
A Model-Based Performance Testing Toolset for

Web Applications

Diwakar Krishnamurthy, Mahnaz Shams, and Behrouz H. Far

Abstract - Effective performance testing techniques are

essential for understanding whether a Web-based application

will meet its performance objectives when deployed in the real

world. The workload of such an application has to be

characterized in terms of sessions; a session being a sequence of

inter-dependent requests submitted by a single user.

Dependencies arise because some requests depend on the

responses of earlier requests in a session. To exercise

application functions in a representative manner, these

dependencies should be reflected in the synthetic workloads

used to test Web-based applications. The need to handle these

dependencies makes performance testing a time consuming

process. Specifically, since the nature of these dependencies

varies across systems considerable effort needs to be dedicated

towards tailoring a set of test tools that will work for a given

system. Furthermore, the traditionally followed approach of

manually developing test scripts that handle dependencies

makes it difficult to achieve fine-grained control over a

synthetic workload’s characteristics. In this paper, we propose

a new model-based approach to address these issues. Our

approach uses an application model that captures the

dependencies for a Web-based application system under study.

The application model provides an indirection that allows a

common set of workload generation tools to be used for testing

different applications. Consequently, less effort is needed for

developing and maintaining the testing tools and more effort

can be dedicated towards the performance testing process.

Furthermore, the application model can be used to obtain a

large set of valid request sequences representing how users

typically interact with the application. This feature facilitates

techniques that can manipulate the set of sequences to achieve

automated control over the characteristics of the synthetic

workloads used in a testing exercise. The utility of the toolset is

demonstrated by applying it to model two different Web

applications and through a study that systematically

investigates the impact of various workload characteristics on

the performance of an e-commerce application.

Index Terms - Synthetic Workload Generation, Software

Performance Engineering, Finite State Machine Models.

Manuscript received January 20, 2009. This work was financially

supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC) and the University of Calgary.

D. Krishnamurthy is with the Department of Electrical and Computer

Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada.

(phone: 403-220-8129; fax: 403-282-6855;email: dkrishna@ucalgary.ca)

M. Shams is with the Department of Electrical and Computer

Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada.

(email: mshams@ucalgary.ca)

B. H. Far is with the Department of Electrical and Computer

Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada.

(email: far@ucalgary.ca)

I. INTRODUCTION

Enterprises are increasingly relying on Web-based

systems to support critical business functions. Such systems

often host complex, multi-tier applications such as e-

commerce and business process management. With these

systems, responses to user requests are typically generated

dynamically by invoking the service of one or more server

tiers. The system workload has to be characterized in terms

of sessions; a session being a sequence of inter-dependent

requests submitted by a single user. Dependencies arise

because some requests depend on the responses of earlier

requests in a session. For example, an order cannot be

submitted to an e-commerce system unless the previous

requests have resulted in an item being ordered. We define

this phenomenon as inter-request dependency and refer to

this class of systems as session-based systems.

Poor performance of session-based systems can adversely

impact the profitability of an enterprise. As a result,

effective performance testing techniques are essential for

understanding whether a session-based system will meet its

performance objective when deployed in the real world.

Performance testing is a technique where synthetic

workloads [7] are submitted to a system under study within a

controlled environment. The synthetic workload used in a

performance test serves to mimic the request patterns of real

system users. Synthetic workloads are constructed from a

workload model. A workload model specifies statistical

characterizations for a set of workload attributes that are

expected to affect performance the most. Measurements

such as user response times and server utilizations are

collected during the tests and used to support capacity

planning and service level assessment exercises.

In general, a performance testing methodology must

address several requirements with respect to synthetic

workloads. Firstly, to reach reliable conclusions based on

the results of a performance test, the synthetic workloads

used must be representative of real workloads. A synthetic

workload is said to be representative of a real workload if

both workloads result in similar performance when

submitted to a system. The representativeness of a synthetic

workload is significantly influenced by the attributes in the

workload model and the characterizations used for them [7].

Furthermore, for session-based systems requests within a

session in the synthetic workload must reflect the correct

inter-request dependencies to exercise application functions

representatively. Krishnamurthy et al. experimentally

showed that incorrect performance estimates can result when

inter-request dependencies are ignored while constructing

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

synthetic workloads [12]. Secondly, since it is very difficult

to know precisely what a real workload’s characteristics will

be, a performance testing methodology must provide the

flexibility to conduct a controlled sensitivity analysis on the

characterizations of the workload model’s attributes.

The need to satisfy inter-request dependencies makes it

difficult to satisfy the representativeness and flexibility

requirements. Typically, a small set of system-specific

scripts is manually developed to create synthetic workloads.

In a given test, each script has an execution weight that

determines the number of times that script is executed and

hence the overall characteristics of the synthetic workload

generated. Different synthetic workload characteristics are

achieved by manually selecting different sets of script

execution weights. Such an approach can be time

consuming especially when the characterizations of

workload attributes need to be varied in a fine-grained and

controlled manner. Furthermore, since the scripts developed

are system-specific they need to be modified when changes

are made to a system (e.g., changes in inter-request

dependency, addition of new functionality). The manual

selection of execution weights for the new set of modified

scripts needs to be repeated again to construct the various

desired synthetic workloads further increasing the

performance testing effort. As a result, very often ad-hoc

workloads are used and insufficient sensitivity analysis is

carried out. Consequently, results from such tests are not

likely to provide reliable insights into system performance.

In this paper, we propose a new model-based approach

that addresses these limitations. Our approach uses an

application model that captures the application logic of a

session-based system under study. Essentially, the

application model can be used to obtain a large set of user

request sequences that satisfy the correct inter-request

dependencies for the system under study in an automated

manner. The ability to generate a large set of valid

sequences, i.e., scripts, makes it possible to apply techniques

[12] that can automatically determine the script execution

weights needed to construct a synthetic workload with

desired characteristics. Specifically, the advantages of the

model-based approach over the traditional performance

testing approach are as follows:

• The approach provides automated support for fine-

grained control of workload characteristics. Many different

synthetic workloads can be automatically constructed to

support flexibility with respect to workload characteristics.

For example, the approach would make it easy to create

controlled workloads to study how varying the

characteristics of a particular workload attribute impacts

system performance.

• Lesser effort is needed to adapt the synthetic workload

generation tools to handle changes made to a given system

or to use them for testing other systems. This improved

portability is a result of the indirection provided by the

application model. The application model essentially makes

the workload generation tools independent of the system

under study. For example, by using different application

models the same set of tools can be used to test an e-

commerce system, a modified version of the e-commerce

system and an online auction system.

To the best of our knowledge, we are not aware of

existing work that addresses the research issues we have

considered in this paper. As described in Section II, other

model-based approaches do not support certain types of

dependencies that occur commonly in Web applications.

Furthermore, in contrast to our toolset described in Section

III, tools that are frequently used to test Web applications do

not support the ability to automatically control synthetic

workload characteristics.

