of the total requests is for a small number of very 

popular objects. The study also reported a significant 

presence of robots, which is consistent with the results 

reported by Menasce et al. [12].  Finally, the study found 

that there is a large difference in the resource demands for 

the different types of requests (e.g., Browse, Search, 

Purchase) in the system.  For example, a request to search 

a product placed 40 times more demand on the bottleneck 

resource of the system than a request to browse a product. 

Kelly [11] characterized the workload at several real 

session-based systems and found a very strong correlation 

between the transaction mix (i.e., the proportions of different 

types of requests) and system performance.  Specifically, the 

work found that the response times observed at the session-

based systems over a given time interval could be predicted 

accurately based on the transaction mix they encountered in 
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that time interval.  In a follow up work, Stewart et al. 

showed that transaction mixes observed at real session-based 

systems exhibit significant time varying behaviour or non-

stationarity [22].  Specifically, the server was found to 

encounter different mixes over different time intervals. 

The arrival of requests at many session-based systems was 

found to be self-similar [10] [15] [25].  Self-similar 

workloads exhibit significant request correlations or bursts 

over multiple timescales [6].  Researchers have argued that 

such a behaviour could possibly be due to the high 

variability in the number of requests in a session [15] and the 

high variability in request service times [25] observed in 

these systems. 

The studies discussed so far identify several workload 

attributes that need to be considered while generating 

synthetic workloads for session-based systems.  Specifically, 

techniques are required to control attributes such as the 

number of requests per session, transaction mix, and bursts 

in request arrivals.  This would allow realistic workloads to 

be constructed and facilitate studies that help understand the 

sensitivity of system performance to these workload 

attributes.  The traditional performance testing approach of 

manually creating scripts and manually determining script 

execution weights does not permit comprehensive sensitivity 

analyses exercises.   

Generating synthetic Web workloads typically involves 

two steps: trace generation and request generation.  The 

trace generation step handles the complexities of creating a 

synthetic trace of HTTP/HTTPS requests that adhere to a 

workload model.  The request generation step submits the 

requests in the trace to the system under study.  Pre-

generating traces reduces overheads during request 

generation thereby ensuring that the achieved workload 

characteristics stay close to the specified characteristics.  

The SURGE [5] tool supports trace and request generation 

capabilities for testing Web servers.  S-Clients [4] and 

httperf [17] are request generation tools that are capable 

of generating realistically heavy overloads during 

performance tests.  

Requests for session-based systems can be split into two 

parts: 1) a request type; and 2) a name-value list. Typically a 

request type instructs an application server to execute a 

particular server-side script and the name-value list, which 

follows the request type, provides input data for the script.   

Each entry in the name-value list consists of a name of a 

parameter and the parameter’s value.  For example, the 

request /Add?product_id=1&number=2 has Add as 

its request type and product_id=1&number=2 as its 

name-value list.  The two parameters for this request are 

product_id and number.   For session-based systems 

the trace generation step must address the issue of handling 

inter-request dependencies. For example, considering an e-

commerce system, a session can issue a Purchase request 

only after a product has been added to the shopping cart 

through a previous Add request.  As described shortly, other 

researchers have considered the problem of inter-request 

dependencies.   

For session-based systems, trace generation must also 

address data dependencies.  Data dependencies govern the 

choice of values for parameters in the name-value lists.  For 

example, a Login request type in an e-commerce system 

has to be submitted with valid user name-password 

combinations.  To the best of our knowledge, we are not 

aware of other studies which have addressed this problem as 

it pertains to performance testing.   

Finite State Machines (FSMs) have been extensively used 

to model application-specific dependencies. A FSM consists 

of sets of states, inputs, and outputs.  Applying a set of 

inputs causes transition from one state to another state and 

produces a set of outputs.  FSM models are widely used to 

test whether an implementation of a software application 

conforms to specifications.  An FSM is used to describe the 

specifications. In essence, the transitions in the FSM capture 

the desired behaviour for the implementation. Testing 

typically involves obtaining sequences of input sets called 

test sequences from the FSM.  Each test sequence is applied 

to the implementation and the resulting sets of outputs are 

observed.  Decisions about the correctness of the 

implementation are made by comparing the observed 

behaviour with the desired behaviour as given by the FSM. 

Andrews et al. proposed an FSM-based model to 

automate conformance testing of Web applications [1].  

First, an FSM-based model is used to describe a Web 

application.  A state in the FSM corresponds to what the 

authors define as a logical Web page (LWP).  A LWP can 

be a physical Web page produced by the application or 

specific HTML links and forms used to interact with the 

application.  Transitions occur between LWPs in response to 

user inputs (e.g., submitting a user name and password 

through a HTML form).  Inter-request dependencies are 

enforced by controlling the transitions allowed between 

LWPs.  The authors also annotate the transitions to handle 

several other types of dependencies.  The annotations 

provide information on whether an input for a LWP is 

required or optional and the sequences in which a user can 

supply inputs to a LWP.  The authors demonstrated the 

technique on a simple student information Web application. 

Menasce et al. applied an FSM-based approach for the 

performance testing of Web applications [16].  The 

approach uses a probabilistic FSM called a Customer 

Behaviour Model Graph (CBMG) to model a user’s session 

with a Web application.  Similar to the FSM employed by 

Andrews et al. [1], the states of the CBMG represent the 

different request types supported by the Web application.  

The number of states equals the number of request types and 

transitions between states model the user behaviour of 

navigating from one request type to another within a session.  

In contrast to a non-probabilistic FSM, transitions are 

associated with probabilities with the sum of a state’s 

outgoing transition probabilities being one.  The transition 

probability gives the likelihood of a user choosing a 

particular transition from a state from among all the allowed 

transitions.  By traversing the CBMG, a trace of synthetic 

sessions can be created for performance testing.  CBMGs 

are also employed to specify and generate the synthetic 

workloads used in popular Web application benchmarks 

such as TPC-App [24].    
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Both the FSM-based approaches reviewed may not be 

expressive enough for modeling several types of 

dependencies commonly observed in session-based systems.  

Specifically, we discuss the following issues with these 

approaches: 

1) Inability to fully support inter-request dependencies 

– Both approaches use a first-order FSM where a state is 

defined to be a request type.  Such a definition implicitly 

introduces a first-order dependency between request types.  