The rest of the paper is organized as follows. Section II

discusses background and related work. An overview of the

proposed approach is provided in Section III. Section IV

discusses a methodology to construct application models for

the purpose of performance testing. Section V briefly

describes the implementation of a toolset embodying the

proposed methodology. Section VI presents a case study

that shows the ability of our approach to model two different

Web applications. Section VII demonstrates the utility of

the toolset through a performance evaluation case study of

the Java Pet Store [9] e-commerce application. Section VIII

provides conclusions and discusses future work.

II. BACKGROUND AND RELATED WORK

Knowledge of the characteristics of workloads observed

at real systems can provide insights for creating

representative synthetic workloads for performance testing.

Menasce et al. characterized the workloads from an online

bookstore and an online auction site [15]. Analysis of the

bookstore revealed that over 70% of the total requests were

for browsing books. Only 1.19% of the requests were

associated with purchases. The auction site also displayed

predominance of browse-related requests but not to the

extent seen in the bookstore site. Furthermore, the authors

found a significant percentage of sessions that had a very

large number of requests. These were found to originate

from automated robots that crawled the system endlessly to

collect information such as the pricing of products.

Arlitt et al. characterized the workload of a large Web-

based shopping system [3]. Over 95% of total requests in the

workload they studied are for dynamically generated objects.

An analysis of object popularity revealed that a large

fraction of the total requests is for a small number of very

popular objects. The study also reported a significant

presence of robots, which is consistent with the results

reported by Menasce et al. [12]. Finally, the study found

that there is a large difference in the resource demands for

the different types of requests (e.g., Browse, Search,

Purchase) in the system. For example, a request to search

a product placed 40 times more demand on the bottleneck

resource of the system than a request to browse a product.

Kelly [11] characterized the workload at several real

session-based systems and found a very strong correlation

between the transaction mix (i.e., the proportions of different

types of requests) and system performance. Specifically, the

work found that the response times observed at the session-

based systems over a given time interval could be predicted

accurately based on the transaction mix they encountered in

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

that time interval. In a follow up work, Stewart et al.

showed that transaction mixes observed at real session-based

systems exhibit significant time varying behaviour or non-

stationarity [22]. Specifically, the server was found to

encounter different mixes over different time intervals.

The arrival of requests at many session-based systems was

found to be self-similar [10] [15] [25]. Self-similar

workloads exhibit significant request correlations or bursts

over multiple timescales [6]. Researchers have argued that

such a behaviour could possibly be due to the high

variability in the number of requests in a session [15] and the

high variability in request service times [25] observed in

these systems.

The studies discussed so far identify several workload

attributes that need to be considered while generating

synthetic workloads for session-based systems. Specifically,

techniques are required to control attributes such as the

number of requests per session, transaction mix, and bursts

in request arrivals. This would allow realistic workloads to

be constructed and facilitate studies that help understand the

sensitivity of system performance to these workload

attributes. The traditional performance testing approach of

manually creating scripts and manually determining script

execution weights does not permit comprehensive sensitivity

analyses exercises.

Generating synthetic Web workloads typically involves

two steps: trace generation and request generation. The

trace generation step handles the complexities of creating a

synthetic trace of HTTP/HTTPS requests that adhere to a

workload model. The request generation step submits the

requests in the trace to the system under study. Pre-

generating traces reduces overheads during request

generation thereby ensuring that the achieved workload

characteristics stay close to the specified characteristics.

The SURGE [5] tool supports trace and request generation

capabilities for testing Web servers. S-Clients [4] and

httperf [17] are request generation tools that are capable

of generating realistically heavy overloads during

performance tests.

Requests for session-based systems can be split into two

parts: 1) a request type; and 2) a name-value list. Typically a

request type instructs an application server to execute a

particular server-side script and the name-value list, which

follows the request type, provides input data for the script.

Each entry in the name-value list consists of a name of a

parameter and the parameter’s value. For example, the

request /Add?product_id=1&number=2 has Add as

its request type and product_id=1&number=2 as its

name-value list. The two parameters for this request are

product_id and number. For session-based systems

the trace generation step must address the issue of handling

inter-request dependencies. For example, considering an e-

commerce system, a session can issue a Purchase request

only after a product has been added to the shopping cart

through a previous Add request. As described shortly, other

researchers have considered the problem of inter-request

dependencies.

For session-based systems, trace generation must also

address data dependencies. Data dependencies govern the

choice of values for parameters in the name-value lists. For

example, a Login request type in an e-commerce system

has to be submitted with valid user name-password

combinations. To the best of our knowledge, we are not

aware of other studies which have addressed this problem as

it pertains to performance testing.

Finite State Machines (FSMs) have been extensively used

to model application-specific dependencies. A FSM consists

of sets of states, inputs, and outputs. Applying a set of

inputs causes transition from one state to another state and

produces a set of outputs. FSM models are widely used to

test whether an implementation of a software application

conforms to specifications. An FSM is used to describe the

specifications. In essence, the transitions in the FSM capture

the desired behaviour for the implementation. Testing

typically involves obtaining sequences of input sets called

test sequences from the FSM. Each test sequence is applied

to the implementation and the resulting sets of outputs are

observed. Decisions about the correctness of the

implementation are made by comparing the observed

behaviour with the desired behaviour as given by the FSM.

Andrews et al. proposed an FSM-based model to

automate conformance testing of Web applications [1].

First, an FSM-based model is used to describe a Web

application. A state in the FSM corresponds to what the

authors define as a logical Web page (LWP). A LWP can

be a physical Web page produced by the application or

specific HTML links and forms used to interact with the

application. Transitions occur between LWPs in response to

user inputs (e.g., submitting a user name and password

through a HTML form). Inter-request dependencies are

enforced by controlling the transitions allowed between

LWPs. The authors also annotate the transitions to handle

several other types of dependencies. The annotations

provide information on whether an input for a LWP is

required or optional and the sequences in which a user can

supply inputs to a LWP. The authors demonstrated the

technique on a simple student information Web application.

Menasce et al. applied an FSM-based approach for the

performance testing of Web applications [16]. The

approach uses a probabilistic FSM called a Customer

Behaviour Model Graph (CBMG) to model a user’s session

with a Web application. Similar to the FSM employed by

Andrews et al. [1], the states of the CBMG represent the

different request types supported by the Web application.

The number of states equals the number of request types and

transitions between states model the user behaviour of

navigating from one request type to another within a session.

In contrast to a non-probabilistic FSM, transitions are

associated with probabilities with the sum of a state’s

outgoing transition probabilities being one. The transition

probability gives the likelihood of a user choosing a

particular transition from a state from among all the allowed

transitions. By traversing the CBMG, a trace of synthetic

sessions can be created for performance testing. CBMGs

are also employed to specify and generate the synthetic

workloads used in popular Web application benchmarks

such as TPC-App [24].

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

Both the FSM-based approaches reviewed may not be

expressive enough for modeling several types of

dependencies commonly observed in session-based systems.

Specifically, we discuss the following issues with these

approaches:

1) Inability to fully support inter-request dependencies

– Both approaches use a first-order FSM where a state is

defined to be a request type. Such a definition implicitly

introduces a first-order dependency between request types.

With these models the next request type that needs to be

generated within a session (i.e., the next state) depends

solely on the current request type. However, such an

assumption may not be valid in practice. For example,

consider the following valid session of request types for an

e-commerce system: [Home, View, Add, View,

Add, Delete, Purchase]. This session describes a

shopper who adds two products to the shopping cart, then

deletes one of the products from the shopping cart before

purchasing the other product. An FSM constructed based on

this session and based on the first-order assumption would

incorrectly deduce a dependency between Delete and

Purchase without recognizing that the Purchase

depended on one of the two previous Add states. As a

result, the FSM could cause a sequence ([Home, View,

Add, Delete, Purchase]) that invokes Purchase

without any item in the shopping cart thereby violating inter-

request dependencies for the system.

Higher-order dependencies can be captured, for example,

by introducing states that represent sequences of request

types. For example, creating a new state [Add, View,

Add, Delete] can ensure that Purchase is invoked

only when there is an item in the shopping cart. However,

this may cause the well-known state explosion problem [14].

Another approach could be to build the FSM such that it

only yields sequences with first-order request dependencies.

Such an approach may not produce representative workloads

since real workloads could contain several sequences with

higher-order dependencies. Furthermore, our previous

experience suggests that one can obtain more control over

characteristics such as workload mix when there is more

“variety” in the set of sequences a user can follow. We

propose an alternate approach in Section IV.

2) Lack of support for data dependencies – The

existing approaches have not focused on modeling data

dependencies that are important for performance testing.

Handling data dependencies is important since the correct

choice of parameter values is essential for stressing the

system under study in a representative manner. The

application model must capture data dependencies so that

they can be satisfied in an automated manner while creating

workloads.

In this paper, we propose a new application modeling

methodology to handle inter-request dependencies and data

dependencies. The methodology is based on Extended

Finite State Machines (EFSMs). EFSMs can model

applications with higher-order request dependencies without

encountering the state explosion problem [14].

Additionally, the modeling methodology layers additional

functionality on top of EFSMs to allow different types of

data dependencies to be captured. We present examples

where our methodology is used to model two different e-

commerce applications.

Our modeling methodology exploits a modified version of

the Session-Based Web Application Tester (SWAT) tool

developed by Krishnamurthy et al. to achieve flexible

control over workload characteristics [12]. Our

modifications allow SWAT to accept as input the application

model for a system under study. This allows SWAT to

obtain a large set of valid sequences that it needs to

construct workloads. SWAT uses a workload model which

includes attributes such as those discussed earlier in this

section that can influence the performance of session-based

systems. The characterizations for these attributes can either

be based on those observed in real systems or perturbations

for the purpose of a sensitivity analysis. The application

and workload models are used by SWAT’s trace generation

algorithm to create a synthetic workload that has the correct

inter-request and data dependencies and that has the

specified characteristics. The chief advantage of SWAT is the

fine control it offers over workload characteristics. For

example, it permits the characterizations of one or more

attributes to be changed at a time while keeping those of

others unchanged so that a system’s sensitivity to those

characteristics alone can be established.

III. OVERVIEW OF MODEL-BASED APPROACH

Figure 1 provides an overview of our proposed approach.

An application model that captures the inter-request

dependencies and data dependencies for the system under

study is constructed based on inputs provided by the tester.

The modeling methodology and the inputs needed to create a

model are described in Section IV. The sequence generator

uses the model to produce a large trace containing valid

sequences of request types. We define each valid sequence

of request types as a sessionlet. Each sessionlet in this

trace satisfies the inter-request dependencies for the system

under study. The trace of sessionlets is input to SWAT along

with the workload model and the application model.

The workload model exposed by SWAT depends on the

workload generation mode employed [12]. For the sake of

brevity only the session mode of workload generation is

discussed. In the session mode, new sessions are generated

according to a session inter-arrival time distribution. Session

inter-arrival time is defined as the time between successive

arrivals of sessions at the system under study. Each

generated session behaves as a user by issuing a request,

waiting for the complete response from the system, and then

waiting for an inactive period, defined as the think time,

before issuing the next request. The think times are chosen

according to a think time distribution while the number of

requests per session is governed by a session length

distribution. Finally, SWAT includes as attributes workload

mix and the distributions for the values of parameters used

within requests. Workload mix is defined as the overall

proportions of the different request types in the workload.

The parameter value distributions can be used to control the

locality properties of name-value pairs (e.g., control the

relative popularities of products in a bookstore).

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

We note that the SWAT workload does not include

requests for objects such as image and multimedia files that

are embedded within the HTML responses of the system.

This is because such content is often hosted on external

“graphics” servers, or at content delivery networks.

Krishnamurthy et al. provide a more detailed discussion on

the rationale behind the workload model chosen for SWAT

[12].

The objective of trace generation is to produce a trace of

sessions that can be submitted to a system under study.

Trace generation proceeds in two distinct steps. In the first

step, the trace generator produces an intermediate trace of

sessionlets. The intermediate trace is created by repeating

selected sessionlets from the input trace of sessionlets. The

trace generator determines the sessionlets selected and the

number of times each sessionlet is repeated, i.e., the

execution weights, so as to closely match the specified

workload mix and session length distribution.

The next step in trace generation transforms the

intermediate trace of sessionlets to a trace of sessions. This

involves selecting name-value lists for request types to form

URLs and inserting think times between successive URL

requests in a session. The application model is consulted to

handle data dependencies. The trace generator also ensures

that the parameter value distributions specified in the

workload model are achieved. With SWAT’s trace

generation approach, inter-request dependencies are satisfied

since each session in the synthetic workload has the same

sequence of request types as one of the sessionlets in the

input trace.

The sessions produced by the trace generator and the

specified session inter-arrival time distribution constitute the

synthetic workload. A modified version of httperf, an

open-source request generator, is used to submit the

synthetic workload to the system under study. The

modifications were required to support certain commonly

occurring data dependencies (explained in Section IV) and

to facilitate finer-grained reporting of performance metrics.

We note that our approach is not limited to httperf. The

trace generator can be easily modified to produce synthetic

workloads in formats that conform to other request

generators.

The trace generator and request generator shown in Figure

1 can be used to test different applications. The application

model provides an indirection that allows these components

to function independent of the system under study. The

components can be used to study different systems by

merely constructing different application models. As

mentioned previously, this is in contrast to traditional trace

generation methods that are typically system-specific. For a

given application, characteristics of the synthetic workload

can be varied by changing the characterizations for the

attributes in the workload model.