With these models the next request type that needs to be 

generated within a session (i.e., the next state) depends 

solely on the current request type.  However, such an 

assumption may not be valid in practice.  For example, 

consider the following valid session of request types for an 

e-commerce system: [Home, View, Add, View, 

Add, Delete, Purchase].  This session describes a 

shopper who adds two products to the shopping cart, then 

deletes one of the products from the shopping cart before 

purchasing the other product. An FSM constructed based on 

this session and based on the first-order assumption would 

incorrectly deduce a dependency between Delete and 

Purchase without recognizing that the Purchase 

depended on one of the two previous Add states. As a 

result, the FSM could cause a sequence ([Home, View, 

Add, Delete, Purchase]) that invokes Purchase 

without any item in the shopping cart thereby violating inter-

request dependencies for the system.   

Higher-order dependencies can be captured, for example, 

by introducing states that represent sequences of request 

types.  For example, creating a new state [Add, View, 

Add, Delete] can ensure that Purchase is invoked 

only when there is an item in the shopping cart.  However, 

this may cause the well-known state explosion problem [14].  

Another approach could be to build the FSM such that it 

only yields sequences with first-order request dependencies.  

Such an approach may not produce representative workloads 

since real workloads could contain several sequences with 

higher-order dependencies.  Furthermore, our previous 

experience suggests that one can obtain more control over 

characteristics such as workload mix when there is more 

“variety” in the set of sequences a user can follow.  We 

propose an alternate approach in Section IV.  

2) Lack of support for data dependencies – The 

existing approaches have not focused on modeling data 

dependencies that are important for performance testing.  

Handling data dependencies is important since the correct 

choice of parameter values is essential for stressing the 

system under study in a representative manner.  The 

application model must capture data dependencies so that 

they can be satisfied in an automated manner while creating 

workloads. 

In this paper, we propose a new application modeling 

methodology to handle inter-request dependencies and data 

dependencies.  The methodology is based on Extended 

Finite State Machines (EFSMs).  EFSMs can model 

applications with higher-order request dependencies without 

encountering the state explosion problem [14].  

Additionally, the modeling methodology layers additional 

functionality on top of EFSMs to allow different types of 

data dependencies to be captured.  We present examples 

where our methodology is used to model two different e-

commerce applications.   

Our modeling methodology exploits a modified version of 

the Session-Based Web Application Tester (SWAT) tool 

developed by Krishnamurthy et al. to achieve flexible 

control over workload characteristics [12].  Our 

modifications allow SWAT to accept as input the application 

model for a system under study.  This allows SWAT to 

obtain a large set of valid sequences that it needs to 

construct workloads.  SWAT uses a workload model which 

includes attributes such as those discussed earlier in this 

section that can influence the performance of session-based 

systems. The characterizations for these attributes can either 

be based on those observed in real systems or perturbations 

for the purpose of a sensitivity analysis.   The application 

and workload models are used by SWAT’s trace generation 

algorithm to create a synthetic workload that has the correct 

inter-request and data dependencies and that has the 

specified characteristics. The chief advantage of SWAT is the 

fine control it offers over workload characteristics. For 

example, it permits the characterizations of one or more 

attributes to be changed at a time while keeping those of 

others unchanged so that a system’s sensitivity to those 

characteristics alone can be established.     

III. OVERVIEW OF MODEL-BASED APPROACH 

Figure 1 provides an overview of our proposed approach.  

An application model that captures the inter-request 

dependencies and data dependencies for the system under 

study is constructed based on inputs provided by the tester.  

The modeling methodology and the inputs needed to create a 

model are described in Section IV.  The sequence generator 

uses the model to produce a large trace containing valid 

sequences of request types.  We define each valid sequence 

of request types as a sessionlet.    Each sessionlet in this 

trace satisfies the inter-request dependencies for the system 

under study.  The trace of sessionlets is input to SWAT along 

with the workload model and the application model. 

The workload model exposed by SWAT depends on the 

workload generation mode employed [12].  For the sake of 

brevity only the session mode of workload generation is 

discussed.  In the session mode, new sessions are generated 

according to a session inter-arrival time distribution. Session 

inter-arrival time is defined as the time between successive 

arrivals of sessions at the system under study.  Each 

generated session behaves as a user by issuing a request, 

waiting for the complete response from the system, and then 

waiting for an inactive period, defined as the think time, 

before issuing the next request.  The think times are chosen 

according to a think time distribution while the number of 

requests per session is governed by a session length 

distribution.  Finally, SWAT includes as attributes workload 

mix and the distributions for the values of parameters used 

within requests. Workload mix is defined as the overall 

proportions of the different request types in the workload.  

The parameter value distributions can be used to control the 

locality properties of name-value pairs (e.g., control the 

relative popularities of products in a bookstore). 
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We note that the SWAT workload does not include 

requests for objects such as image and multimedia files that 

are embedded within the HTML responses of the system.  

This is because such content is often hosted on external 

“graphics” servers, or at content delivery networks.  

Krishnamurthy et al. provide a more detailed  discussion on 

the rationale behind the workload model chosen for SWAT 

[12]. 

The objective of trace generation is to produce a trace of 

sessions that can be submitted to a system under study.  

Trace generation proceeds in two distinct steps.  In the first 

step, the trace generator produces an intermediate trace of 

sessionlets.  The intermediate trace is created by repeating 

selected sessionlets from the input trace of sessionlets.  The 

trace generator determines the sessionlets selected and the 

number of times each sessionlet is repeated, i.e., the 

execution weights, so as to closely match the specified 

workload mix and session length distribution. 

The next step in trace generation transforms the 

intermediate trace of sessionlets to a trace of sessions.  This 

involves selecting name-value lists for request types to form 

URLs and inserting think times between successive URL 

requests in a session. The application model is consulted to 

handle data dependencies.  The trace generator also ensures 

that the parameter value distributions specified in the 

workload model are achieved.  With SWAT’s trace 

generation approach, inter-request dependencies are satisfied 

since each session in the synthetic workload has the same 

sequence of request types as one of the sessionlets in the 

input trace. 

The sessions produced by the trace generator and the 

specified session inter-arrival time distribution constitute the 

synthetic workload.  A modified version of httperf, an 

open-source request generator, is used to submit the 

synthetic workload to the system under study.  The 

modifications were required to support certain commonly 

occurring data dependencies (explained in Section IV) and 

to facilitate finer-grained reporting of performance metrics.  

We note that our approach is not limited to httperf.  The 

trace generator can be easily modified to produce synthetic 

workloads in formats that conform to other request 

generators.   

The trace generator and request generator shown in Figure 

1 can be used to test different applications. The application 

model provides an indirection that allows these components 

to function independent of the system under study.  The 

components can be used to study different systems by 

merely constructing different application models.   As 

mentioned previously, this is in contrast to traditional trace 

generation methods that are typically system-specific.  For a 

given application, characteristics of the synthetic workload 

can be varied by changing the characterizations for the 

attributes in the workload model. 