IV. APPLICATION MODELING

As mentioned in Section II, the modeling methodology

describes a Web application for the purpose of automating

performance tests. The basic component of this

methodology is an EFSM. Section IV.A describes an EFSM

and introduces related terminology. We introduce additional

modeling elements to address inter-request and data

dependencies and to accommodate the trace generation

process described in the previous section. Section IV.B

presents examples to illustrate the modeling of inter-request

dependencies. Modeling of data dependencies is discussed

in Section IV.C.

A. Overview of Modeling Methodology

In this section we briefly describe an EFSM. For a more

detailed discussion readers are referred to the survey paper

by Lee and Yannakakis [14].

An EFSM is described as the following quintuple:

),,,,(TxSOIM =

I, O, S, ,x and T are finite sets of input symbols, output

symbols, states, variables, and transitions, respectively. A

transition t in the set T is defined by 6-tuple:

),,,,,(tttttt APoaqst =

where st, qt, at, and ot are the current state, next state, input,

and output, respectively. P (x) is a predicate constructed

from the current variable values, At(x) defines an action on

the variable values.

The operation of an EFSM can be described as follows.

Let the machine’s initial state be sinitial where sinitial belongs

to S. Let the initial values of variables be given by initialx .

Assume that the machine is currently at state s and that the

current variable values are x . On receiving an input a the

machine makes a transition),,,,,(APoaqst = if the

predicate P (x) evaluates to true. If the predicate evaluates

to true, then the machine produces the output o, the values of

Workload Model Application Model

Sequence Generator

Trace Generator

Trace of Sessionlets

Request Generator (httperf)

Synthetic Workload

System under Study

SWAT

 Figure 1. Model-based performance testing approach.

.

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

the state variables are modified as per the function A(x) and

the machine moves to the state q.

For this work we use an EFSM as follows. We define as

input the act of a user submitting a request to the system.

Consequently, an input is associated with a request type and

a name-value list. Predicates constructed from the state

variables are used to capture inter-request and data

dependencies. A transition from one state to another is

allowed only if the predicate associated with that transition

evaluates to true. A successful transition may result in

modification of state variable values as per the transition’s

action function. The EFSM is non-deterministic since more

than one transition can be followed from a given state. For

example, in an e-commerce system users maybe able to both

sign-in as well as view products from the homepage. Since

our focus is on workload generation we ignore outputs in

this work. However, they could be interpreted as the Web

page resulting from the input.

To accommodate the approach described in Section III,

we introduce several additional model elements to extend

the basic EFSM functionalities. Firstly, to facilitate the

generation of an input trace of sessionlets an EFSM always

has a Start state and an Exit state. They model

respectively, the starting and termination of interactions a

user has with the Web-based application. Secondly, each

transition has two distinct sets of predicates and actions.

Request dependency predicates and request dependency

actions are involved in enforcing correct inter-request

dependencies. Data dependency predicates and data

dependency actions are used to satisfy data dependencies.

As described later, such a distinction is necessitated by the

two step trace generation process described in Section III.

Finally, data dependency actions may invoke Select

functions. The Select function is used to choose a

specific value for a given request parameter from among all

the possible values for the parameter. The following

sections provide a detailed description of these elements

along with examples.

In general, an EFSM can support many different types of

variables. However, for this work we use only the integer,

string, Boolean, and array data types. These types of

variables were found to be adequate for modeling the Web-

based applications considered in Section IV.D. We believe

other types of variables can be introduced in a

straightforward manner to better support the needs of

specific applications. Our approach also supports basic

mathematical and logical operations within predicates

and actions. In addition, it supports several functions that

can be used to operate upon and manipulate variables. Such

functions are provided to handle several common types of

inter-request and data dependencies. A more detailed

description of these functions is provided in Section IV.C.

B. Modeling Inter-Request Dependencies

As described in Section III, the sequence generator uses

the application model to create a trace of input sessionlets.

A sessionlet is generated as follows. The model is initialized

by providing initial values to the state variables. The

sequence generator causes a transition from the Start state

by executing a randomly selected transition from among the

set of allowed transitions from that state. Another transition

is executed in a similar manner if the resulting state is not

the End state. Sessionlet generation is complete if the End

state is reached. The sequence generator outputs the

sequence of inputs (i.e., request types) corresponding to the

sequence of transitions executed. It then re-initializes the

application model to generate more sessionlets. Valid

sessionlets are produced as long as the application model

enforces the correct inter-request dependencies.

We now present an e-commerce application example to

illustrate modeling of inter-request dependencies. These

examples also illustrate some of the limitations of the

modeling approaches discussed in Section II. Figure 2

shows a simplified model for the application. In this

application users execute the Home request type to request

the homepage. The Sign in request type allows a user to

login as a registered user. A user can view product

information through the Browse request type. The Add

and Delete request types allow a user to add and delete

items from the shopping cart, respectively. The Checkout

request type allows a user to initiate ordering of products in

the shopping cart. A user submits the Purchase request

type to provide payment details for finalizing the order.

Two request dependency state variables are used to

enforce inter-request dependencies. The items_in_cart

is an integer variable that indicates the number of items in

the shopping cart. The signed_on Boolean variable

states whether a user has signed on or not. The initial values

of the items_in_cart and signed_on variables are 0

and FALSE, respectively. The values of these variables are

changed by actions associated with several transitions. For

example, from Figure 2, submitting the Sign in request

type (transitions S1 to S7 and S5 to S7) changes the value of

signed_on to TRUE. Similarly an Add request type

(transition S2 to S3) increments items_in_cart variable

by 1 while a Delete request type (transitions S3 to S4 and

S4 to S4) decrements the variable by 1.

From Figure 2, certain transitions depend only on the

current state of the EFSM. These first-order transitions are

not associated with any predicates. For example, a user can

submit a Browse request type after submitting a Home

request type as indicated by the transition from S1 to S2.

Similarly, a user can browse another product after browsing

a particular product as indicated by the transition from S2 to

S2.

Our application model also allows higher-order

dependencies between request types to be captured. For

example, consider the transition from S4 to S5 in Figure 2.

In this transition, the user submits a checkout request after

deleting an item from the shopping cart. This transition is

allowed only when the previous sequences of requests have

resulted in at least one item in the shopping cart. This

dependency is enforced by the predicate associated with the

transition which checks whether the items_in_cart

variable is greater than 0. Consequently, the sequence

[Home, Browse, Add, Browse, Add, Delete,

Checkout] is allowed while the sequence [Home,

Browse, Add, Delete, Checkout] is not.

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

The EFSM can model different ways in which a user can

complete a given task. Such a scenario is very common in

Web-based applications. In the example considered a user

can either sign-in just immediately before purchasing

(transition S5 to S7 in Figure 2) or sign-in immediately after

visiting the homepage (transition S1 to S7 in Figure 2). As a

result, the sequences [Home, Browse, Add,

Checkout, Sign in, Purchase] and [Home,

Sign in, Browse, Add, Checkout, Purchase]

represent two possible ways for a user to purchase an item.

The EFSM handles the different scenarios through the

predicate associated with the transition from S5 to S7 in

Figure 2. The predicate uses the sign_in variable to

determine whether or not a user has to sign-in before

purchasing an item.

The simple example presented illustrates some advantages

of the proposed approach when compared to the existing

modeling approaches discussed in Section II. As mentioned

previously, in our approach request types constitute the

input. In contrast, with a CBMG-like approach request types

constitute the states of the FSM. Furthermore, as described

previously, due to the implicit first-order assumption the

next state (request type) to be submitted in a session can be

determined from the current state (request type) alone.

However, the example presented shows that whether or not a

certain request type can follow another request type can

depend on certain complex preconditions being met or not.

The approaches discussed in Section II are not expressive

enough to capture such dependencies. For example, it is not

possible to capture the conditional dependency between

Delete and Checkout or Checkout and Purchase

using the existing approaches. As a result, for systems

characterized by complex inter-request dependencies only a

limited number of unique sessionlets (i.e., those with only

first-order transitions between request types) can be obtained

from such models. Synthetic workloads constructed from

such a limited number of sessionlets are not likely to be

representative. Furthermore, our previous experience [13]

suggests that having a limited number of sessionlets impacts

the flexibility of the performance testing process.

Specifically, with a limited number of sessionlets the trace

generator does not have enough freedom to realize

arbitrarily desired mixes and session length distributions.

We note that an FSM whose inputs represent request

types could also be used instead of an EFSM. However,

since a FSM does not support state variables, predicates, and

actions the FSM equivalent of an EFSM typically has a

larger number of states [14]. In particular, state explosion

can occur when an FSM is used for complex systems

characterized by a large number of state variables and large

numbers of possible values for state variables.

Consequently, an EFSM-based approach can model Web-

based applications in a more succinct manner.

C. Modeling Data Dependencies

As discussed in Section III, the sessionlets generated with

the help of the application model are used by the trace

generator to create an intermediate trace of sessionlets

exhibiting the desired workload mix and session length

distribution. The intermediate trace has to be converted to a

trace of sessions that can be submitted to the system under

study. This is achieved by appending name-value lists for

the request types in the intermediate trace.

We now describe how the application model is used to

capture data dependencies. As mentioned in Section III,

data dependencies govern the generation of parameter

values. The set of state variables used by the model includes

the parameters for all request types supported by the

application. Each parameter is denoted using the notation

“Request Type.Parameter Name”. For example,

Add.Item_ID refers to the Item_ID parameter of the

Add request type. Depending on how their values are

chosen, the modeling methodology classifies parameters into

several categories.

Tester-specifiable parameters are provided by the tester as

inputs to the model. Considering an e-commerce system

example, user names and passwords as well as product

identifiers belong to this category. Tester-specifiable

parameters are further subdivided into independent

parameters and inter-dependent parameters. The value

chosen for an independent parameter does not have any

dependency with the value chosen for another parameter. In

contrast, the value chosen for an inter-dependent parameter

is controlled by the value chosen for another independent

parameter. For example, in an e-commerce system the

password selected for a sign-in request type will depend on

the user name chosen. Currently, the model only allows

such one-to-one dependencies. We note that, where

appropriate, the choice of values for tester-specifiable

variables can be controlled through the parameter value

Figure 2. Modeling inter-request dependencies

in an e-commerce system.

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

distributions specified to the workload model.

The values for session-dependent parameters depend on

the sequence of URLs submitted in a session and hence

cannot be specified explicitly by the tester. Considering an

e-commerce system example again, the id of a product that

needs to be deleted will depend on the products present in

the shopping cart. These parameters are further classified

into dynamically generated and non-dynamically generated

parameters. The values of dynamically generated

parameters are known only during request generation and

hence cannot be resolved during trace generation. For

example, the unique order identifier that is passed along with

a purchase request type is typically assigned dynamically by

the system only when the session is in progress. For such

parameters, the trace generator uses placeholder values

instead of the actual values. These placeholder values

instruct the request generator that the actual values have to

be obtained by parsing the responses of the Web pages

returned by the system under study when the session is in

progress. In contrast, values for non-dynamically generated

parameters can be resolved during trace generation.

To generate name-value lists for a sessionlet in the

intermediate trace, the sequence of states corresponding to

the sessionlet are identified in the application model. As

mentioned in Section IV.A, the state transitions have

associated with them data dependency predicates and

actions. The actions are used to choose parameter values for

request types associated with the transitions. The actions

use the Select function to choose parameter values. As

described shortly, the behaviour of the Select function

depends on the type of parameter being handled and the

input arguments passed to the function. In addition to the

Select functions, functions are also provided to

manipulate array variables and to handle dynamically

generated parameter values.

We present the following example to explain the process

of handling data dependencies. Consider the state sequence

[Start, S1, S7, S2, S3, S2, S3, S4, S5, S6,

Exit] generated from the EFSM shown in Figure 2. This

sequence corresponds to the sessionlet [Home, Sign in,
Browse, Add, Browse, Add, Delete,

Checkout, Purchase]. Assume that Sign in takes

two parameters username and password. Browse,

Add, and Delete accept a parameter called item_id

denoting the item to be browsed, added to the shopping cart,

and deleted from shopping cart, respectively. Purchase

requires an order_id parameter whose value is

dynamically assigned by the system. A state variable called

item_ids_in_cart maintains the item_id values of

the products in the shopping cart. We now discuss cases

involving the generation of values for tester-specifiable and

session-dependent parameters. Figure 3 shows the model for

handling data dependencies in the example e-commerce

system. In Figure 3 the request type name is omitted when

referring to a parameter for the sake of clarity.
Tester-specifiable parameters – Consider the action

associated with the transition from S1 to S7 in Figure 3. The

Select function first generates a value for the tester

specifiable, independent parameter Sign In.username.

The Sign In.password parameter is specified to be

dependent on Sign In.username. Consequently, the

second call to Select generates a value for password

depending on the username selected in the first call. When

many different values are possible for a tester-specifiable

parameter, a value is either chosen randomly from among

the possible values or as per a parameter value distribution,

if such a distribution is specified in the workload model.

Session-dependent parameters – Consider the action

associated with the transition from S2 to S3 in Figure 3. For

this example, the Add.item_ID is session-dependent. As

shown in Figure 3, the value of this parameter is the same as

the value of the Browse.item_ID parameter chosen

previously in the session. For certain session-dependent

parameters there may be a choice between many possible

values. In such cases, the Select function is used to

choose a value from among the possible values. This is

illustrated in the action associated with the transition from

S3 to S4. The Select function takes as argument the

item_ids_in_cart list variable. This variable is

updated whenever an Add transition occurs (e.g., transition

from S2 to S3 in Figure 3) and contains the ids of items

added to the shopping cart. The function randomly selects a

value from this list and assigns it to the Delete.item_ID

parameter. The action also invokes the remove method on

item_ids_in_cart to delete the item id from the list.