IV. APPLICATION MODELING  

As mentioned in Section II, the modeling methodology 

describes a Web application for the purpose of automating 

performance tests.  The basic component of this 

methodology is an EFSM.  Section IV.A describes an EFSM 

and introduces related terminology. We introduce additional 

modeling elements to address inter-request and data 

dependencies and to accommodate the trace generation 

process described in the previous section.  Section IV.B 

presents examples to illustrate the modeling of inter-request 

dependencies.  Modeling of data dependencies is discussed 

in Section IV.C.   

A. Overview of Modeling Methodology 

In this section we briefly describe an EFSM.  For a more 

detailed discussion readers are referred to the survey paper 

by Lee and Yannakakis [14]. 

An EFSM is described as the following quintuple: 

),,,,( TxSOIM =  

I, O, S, ,x  and T are finite sets of input symbols, output 

symbols, states, variables, and transitions, respectively. A 

transition t in the set T is defined by 6-tuple: 

),,,,,( tttttt APoaqst =  

where st, qt, at, and ot are the current state, next state, input, 

and output, respectively. P ( x  ) is a predicate constructed 

from the current variable values, At( x  ) defines an action on 

the variable values. 

The operation of an EFSM can be described as follows.  

Let the machine’s initial state be sinitial where sinitial belongs 

to S.  Let the initial values of variables be given by initialx .  

Assume that the machine is currently at state s and that the 

current variable values are x .  On receiving an input a the 

machine makes a transition ),,,,,( APoaqst = if the 

predicate P ( x  ) evaluates to true.  If the predicate evaluates 

to true, then the machine produces the output o, the values of 

 
Workload Model Application Model 

Sequence Generator 

Trace Generator 

Trace of Sessionlets 

Request Generator (httperf) 

Synthetic Workload 

System under Study 

SWAT 

            Figure 1. Model-based performance testing approach. 
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the state variables are modified as per the function A( x ) and 

the machine moves to the state q.   

For this work we use an EFSM as follows.  We define as 

input the act of a user submitting a request to the system.  

Consequently, an input is associated with a request type and 

a name-value list.  Predicates constructed from the state 

variables are used to capture inter-request and data 

dependencies.  A transition from one state to another is 

allowed only if the predicate associated with that transition 

evaluates to true.  A successful transition may result in 

modification of state variable values as per the transition’s 

action function.  The EFSM is non-deterministic since more 

than one transition can be followed from a given state.  For 

example, in an e-commerce system users maybe able to both 

sign-in as well as view products from the homepage.   Since 

our focus is on workload generation we ignore outputs in 

this work.  However, they could be interpreted as the Web 

page resulting from the input. 

To accommodate the approach described in Section III, 

we introduce several additional model elements to extend 

the basic EFSM functionalities.  Firstly, to facilitate the 

generation of an input trace of sessionlets an EFSM always 

has a Start state and an Exit state.  They model 

respectively, the starting and termination of interactions a 

user has with the Web-based application.  Secondly, each 

transition has two distinct sets of predicates and actions.  

Request dependency predicates and request dependency 

actions are involved in enforcing correct inter-request 

dependencies.  Data dependency predicates and data 

dependency actions are used to satisfy data dependencies.  

As described later, such a distinction is necessitated by the 

two step trace generation process described in Section III.  

Finally, data dependency actions may invoke Select 

functions.  The Select function is used to choose a 

specific value for a given request parameter from among all 

the possible values for the parameter.  The following 

sections provide a detailed description of these elements 

along with examples. 

In general, an EFSM can support many different types of 

variables.  However, for this work we use only the integer, 

string, Boolean, and array data types.  These types of 

variables were found to be adequate for modeling the Web-

based applications considered in Section IV.D. We believe 

other types of variables can be introduced in a 

straightforward manner to better support the needs of 

specific applications.   Our approach also supports basic 

mathematical   and   logical   operations   within predicates 

and actions.  In addition, it supports several functions that 

can be used to operate upon and manipulate variables.  Such 

functions are provided to handle several common types of 

inter-request and data dependencies.  A more detailed 

description of these functions is provided in Section IV.C. 

B. Modeling Inter-Request Dependencies 

As described in Section III, the sequence generator uses 

the application model to create a trace of input sessionlets.  

A sessionlet is generated as follows.  The model is initialized 

by providing initial values to the state variables.  The 

sequence generator causes a transition from the Start state 

by executing a randomly selected transition from among the 

set of allowed transitions from that state.  Another transition 

is executed in a similar manner if the resulting state is not 

the End state.  Sessionlet generation is complete if the End 

state is reached.  The sequence generator outputs the 

sequence of inputs (i.e., request types) corresponding to the 

sequence of transitions executed.  It then re-initializes the 

application model to generate more sessionlets.  Valid 

sessionlets are produced as long as the application model 

enforces the correct inter-request dependencies.  

We now present an e-commerce application example to 

illustrate modeling of inter-request dependencies.  These 

examples also illustrate some of the limitations of the 

modeling approaches discussed in Section II.  Figure 2 

shows a simplified model for the application.   In this 

application users execute the Home request type to request 

the homepage.  The Sign in request type allows a user to 

login as a registered user.  A user can view product 

information through the Browse request type.  The Add 

and Delete request types allow a user to add and delete 

items from the shopping cart, respectively. The Checkout 

request type allows a user to initiate ordering of products in 

the shopping cart.  A user submits the Purchase request 

type to provide payment details for finalizing the order.   

Two request dependency state variables are used to 

enforce inter-request dependencies. The items_in_cart 

is an integer variable that indicates the number of items in 

the shopping cart.  The signed_on Boolean variable 

states whether a user has signed on or not.  The initial values 

of the items_in_cart and signed_on variables are 0 

and FALSE, respectively.  The values of these variables are 

changed by actions associated with several transitions.  For 

example, from Figure 2, submitting the Sign in request 

type (transitions S1 to S7 and S5 to S7) changes the value of 

signed_on to TRUE.  Similarly an Add request type 

(transition S2 to S3) increments items_in_cart variable 

by 1 while a Delete request type (transitions S3 to S4 and 

S4 to S4) decrements the variable by 1.     

From Figure 2, certain transitions depend only on the 

current state of the EFSM.  These first-order transitions are 

not associated with any predicates.  For example, a user can 

submit a Browse request type after submitting a Home 

request type as indicated by the transition from S1 to S2.  

Similarly, a user can browse another product after browsing 

a particular product as indicated by the transition from S2 to 

S2.  

Our application model also allows higher-order 

dependencies between request types to be captured.  For 

example, consider the transition from S4 to S5 in Figure 2.  

In this transition, the user submits a checkout request after 

deleting an item from the shopping cart.  This transition is 

allowed only when the previous sequences of requests have 

resulted in at least one item in the shopping cart.  This 

dependency is enforced by the predicate associated with  the 

transition which checks whether the items_in_cart 

variable is greater than 0. Consequently, the sequence 

[Home, Browse, Add, Browse, Add, Delete, 

Checkout] is allowed while the sequence [Home, 

Browse, Add, Delete, Checkout] is not. 
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The EFSM can model different ways in which a user can 

complete a given task.  Such a scenario is very common in 

Web-based applications.  In the example considered a user 

can either sign-in just immediately before purchasing 

(transition S5 to S7 in Figure 2) or sign-in immediately after 

visiting the homepage (transition S1 to S7 in Figure 2). As a 

result, the sequences [Home, Browse, Add, 

Checkout, Sign in, Purchase] and [Home, 

Sign in, Browse, Add, Checkout, Purchase] 

represent two possible ways for a user to purchase an item.  

The EFSM handles the different scenarios through the 

predicate associated with the transition from S5 to S7 in 

Figure 2.  The predicate uses the sign_in variable to 

determine whether or not a user has to sign-in before 

purchasing an item. 

The simple example presented illustrates some advantages 

of the proposed approach when compared to the existing 

modeling approaches discussed in Section II. As mentioned 

previously, in our approach request types constitute the 

input. In contrast, with a CBMG-like approach request types 

constitute the states of the FSM.  Furthermore, as described 

previously, due to the implicit first-order assumption the 

next state (request type) to be submitted in a session can be 

determined from the current state (request type) alone. 

However, the example presented shows that whether or not a 

certain request type can follow another request type can 

depend on certain complex preconditions being met or not. 

The approaches discussed in Section II are not expressive 

enough to capture such dependencies.  For example, it is not 

possible to capture the conditional dependency between 

Delete and Checkout or Checkout and Purchase 

using the existing approaches.  As a result, for systems 

characterized by complex inter-request dependencies only a 

limited number of unique sessionlets (i.e., those with only 

first-order transitions between request types) can be obtained 

from such models.  Synthetic workloads constructed from 

such a limited number of sessionlets are not likely to be 

representative.  Furthermore, our previous experience [13] 

suggests that having a limited number of sessionlets impacts 

the flexibility of the performance testing process.  

Specifically, with a limited number of sessionlets the trace 

generator does not have enough freedom to realize 

arbitrarily desired mixes and session length distributions.             

We note that an FSM whose inputs represent request 

types could also be used instead of an EFSM.  However, 

since a FSM does not support state variables, predicates, and 

actions the FSM equivalent of an EFSM typically has a 

larger number of states [14].  In particular, state explosion 

can occur when an FSM is used for complex systems 

characterized by a large number of state variables and large 

numbers of possible values for state variables.  

Consequently, an EFSM-based approach can model Web-

based applications in a more succinct manner. 

C. Modeling Data Dependencies 

As discussed in Section III, the sessionlets generated with 

the help of the application model are used by the trace 

generator to create an intermediate trace of sessionlets 

exhibiting the desired workload mix and session length 

distribution.  The intermediate trace has to be converted to a 

trace of sessions that can be submitted to the system under 

study.  This is achieved by appending name-value lists for 

the request types in the intermediate trace. 

We now describe how the application model is used to 

capture data dependencies.  As mentioned in Section III, 

data dependencies govern the generation of parameter 

values.  The set of state variables used by the model includes 

the parameters for all request types supported by the 

application.  Each parameter is denoted using the notation 

“Request Type.Parameter Name”.  For example, 

Add.Item_ID refers to the Item_ID parameter of the 

Add request type.    Depending on how their values are 

chosen, the modeling methodology classifies parameters into 

several categories. 

Tester-specifiable parameters are provided by the tester as 

inputs to the model.  Considering an e-commerce system 

example, user names and passwords as well as product 

identifiers belong to this category.  Tester-specifiable 

parameters are further subdivided into independent 

parameters and inter-dependent parameters.  The value 

chosen for an independent parameter does not have any 

dependency with the value chosen for another parameter.  In 

contrast, the value chosen for an inter-dependent parameter 

is controlled by the value chosen for another independent 

parameter.  For example, in an e-commerce system the 

password selected for a sign-in request type will depend on 

the user name chosen.  Currently, the model only allows 

such one-to-one dependencies.  We note that, where 

appropriate, the choice of values for tester-specifiable 

variables can be controlled through the parameter value  

Figure 2. Modeling inter-request dependencies 

in an e-commerce system. 
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distributions specified to the workload model. 

The values for session-dependent parameters depend on 

the sequence of URLs submitted in a session and hence 

cannot be specified explicitly by the tester.  Considering an 

e-commerce system example again, the id of a product that 

needs to be deleted will depend on the products present in 

the shopping cart.  These parameters are further classified 

into dynamically generated and non-dynamically generated 

parameters. The values of dynamically generated 

parameters are known only during request generation and 

hence cannot be resolved during trace generation. For 

example, the unique order identifier that is passed along with 

a purchase request type is typically assigned dynamically by 

the system only when the session is in progress.  For such 

parameters, the trace generator uses placeholder values 

instead of the actual values.  These placeholder values 

instruct the request generator that the actual values have to 

be obtained by parsing the responses of the Web pages 

returned by the system under study when the session is in 

progress.  In contrast, values for non-dynamically generated 

parameters can be resolved during trace generation.  

To generate name-value lists for a sessionlet in the 

intermediate trace, the sequence of states corresponding to 

the sessionlet are identified in the application model.  As 

mentioned in Section IV.A, the state transitions have 

associated with them data dependency predicates and 

actions.  The actions are used to choose parameter values for 

request types associated with the transitions.  The actions 

use the Select function to choose parameter values.  As 

described shortly, the behaviour of the Select function 

depends on the type of parameter being handled and the 

input arguments passed to the function. In addition to the 

Select functions, functions are also provided to 

manipulate array variables and to handle dynamically 

generated parameter values.   