As mentioned previously, placeholder values are used for

dynamically generated parameter values. Consider the

action associated with the transition from S5 to S6. The call

to the Generate_placeholder function inserts a

placeholder value for the dynamically generated

Figure 3. Data dependencies in an e-commerce system.

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

Purchase.order_ID parameter. We note that the

format of the placeholder value may differ for different

request generators.

V. IMPLEMENTATION

We have developed a toolset to support the approach

described in this paper. Testers use a text file to specify

inputs related to the application and workload models.

Details of the specification language have been omitted due

to space constraints. A model verifier has been developed to

check for consistency in the application model. For

example, the program flags an error when no values are

provided for a variable declared as tester-specifiable

variable. The model verifier also checks for consistency

between the application model and workload model. For

example, an error is reported when a request type specified

in the workload model does not appear in the application

model and vice-versa. If the model consistency check is

successful, the model verifier generates the application and

workload models in a less verbose format suitable for the

sequence and trace generator tools shown in Figure 1. A

sequence generator that takes as input the less verbose

application model to produce a trace of sessionlets has also

been developed. Finally, we have also modified SWAT to

accommodate the proposed methodology.

VI. MODELING CASE STUDY

We used the proposed modeling approach to develop

models for two open-source session-based systems namely,

the Java Pet Store [9] and the Rice University Bidding

System (RUBiS) [20]. The main objective of this exercise

was to verify whether our approach was robust enough to

model different types of Web applications.

The Java Pet Store is essentially an e-commerce

application that can be used to sell pets online. The

application is built using the J2EE middleware. The model

developed for this application is conceptually similar to the

model presented for the e-commerce example in Sections

IV.C and IV.D. The reader is referred to our technical

report [21] for a detailed description. Section VII describes

a study where this model was used to generate synthetic

workloads for a Pet Store installation.

The RUBiS application has been modeled after eBay, the

popular Internet auction site. Several implementations of

RUBiS based on different middleware technologies such as

Java Servlets and Enterprise Java Beans have been

developed [Ref]. Many studies have used RUBiS to study

performance issues in Web applications. Stewart et al.

employed RUBiS to investigate the impact of non-

stationarity of workload mix and its implications to

prediction of server performance [22]. Similarly Parekh et

al. tested their bottleneck detection approach on a RUBiS

testbed [18].

The modeling methodology was found to be expressive

enough to capture the dependencies of RUBiS. The model

developed for RUBiS differed from the Pet Store model in

many aspects. Specifically, more session-dependent

parameters had to be used while handling data dependencies.

For example, the item id of a product in RUBiS had to be

treated as a dynamically generated, session-dependent

parameter. The reason for this choice is because an item id

is dynamically generated by the system when a seller

initiates a new auction. Consequently an item’s id has to be

obtained during request generation by parsing the Web page

response returned by the system. This is in contrast to the

Pet Store system where item ids are known a priori and

hence can be modeled as tester-specifiable parameters. A

more detailed description of the RUBiS model can be found

in our technical report [21].

The application models along with our toolset can be used

to support more flexible performance tests for Web

applications. For example, performance studies involving

RUBiS typically make use of a workload generator that is

bundled with the application. However, this workload

generator does not allow a tester to specify arbitrarily

desired characterizations for workload attributes. For

example, a tester cannot vary the workload mix and session

length distribution independently of one another [12]. Since

both these attributes can impact performance, this limitation

makes it difficult to isolate their individual impacts. The

workload generators bundled with other benchmarks such as

TPC-App also suffer from the same limitation.

Consequently, these tools are not well suited for studies that

require fine-grained, flexible control over workload

characteristics. In section VII we present a sensitivity

analysis case study to demonstrate how our toolset could be

used for such studies.

VII. PERFORMANCE EVALUATION CASE STUDY

In this section we demonstrate the utility of the toolset by

using it to test the performance of the Java Pet Store

application. To the best of our knowledge currently there is

no workload generator available for this application.

Specifically, two sets of experiments are conducted. We

note that we were unable to conduct a direct comparison of

our approach with the CBMG-like approaches discussed in

Section II. As discussed in Section IV, those approaches

were not able to capture the types of dependencies present in

the Pet Store application.

The first set provides results that establish the importance

of preserving inter-request dependencies for the Pet Store

application thereby motivating the need for our modeling

approach. The second set demonstrates the flexibility of our

toolset. It shows how our toolset can be exploited to

automatically generate controlled synthetic workloads that

can be used to study the sensitivity of system performance to

various workload attributes.

This section is organized as follows. Section VII.A

describes the experiment setup. Section VII.B studies the

impact of inter-request dependencies on application

performance. Sections VII.C and VII.D present experiments

where synthetic workloads are used to explore the impact of

workload mix and think time on application performance.

Section VII.E discusses how the results of this case study

vindicate the need for our toolset.

A. Experiment Setup

The hardware setup for the experiments was as follows.

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

Table I: Factors and levels used in the sensitivity analysis experiments

Factor Levels

Session inter arrival time Exponentially distributed. Different mean session inter-

arrival times to generate HI-LOAD and LO-LOAD

Workload mix Mix1 and Mix2

Tester specifiable parameters Fixed probability destiny functions for parameter values

Think time Exponentially distributed. Two different mean think time

(Z) values (Z = 3 sec and Z = 45 sec)

Session length Exponentially distributed. Mean session length = 10

The Pet Store application was installed on a Pentium III, 1

GHZ (dual), 1 GB RAM machine running under the

Windows XP operating system. This node is referred to as

the server node. httperf was executing on a Pentium III,

1 GHZ, 512 MB RAM machine running under the Linux

operating system. This node is referred to as the client node.

The server node and the client node were connected by Fast

Ethernet switch. This switch provides dedicated 100 mbps

full duplex bandwidth between the client node and the server

node. The switch prevented the network from becoming the

bottleneck during the tests. As a result, response time

measured by httperf is a good indicator of server

response time. For this study we define response time as the

time between sending the first byte of a HTTP request and

receiving the first byte of the corresponding HTTP response.

Performance metrics for the server node such as CPU and

disk utilization were recorded by using the windows

perfmon tool. We set the sampling interval for perfmon

to be 2 minutes. In addition to the server node metrics,

detailed traces were collected from httperf to

characterize response times for individual requests submitted

to the Pet Store. The primary performance metric used for

this study is the 95
th

 percentile of response times (R95). We

chose this metric since it is used frequently in service level

assessment exercises. In addition, the mean response time

(Rmean) is also reported for all experiments.

For all experiments in this study, the CPUs of the server

node were found to be the bottleneck. On the other hand,

very little disk activity was observed at the server node.

Similarly, the server node did not display any memory

bottlenecks or virtual memory activity. The network was

also found to be very lightly utilized. The worst case peak

network throughput was several orders of magnitude lower

than the 100 mbps capacity of the fast Ethernet switch.

As mentioned previously, an application model was

developed for the Java Pet Store (version 1.4). The

application model developed was used by the sequence

generator to create an input trace of 20,000 sessionlets for

the Pet Store. SWAT used these input sessionlets to

generate controlled synthetic workloads. The synthetic

workloads were constructed in a manner that allowed us to

evaluate the sensitivity of system performance to two

workload attributes namely, workload mix and mean think

time. Table I shows the experimental design followed for

the sensitivity analysis.

From Table I, the exponential distribution is used for

generating session inter-arrival times. This assumption is

consistent with previous studies which have shown that

arrivals of sessions at a Web server are uncorrelated with

each other [19]. The value of the mean session inter-arrival

time was manipulated to achieve two different mean request

rates at the server namely, HI-LOAD and LO-LOAD. As the

name implies, these mean request rates were chosen to place

different loading levels on the server. With these mean

request rates, the worst case mean server CPU utilization

achieved over an experiment duration was found to be

approximately 60%. Studies have shown that the mean

utilizations of real servers over a timescale of a few hours

rarely exceed this value [2]. Consequently, we did not

conduct experiments that result in higher mean utilizations.
An exponential distribution with a mean of 10 requests

per session was chosen as the session length distribution.

This choice matches the behaviour observed by Arlitt et al.

at a large Web-based shopping system [3]. As shown in

Table I, fixed probability density functions (PDFs) were

specified for tester specifiable variables in the Pet Store such

as product and category ids. The same set of PDFs was used

for all experiments. The PDFs were selected to cause a

small set of products and categories in the system to be more

popular than products and categories outside this set. Such a

choice was motivated by similar behaviour observed at real

Web applications [3] [15].

As shown in Table I, the exponential distribution was

used for generating think time values. This distribution is

widely used by practitioners as well as in popular

benchmarks for Web applications such as TPC-W [23] and

RUBiS [20]. Two different mean think time (Z) values were

explored in the experiments. The lower Z value of 3.0

seconds closely mirrors the setting used by benchmarks such

as TPC-W and RuBiS. Anecdotal evidence suggests that

many practitioners use these benchmarks as guidelines for

their own performance testing exercises. As a result, in

practice performance tests very often employ such a low

value of Z. The higher Z value of 45.0 seconds is consistent

with observations recorded at a real Web-based application

[1]. We used this value in some of our experiments to study

the impact of using more realistic think times.

To study the impact of workload mix, workloads with two

different mixes were created using SWAT. As shown in

Table II, Mix2 does not contain any Checkout or

Purchase request types. In contrast, Checkout and

Purchase constitute about 4.75% of the requests in Mix1.

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

Table II: Request type distribution in Mix1 and Mix2

 Mix2 Mix1

Request Type Percentage of Request Types Percentage of Request Types

Shopping Cart 16.37 16.37

Browse 46.30 41.46

Sign out 0.20 0.30

Sign in 6.20 6.54

Add 5.96 5.95

Delete 0.61 0.59

Checkout 0.00 3.57

Purchase 0.00 1.19

Home 14.78 14.53

View item 9.53 9.45

Furthermore, Mix2 offsets the decrease in Checkout and

Purchase request types through a corresponding increase

in the number of Browse request types. Specifically, Mix2

contains about 4.80% more Browse request types than

Mix1. The percentages of other request types are almost the

same in both mixes. Mix2 is used to emulate a workload

that has only “window” shoppers while Mix1 represents a

workload with shoppers who buy occasionally.
As mentioned previously, the 20,000 sessionlets generated

from the Pet Store application model were used to construct

the synthetic workloads for this study. Each experiment

evaluated the impact of a particular workload on the system.

Each workload corresponds to a specific factor-level

combination of Table I. Each experiment performed

consisted of three different runs. SWAT was used to create

three different statistically identical trace files for these three

different runs. This was done by using different seeds for the

random generators used by SWAT. We used the response

time numbers from the three runs in an experiment to

compute 95% confidence intervals for Rmean and R95. Each

run took around 3-4 hours to finish. httperf generated a

log file for approximately 100,000 replies sent by server to

the submitted requests. The server node was rebooted and

the Pet Store application database was reinitialized between

successive runs to ensure that the system was in the same

initial state. For each experiment, chi-square tests [8] were

conducted to ensure that the workload generated in an

experiment conformed to the workload model specified to

the toolset.

B. Impact of Inter-request Dependencies

Simple experiments were conducted on the Pet Store

system to study the effect of inter-request dependencies. We

selected two sessions from a trace of sessions created using

our approach. The first session, named

Browse_Session, contained requests to browse items in

the pet store. It did not contain any purchase related request

types such as Sign in, Shopping cart, Add,

Delete, Checkout, and Purchase. The other session,

named Purchase_Session, predominantly consisted of

purchase related requests. For the Pet Store application, the

browse related requests do not have any dependency with

other requests and can occur at any point in a session.

However, purchase related requests have more complex

inter-request dependencies similar to those modeled in

Figure 2. We also created scrambled versions of the two

sessions called Browse-Scrambled_Session and

Purchase-Scrambled_Session. The scrambled

versions have requests occurring in a random order and

hence ignore dependencies.

Since we were interested in characterizing the aggregate

resource demand placed by a session on the system’s

resources, the number of concurrent sessions accessing the

Pet Store was set to be 1. httperf was used to submit a

session and measure the mean response time for requests in

the session. Since there was no contention among sessions

for system resources and since the network was lightly

loaded, the mean response time reflects the end-to-end

resource demands placed by the session across all resources

in the Pet Store system. Multiple runs were carried out for

each experiment to achieve statistical confidence in the

results.

Table III shows the results from our experiments. There

is no significant difference between the Rmean values for the

Browse_Session and Browse-

Scrambled_Session sessions. This is not surprising

given that browse related requests can occur in any order

within a session. However, the Rmean for the

Purchase_Session session is almost 1.73 times that of

the Purchase-Scrambled_Session session. The R95

values for these sessions were all statistically different since

they had non-overlapping 95% confidence intervals. The

Purchase-Scrambled_Session workload places less

stress on the system since certain requests (e.g., Sign in,

Shopping cart, Add, Delete, Checkout,

Purchase) impose less demand on system resources if

they occur at an incorrect point in a session. This result

reinforces the importance of preserving correct inter-request

dependencies in synthetic workloads for the system under

study. When significant inter-request dependencies are

present, ignoring them can yield incorrect performance

estimates and can therefore cause incorrect conclusions to be

drawn from performance tests. As a result, we believe our

approach adds value to the performance testing process by

providing a mechanism to capture and preserve complex

dependencies in session-based systems.