We present the following example to explain the process 

of handling data dependencies.  Consider the state sequence 

[Start, S1, S7, S2, S3, S2, S3, S4, S5, S6, 

Exit] generated from the EFSM shown in Figure 2.  This 

sequence corresponds to the sessionlet [Home, Sign in, 
Browse, Add, Browse, Add, Delete, 

Checkout, Purchase].  Assume that Sign in takes 

two parameters username and password.  Browse, 

Add, and Delete accept a parameter called item_id 

denoting the item to be browsed, added to the shopping cart, 

and deleted from shopping cart, respectively.  Purchase 

requires an order_id parameter whose value is 

dynamically assigned by the system.  A state variable called 

item_ids_in_cart maintains the item_id values of 

the products in the shopping cart.  We now discuss cases 

involving the generation of values for tester-specifiable and 

session-dependent parameters. Figure 3 shows the model for 

handling data dependencies in the example e-commerce 

system.  In Figure 3 the request type name is omitted when 

referring to a parameter for the sake of clarity. 
Tester-specifiable parameters – Consider the action 

associated with the transition from S1 to S7 in Figure 3. The 

Select function first generates a value for the tester 

specifiable, independent parameter Sign In.username.  

The Sign In.password parameter is specified to be 

dependent on Sign In.username. Consequently, the 

second call to Select generates a value for password 

depending on the username selected in the first call.  When 

many different values are possible for a tester-specifiable 

parameter, a value is either chosen randomly from among 

the possible values or as per a parameter value distribution, 

if such a distribution is specified in the workload model. 

Session-dependent parameters – Consider the action 

associated with the transition from S2 to S3 in Figure 3.  For 

this example, the Add.item_ID is session-dependent.  As 

shown in Figure 3, the value of this parameter is the same as 

the value of the Browse.item_ID parameter chosen 

previously in the session.  For certain session-dependent 

parameters there may be a choice between many possible 

values.  In such cases, the Select function is used to 

choose a value from among the possible values. This is 

illustrated in the action associated with the transition from 

S3 to S4.  The Select function takes as argument the 

item_ids_in_cart list variable.  This variable is 

updated whenever an Add transition occurs (e.g., transition 

from S2 to S3 in Figure 3) and contains the ids of items 

added to the shopping cart.  The function randomly selects a 

value from this list and assigns it to the Delete.item_ID 

parameter.  The action also invokes the remove method on 

item_ids_in_cart to delete the item id from the list. 

As mentioned previously, placeholder values are used for 

dynamically generated parameter values.  Consider the 

action associated with the transition from S5 to S6.  The call 

to the Generate_placeholder function inserts a 

placeholder value for the dynamically generated 

Figure 3. Data dependencies in an e-commerce system. 
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Purchase.order_ID parameter.  We note that the 

format of the placeholder value may differ for different 

request generators.       

V. IMPLEMENTATION 

We have developed a toolset to support the approach 

described in this paper.  Testers use a text file to specify 

inputs related to the application and workload models.  

Details of the specification language have been omitted due 

to space constraints.  A model verifier has been developed to 

check for consistency in the application model.  For 

example, the program flags an error when no values are 

provided for a variable declared as tester-specifiable 

variable.  The model verifier also checks for consistency 

between the application model and workload model.  For 

example, an error is reported when a request type specified 

in the workload model does not appear in the application 

model and vice-versa.  If the model consistency check is 

successful, the model verifier generates the application and 

workload models in a less verbose format suitable for the 

sequence and trace generator tools shown in Figure 1.  A 

sequence generator that takes as input the less verbose 

application model to produce a trace of sessionlets has also 

been developed.  Finally, we have also modified SWAT to 

accommodate the proposed methodology. 

VI. MODELING CASE STUDY 

We used the proposed modeling approach to develop 

models for two open-source session-based systems namely, 

the Java Pet Store [9] and the Rice University Bidding 

System (RUBiS) [20].  The main objective of this exercise 

was to verify whether our approach was robust enough to 

model different types of Web applications.  

The Java Pet Store is essentially an e-commerce 

application that can be used to sell pets online.  The 

application is built using the J2EE middleware.  The model 

developed for this application is conceptually similar to the 

model presented for the e-commerce example in Sections 

IV.C and IV.D.  The reader is referred to our technical 

report [21] for a detailed description.  Section VII describes 

a study where this model was used to generate synthetic 

workloads for a Pet Store installation.  

The RUBiS application has been modeled after eBay, the 

popular Internet auction site.  Several implementations of 

RUBiS based on different middleware technologies such as 

Java Servlets and Enterprise Java Beans have been 

developed [Ref].   Many studies have used RUBiS to study 

performance issues in Web applications.  Stewart et al. 

employed RUBiS to investigate the impact of non-

stationarity of workload mix and its implications to 

prediction of server performance [22].  Similarly Parekh et 

al. tested their bottleneck detection approach on a RUBiS 

testbed [18].  

The modeling methodology was found to be expressive 

enough to capture the dependencies of RUBiS.  The model 

developed for RUBiS differed from the Pet Store model in 

many aspects.  Specifically, more session-dependent 

parameters had to be used while handling data dependencies.  

For example, the item id of a product in RUBiS had to be 

treated as a dynamically generated, session-dependent 

parameter.  The reason for this choice is because an item id 

is dynamically generated by the system when a seller 

initiates a new auction.  Consequently an item’s id has to be 

obtained during request generation by parsing the Web page 

response returned by the system.  This is in contrast to the 

Pet Store system where item ids are known a priori and 

hence can be modeled as tester-specifiable parameters.  A 

more detailed description of the RUBiS model can be found 

in our technical report [21]. 

The application models along with our toolset can be used 

to support more flexible performance tests for Web 

applications.  For example, performance studies involving 

RUBiS typically make use of a workload generator that is 

bundled with the application.  However, this workload 

generator does not allow a tester to specify arbitrarily 

desired characterizations for workload attributes.  For 

example, a tester cannot vary the workload mix and session 

length distribution independently of one another [12].  Since 

both these attributes can impact performance, this limitation 

makes it difficult to isolate their individual impacts.  The 

workload generators bundled with other benchmarks such as 

TPC-App also suffer from the same limitation.  

Consequently, these tools are not well suited for studies that 

require fine-grained, flexible control over workload 

characteristics.  In section VII we present a sensitivity 

analysis case study to demonstrate how our toolset could be 

used for such studies. 

VII. PERFORMANCE EVALUATION CASE STUDY 

In this section we demonstrate the utility of the toolset by 

using it to test the performance of the Java Pet Store 

application.  To the best of our knowledge currently there is 

no workload generator available for this application.  

Specifically, two sets of experiments are conducted.  We 

note that we were unable to conduct a direct comparison of 

our approach with the CBMG-like approaches discussed in 

Section II.  As discussed in Section IV, those approaches 

were not able to capture the types of dependencies present in 

the Pet Store application.   

The first set provides results that establish the importance 

of preserving inter-request dependencies for the Pet Store 

application thereby motivating the need for our modeling 

approach.  The second set demonstrates the flexibility of our 

toolset.  It shows how our toolset can be exploited to 

automatically generate controlled synthetic workloads that 

can be used to study the sensitivity of system performance to 

various workload attributes. 

This section is organized as follows.  Section VII.A 

describes the experiment setup.  Section VII.B studies the 

impact of inter-request dependencies on application  

performance.  Sections VII.C and VII.D present experiments 

where synthetic workloads are used to explore the impact of 

workload mix and think time on application performance.  

Section VII.E discusses how the results of this case study 

vindicate the need for our toolset. 

A. Experiment Setup 

The hardware setup for the experiments was as follows.
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Table I: Factors and levels used in the sensitivity analysis experiments 

Factor Levels 

Session inter arrival time Exponentially distributed.  Different mean session inter-

arrival times to generate HI-LOAD and LO-LOAD  

Workload mix Mix1 and Mix2 

Tester specifiable parameters  Fixed probability destiny functions for parameter values  

Think time Exponentially distributed. Two different mean think time 

(Z) values (Z = 3 sec and Z = 45 sec) 

Session length Exponentially distributed. Mean session length = 10 

 

The Pet Store application was installed on a Pentium III, 1 

GHZ (dual), 1 GB RAM machine running under the 

Windows XP operating system. This node is referred to as 

the server node. httperf was executing on a Pentium III, 

1 GHZ, 512 MB RAM machine running under the Linux 

operating system. This node is referred to as the client node. 

The server node and the client node were connected by Fast 

Ethernet switch.  This switch provides dedicated 100 mbps 

full duplex bandwidth between the client node and the server 

node.  The switch prevented the network from becoming the 

bottleneck during the tests.  As a result, response time 

measured by httperf is a good indicator of server 

response time.  For this study we define response time as the 

time between sending the first byte of a HTTP request and 

receiving the first byte of the corresponding HTTP response. 

Performance metrics for the server node such as CPU and 

disk utilization were recorded by using the windows 

perfmon tool. We set the sampling interval for perfmon 

to be 2 minutes.  In addition to the server node metrics, 

detailed traces were collected from httperf to 

characterize response times for individual requests submitted 

to the Pet Store.  The primary performance metric used for 

this study is the 95
th

 percentile of response times (R95).  We 

chose this metric since it is used frequently in service level 

assessment exercises.  In addition, the mean response time 

(Rmean) is also reported for all experiments.   

For all experiments in this study, the CPUs of the server 

node were found to be the bottleneck. On the other hand, 

very little disk activity was observed at the server node. 

Similarly, the server node did not display any memory 

bottlenecks or virtual memory activity. The network was 

also found to be very lightly utilized. The worst case peak 

network throughput was several orders of magnitude lower 

than the 100 mbps capacity of the fast Ethernet switch. 

As mentioned previously, an application model was 

developed for the Java Pet Store (version 1.4).  The 

application model developed was used by the sequence 

generator to create an input trace of 20,000 sessionlets for 

the Pet Store.  SWAT used these input sessionlets to 

generate controlled synthetic workloads.  The synthetic 

workloads were constructed in a manner that allowed us to 

evaluate the sensitivity of system performance to two 

workload attributes namely, workload mix and mean think 

time.  Table I shows the experimental design followed for 

the sensitivity analysis. 

From Table I, the exponential distribution is used for 

generating session inter-arrival times.  This assumption is 

consistent with previous studies which have shown that 

arrivals of sessions at a Web server are uncorrelated with 

each other [19].  The value of the mean session inter-arrival 

time was manipulated to achieve two different mean request 

rates at the server namely, HI-LOAD and LO-LOAD.  As the 

name implies, these mean request rates were chosen to place 

different loading levels on the server.  With these mean 

request rates, the worst case mean server CPU utilization 

achieved over an experiment duration was found to be 

approximately 60%.  Studies have shown that the mean 

utilizations of real servers over a timescale of a few hours 

rarely exceed this value [2].  Consequently, we did not 

conduct experiments that result in higher mean utilizations.  
An exponential distribution with a mean of 10 requests 

per session was chosen as the session length distribution.  

This choice matches the behaviour observed by Arlitt et al. 

at a large Web-based shopping system [3].  As shown in 

Table I, fixed probability density functions (PDFs) were 

specified for tester specifiable variables in the Pet Store such 

as product and category ids.  The same set of PDFs was used 

for all experiments.  The PDFs were selected to cause a 

small set of products and categories in the system to be more 

popular than products and categories outside this set.  Such a 

choice was motivated by similar behaviour observed at real 

Web applications [3] [15]. 

As shown in Table I, the exponential distribution was 

used for generating think time values.  This distribution is 

widely used by practitioners as well as in popular 

benchmarks for Web applications such as TPC-W [23] and 

RUBiS [20]. Two different mean think time (Z) values were 

explored in the experiments.  The lower Z value of 3.0 

seconds closely mirrors the setting used by benchmarks such 

as TPC-W and RuBiS.  Anecdotal evidence suggests that 

many practitioners use these benchmarks as guidelines for 

their own performance testing exercises.  As a result, in 

practice performance tests very often employ such a low 

value of Z.   The higher Z value of 45.0 seconds is consistent 

with observations recorded at a real Web-based application 

[1].  We used this value in some of our experiments to study 

the impact of using more realistic think times. 

To study the impact of workload mix, workloads with two 

different mixes were created using SWAT.  As shown in 

Table II, Mix2 does not contain any Checkout or 

Purchase request types. In contrast, Checkout and 

Purchase constitute about 4.75% of the requests in Mix1.  
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Table II: Request type distribution in Mix1 and Mix2 

 Mix2 Mix1 

Request Type Percentage of Request Types Percentage of Request Types 

Shopping Cart 16.37 16.37 

Browse 46.30 41.46 

Sign out 0.20 0.30 

Sign in 6.20 6.54 

Add 5.96 5.95 

Delete 0.61 0.59 

Checkout 0.00 3.57 

Purchase 0.00 1.19 

Home 14.78 14.53 

View item 9.53 9.45 

 

Furthermore, Mix2 offsets the decrease in Checkout and 

Purchase request types through a corresponding increase 

in the number of Browse request types.  Specifically, Mix2 

contains about 4.80% more Browse request types than 

Mix1.  The percentages of other request types are almost the 

same in both mixes.  Mix2 is used to emulate a workload 

that has only “window” shoppers while Mix1 represents a 

workload with shoppers who buy occasionally.                     
As mentioned previously, the 20,000 sessionlets generated 

from the Pet Store application model were used to construct 

the synthetic workloads for this study.  Each experiment 

evaluated the impact of a particular workload on the system. 

Each workload corresponds to a specific factor-level 

combination of Table I.  Each experiment performed 

consisted of three different runs. SWAT was used to create 

three different statistically identical trace files for these three 

different runs. This was done by using different seeds for the 

random generators used by SWAT.  We used the response 

time numbers from the three runs in an experiment to 

compute 95% confidence intervals for Rmean and R95. Each 

run took around 3-4 hours to finish. httperf generated a 

log file for approximately 100,000 replies sent by server to 

the submitted requests.  The server node was rebooted and 

the Pet Store application database was reinitialized between 

successive runs to ensure that the system was in the same 

initial state.  For each experiment, chi-square tests [8] were 

conducted to ensure that the workload generated in an 

experiment conformed to the workload model specified to 

the toolset.      

B. Impact of Inter-request Dependencies 

Simple experiments were conducted on the Pet Store 

system to study the effect of inter-request dependencies.  We 

selected two sessions from a trace of sessions created using 

our approach.  The first session, named 

Browse_Session, contained requests to browse items in 

the pet store.  It did not contain any purchase related request 

types such as Sign in, Shopping cart, Add, 

Delete, Checkout, and Purchase.  The other session, 

named Purchase_Session, predominantly consisted of 

purchase related requests.  For the Pet Store application, the 

browse related requests do not have any dependency with 

other requests and can occur at any point in a session.  

However, purchase related requests have more complex 

inter-request dependencies similar to those modeled in 

Figure 2.  We also created scrambled versions of the two 

sessions called Browse-Scrambled_Session and 

Purchase-Scrambled_Session.  The scrambled 

versions have requests occurring in a random order and 

hence ignore dependencies.          

Since we were interested in characterizing the aggregate 

resource demand placed by a session on the system’s 

resources, the number of concurrent sessions accessing the 

Pet Store was set to be 1.  httperf was used to submit a 

session and measure the mean response time for requests in 

the session.  Since there was no contention among sessions 

for system resources and since the network was lightly 

loaded, the mean response time reflects the end-to-end 

resource demands placed by the session across all resources 

in the Pet Store system.  Multiple runs were carried out for 

each experiment to achieve statistical confidence in the 

results. 

Table III shows the results from our experiments.  There 

is no significant difference between the Rmean values for the 

Browse_Session and Browse-

Scrambled_Session sessions.  This is not surprising 

given that browse related requests can occur in any order 

within a session.  However, the Rmean for the 

Purchase_Session session is almost 1.73 times that of 

the Purchase-Scrambled_Session session.  The R95 

values for these sessions were all statistically different since 

they had non-overlapping 95% confidence intervals. The 

Purchase-Scrambled_Session workload places less 

stress on the system since certain requests (e.g., Sign in, 

Shopping cart, Add, Delete, Checkout, 

Purchase) impose less demand on system resources if 

they occur at an incorrect point in a session.  This result 

reinforces the importance of preserving correct inter-request 

dependencies in synthetic workloads for the system under 

study.  When significant inter-request dependencies are 

present, ignoring them can yield incorrect performance 

estimates and can therefore cause incorrect conclusions to be 

drawn from performance tests.  As a result, we believe our 

approach adds value to the performance testing process by 

providing a mechanism to capture and preserve complex 

dependencies in session-based systems.   

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

 
______________________________________________________________________________________ 



        Table III: Effect of inter-request dependencies 

Workload Rmean (ms) 

Browse_Session 97.6 

Browse-Scrambled_Session 101.4 

Purchase_Session 390.6 

Purchase-Scrambled_Session 226.3 

 

Table IV: Effect of Workload Mix 

Mix1-Workload Mix2-Workload Load 

(Requests/sec) UCPU  

(%) 

R95 

(ms) 

UCPU  

(%) 

R95 

(ms) 

13.2 (HI-LOAD) 59.2 199.3 49.8 161.5 

9.6 (LO-LOAD) 41.2 128.0 36.2 119.1 

C. Impact of Workload Mix 

To study the impact of workload mix, we created two 

different workloads namely, Mix1-Workload and Mix2-

Workload.  Both workloads are similar in all respects 

except their workload mixes.  Mix1-Workload and 

Mix2-Workload display the Mix1 and Mix2 workload 

mixes of Table II, respectively.  A mean think time of 3.0 

seconds is used for these experiments.  Experiments were 

performed for both the HI-LOAD and LO-LOAD cases of 

Table I.  We note that ability to synthesize workloads that 

differ only with respect to their workload mixes is a unique 

aspect of our toolset.  Other trace generation toolsets that we 

are aware of do not support the ability to control the 

workload mix independently of the session length 

distribution [13].   

Table IV shows the results of this set of experiments.  As 

the load in requests per second increases, the average 

utilization of the Pet Store system’s processors over the 

experiment duration (UCPU) increases for both workloads.  

Furthermore, R95 increases for increasing loads for both 

workloads.  For a given load, the Mix1-Workload places 

more stress on the system than the Mix2-Workload.  For 

the LO-LOAD case, UCPU for the Mix1-Workload is 

approximately 14% higher that of the Mix2-Workload.  

Similarly, for this case the R95 value for Mix1-Workload 

is about 7.5% higher than that of the Mix2-Workload.  

The impact of workload mix becomes more significant at the 

higher load.  For the HI-LOAD case the R95 value for 

Mix1-Workload is approximately 23% higher than that 

of the Mix2-Workload.  We note that the differences 

observed in the UCPU and R95 values are statistically 

significant since the values compared have non-overlapping 

95% confidence intervals.   

The main reason for the poorer performance with the 

Mix1-Workload is the presence of the resource intensive 

Purchase request type in the workload.  Figure 4 provides 

the mean response time breakdown for the different request 

types in the workloads for the HI-LOAD case.  From the 

figure, the mean response time of the Purchase request 

type is about 2.5 times that of the next most resource 

intensive request type (Sign in).   Since Mix2-

Workload has no Purchase request types, for a given 

load this workload imposes lesser stress on the system 

causing lower UCPU and R95 values.  The reason for the 

resource intensiveness of the Purchase request type is 

likely due to the fact that it involves updating the database 

with information such as the particulars of the order being 

placed. Interestingly a mere 1.19% increase in Purchase 

requests (Table II) resulted in a 23% increase in R95 for the 

HI-LOAD case (Table IV).  This shows that system 

performance can be very sensitive to the workload mix.  

D. Impact of Think Time   

Two different workloads were created to investigate the 

impact of mean think time.  The HI-THINK workload had a 

Z value of 45.0 seconds while the LO-THINK workload had 

a Z value of 3.0 seconds.  The workloads were similar with 

respect to all other attributes.  The experiments employed 

the Mix1 workload mix and were conducted for the LO-

LOAD loading level.  The distributions for session length and 

the tester specifiable variables were as per Table I.   Table V 

shows the results from this set of experiments. 

From Table V, even though the mean request rate, 

workload mix, session length distribution, and distributions 

of tester specified variables are the same for both workloads, 

the HI-THINK workload places more stress on the system 

than the LO-THINK workload. The R95 with the HI-

THINK workload is approximately 16% higher than that of 

the LO-THINK workload.     Similarly, the UCPU with the 

HI-THINK workload is about 6.5% higher than that with 

the LO-THINK workload.  Since with both workloads the 

server encountered the same mean request rate, this implies 

that the per request service demand incurred at the server 

CPU was more for the HI-THINK workload.  This 

increased demand is not due to changes in the workload mix 

since the same mix was used to construct both the 

workloads.   

To understand this result, we consider the session 

durations with both workloads.  The HI-THINK workload 

increases session durations.  As a result, the server would 

encounter more number of concurrent sessions with the HI-

THINK workload.  Figure 5 plots the cumulative distribution 

function (CDF) of the number of concurrent sessions at the 

server for both workloads.  From the figure, the median 

number of concurrent sessions for the LO-THINK workload 

is approximately 20 while it is approximately 475 for the 

HI-THINK workload.  The mean numbers of concurrent 

sessions for the HI-THINK and LO-THINK workloads 

were found to be approximately 371 and 25, respectively.  In 

other words, even though the mean request rates are the 

same with both workloads there is increased session 

concurrency with the HI-THINK workload. We believe that 

this can adversely impact performance in two different ways. 

Firstly, overheads (e.g., context switching) are introduced 

because more sessions have to be handled concurrently. This 

perhaps explains the higher per-request CPU demands 

observed with the HI-THINK workload. Secondly more 

number of concurrent sessions can also cause requests to 

arrive in a bursty manner.  This can in turn cause more 

contention among requests for system resources leading to 

significant queuing delays.  
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Figure 4. Mean response times of request types (HI-LOAD) 
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Figure 5. CDF of number of concurrent sessions 

 

Table V: Effect of mean think time 

HI-THINK LO-THINK Load 

(Requests/sec) UCPU 

% 

R95 

(ms) 

UCPU 

% 

R95 

(ms) 

9.6 (LO-LOAD) 43.9 148.8 41.2 128.0 

  E. Discussion 

The results presented in Sections VII.C and VII.D show 

that system performance can be very sensitive to attributes 

such as workload mix and mean think time.  Specifically, a 

relatively modest increase in the number of resource 

intensive request types was found to cause significant 

degradation to the system’s responsiveness.  Furthermore, 

even under moderate loads a workload with longer think 

times imposed more demands on the processors and caused 

longer response times than a workload with short think 

times.  Though memory bottleneck was not an issue in this 

case study, longer think times can cause such a bottleneck 

since a system has to support a large number of concurrent 

sessions.  Apart from the attributes studied, the other 

attributes included in our workload model can also 

significantly influence system performance.  For example, 

our previous study has shown that system performance can 

be very sensitive to the session length distribution [11].  

These results reinforce the importance of careful selection 

of workload attribute characterizations for performance 

tests.  For example, results of Section VII.D suggest that 

standard benchmark workloads that use short think times are 

likely to yield more optimistic estimates of system 

performance than a more realistic workload that uses longer 

think times.  To obtain a more complete understanding of 

how workload characteristics impact performance, a 

performance testing toolset needs to be flexible enough to 

support sensitivity analysis studies such as that presented in 

this paper.  As mentioned previously, existing performance 

testing methodologies do not permit fine-grained control 

over workload characteristics (e.g., perturbing mix while 

keeping other characteristics unchanged) for supporting such 

studies.   
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The toolset described in this work supports such 

flexibility by enabling the automated construction of 

controlled synthetic workloads.  Specifically, the application 

model allows generation of a large trace of sessionlets that 

preserve the correct inter-request dependencies for a system 

under study.  This trace of sessionlets permits automated 

construction of synthetic workloads with specified 

characteristics.  Furthermore, the application model also 

allows correct data dependencies to be enforced in an 

automated manner.  The ability to automate the construction 

of synthetic workloads and the ability to achieve arbitrarily 

desired workload characteristics can greatly improve the 

effectiveness of the performance testing process.                              

VIII.  CONCLUSIONS AND FUTURE WORK 

This paper developed a model-based toolset for testing 

the performance of Web applications.  The toolset uses a 

formal model to capture an application’s inter-request and 

data dependencies.  The model can be used to obtain several 

sequences of requests representing how users typically 

interact with the Web-based application.  The sequences can 

in turn be used to construct synthetic workloads with 

specified characteristics.   

The proposed approach offers several advantages over a 

traditional performance testing approach.  The application 

model provides an indirection which allows a common set of 

workload generation tools to be used for testing different 

applications.  As an example, we found the modeling 

methodology underlying the toolset to be expressive enough 

to describe two different Web applications.  Due to this 

model-based approach, less effort is needed for developing 

and maintaining the workload generation tools and more 

effort can be dedicated towards the performance testing 

process.  Furthermore, the approach can improve the 

effectiveness of the performance testing process since it 

enables automated and flexible control over the 

characteristics of synthetic workloads.  To the best of our 

knowledge, we are not aware of other model-based tools that 

provide support for the types of complex dependencies in 

Web applications discussed in this paper.      

Future work will focus on reducing the effort needed to 

develop an application model.  Specifically, we intend to 

explore ways in which application documentation (e.g., 

UML object diagrams, message sequence charts) can be 

exploited to generate application models.  Our future work 

will also further refine the manner in which dynamically 

generated parameter values are handled.  Currently in our 

toolset whenever the request generator (httperf) 

encounters a placeholder tag for a dynamically generated 

parameter it parses the HTTP response of the last submitted 

request in the session to obtain that parameter’s value.  This 

approach was found to be sufficient for the Pet Store 

application.  In future, more complex operations will be 

supported by encoding a placeholder tag with a condition 

based on values obtained from the parsed response and an 

action that generates a value for the dynamic parameter 

based on the condition. 

We intend to model other types of Web applications such 

as online banking and trading applications.  Modeling of 

applications in enterprise environments such as SAP will 

also be explored.  Insights gained from these studies would 

be used to enhance the modeling approach.  We are 

currently developing an open-source implementation of our 

toolset.  We also plan to make available models for popular 

Web applications such as the Java Pet Store, TPC-W, TPC-

App, and RUBiS.    
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