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

 Table III: Effect of inter-request dependencies

Workload Rmean (ms)

Browse_Session 97.6

Browse-Scrambled_Session 101.4

Purchase_Session 390.6

Purchase-Scrambled_Session 226.3

Table IV: Effect of Workload Mix

Mix1-Workload Mix2-Workload Load

(Requests/sec) UCPU

(%)

R95

(ms)

UCPU

(%)

R95

(ms)

13.2 (HI-LOAD) 59.2 199.3 49.8 161.5

9.6 (LO-LOAD) 41.2 128.0 36.2 119.1

C. Impact of Workload Mix

To study the impact of workload mix, we created two

different workloads namely, Mix1-Workload and Mix2-

Workload. Both workloads are similar in all respects

except their workload mixes. Mix1-Workload and

Mix2-Workload display the Mix1 and Mix2 workload

mixes of Table II, respectively. A mean think time of 3.0

seconds is used for these experiments. Experiments were

performed for both the HI-LOAD and LO-LOAD cases of

Table I. We note that ability to synthesize workloads that

differ only with respect to their workload mixes is a unique

aspect of our toolset. Other trace generation toolsets that we

are aware of do not support the ability to control the

workload mix independently of the session length

distribution [13].

Table IV shows the results of this set of experiments. As

the load in requests per second increases, the average

utilization of the Pet Store system’s processors over the

experiment duration (UCPU) increases for both workloads.

Furthermore, R95 increases for increasing loads for both

workloads. For a given load, the Mix1-Workload places

more stress on the system than the Mix2-Workload. For

the LO-LOAD case, UCPU for the Mix1-Workload is

approximately 14% higher that of the Mix2-Workload.

Similarly, for this case the R95 value for Mix1-Workload

is about 7.5% higher than that of the Mix2-Workload.

The impact of workload mix becomes more significant at the

higher load. For the HI-LOAD case the R95 value for

Mix1-Workload is approximately 23% higher than that

of the Mix2-Workload. We note that the differences

observed in the UCPU and R95 values are statistically

significant since the values compared have non-overlapping

95% confidence intervals.

The main reason for the poorer performance with the

Mix1-Workload is the presence of the resource intensive

Purchase request type in the workload. Figure 4 provides

the mean response time breakdown for the different request

types in the workloads for the HI-LOAD case. From the

figure, the mean response time of the Purchase request

type is about 2.5 times that of the next most resource

intensive request type (Sign in). Since Mix2-

Workload has no Purchase request types, for a given

load this workload imposes lesser stress on the system

causing lower UCPU and R95 values. The reason for the

resource intensiveness of the Purchase request type is

likely due to the fact that it involves updating the database

with information such as the particulars of the order being

placed. Interestingly a mere 1.19% increase in Purchase

requests (Table II) resulted in a 23% increase in R95 for the

HI-LOAD case (Table IV). This shows that system

performance can be very sensitive to the workload mix.

D. Impact of Think Time

Two different workloads were created to investigate the

impact of mean think time. The HI-THINK workload had a

Z value of 45.0 seconds while the LO-THINK workload had

a Z value of 3.0 seconds. The workloads were similar with

respect to all other attributes. The experiments employed

the Mix1 workload mix and were conducted for the LO-

LOAD loading level. The distributions for session length and

the tester specifiable variables were as per Table I. Table V

shows the results from this set of experiments.

From Table V, even though the mean request rate,

workload mix, session length distribution, and distributions

of tester specified variables are the same for both workloads,

the HI-THINK workload places more stress on the system

than the LO-THINK workload. The R95 with the HI-

THINK workload is approximately 16% higher than that of

the LO-THINK workload. Similarly, the UCPU with the

HI-THINK workload is about 6.5% higher than that with

the LO-THINK workload. Since with both workloads the

server encountered the same mean request rate, this implies

that the per request service demand incurred at the server

CPU was more for the HI-THINK workload. This

increased demand is not due to changes in the workload mix

since the same mix was used to construct both the

workloads.

To understand this result, we consider the session

durations with both workloads. The HI-THINK workload

increases session durations. As a result, the server would

encounter more number of concurrent sessions with the HI-

THINK workload. Figure 5 plots the cumulative distribution

function (CDF) of the number of concurrent sessions at the

server for both workloads. From the figure, the median

number of concurrent sessions for the LO-THINK workload

is approximately 20 while it is approximately 475 for the

HI-THINK workload. The mean numbers of concurrent

sessions for the HI-THINK and LO-THINK workloads

were found to be approximately 371 and 25, respectively. In

other words, even though the mean request rates are the

same with both workloads there is increased session

concurrency with the HI-THINK workload. We believe that

this can adversely impact performance in two different ways.

Firstly, overheads (e.g., context switching) are introduced

because more sessions have to be handled concurrently. This

perhaps explains the higher per-request CPU demands

observed with the HI-THINK workload. Secondly more

number of concurrent sessions can also cause requests to

arrive in a bursty manner. This can in turn cause more

contention among requests for system resources leading to

significant queuing delays.

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

Request rate: 13.3 req/sec

0

50

100

150

200

250

300

A
dd

D
el

et
e

C
ar

t

C
he

ck
 o

ut

B
ro

w
se

H
om

e

Pur
ch

as
e

Sig
n

in

Sig
n

ou
t

V
ie

w
 it

em

Request Types

M
ea

n
 R

es
p

o
n

se
 T

im
e

(m
s)

Mix2

Mix1

Figure 4. Mean response times of request types (HI-LOAD)

0

0.2

0.4

0.6

0.8

1

1

3
5

6
9

1
0

3

1
3

7

1
7

1

2
0

5

2
3

9

2
7

3

3
0

7

3
4

1

3
7

5

4
0

9

4
4

3

4
7

7

5
1

1

5
4

5

x=Number of concurrent sessions

P
[X

<
=

x
]

High Think Time Low Think Time

Figure 5. CDF of number of concurrent sessions

Table V: Effect of mean think time

HI-THINK LO-THINK Load

(Requests/sec) UCPU

%

R95

(ms)

UCPU

%

R95

(ms)

9.6 (LO-LOAD) 43.9 148.8 41.2 128.0

 E. Discussion

The results presented in Sections VII.C and VII.D show

that system performance can be very sensitive to attributes

such as workload mix and mean think time. Specifically, a

relatively modest increase in the number of resource

intensive request types was found to cause significant

degradation to the system’s responsiveness. Furthermore,

even under moderate loads a workload with longer think

times imposed more demands on the processors and caused

longer response times than a workload with short think

times. Though memory bottleneck was not an issue in this

case study, longer think times can cause such a bottleneck

since a system has to support a large number of concurrent

sessions. Apart from the attributes studied, the other

attributes included in our workload model can also

significantly influence system performance. For example,

our previous study has shown that system performance can

be very sensitive to the session length distribution [11].

These results reinforce the importance of careful selection

of workload attribute characterizations for performance

tests. For example, results of Section VII.D suggest that

standard benchmark workloads that use short think times are

likely to yield more optimistic estimates of system

performance than a more realistic workload that uses longer

think times. To obtain a more complete understanding of

how workload characteristics impact performance, a

performance testing toolset needs to be flexible enough to

support sensitivity analysis studies such as that presented in

this paper. As mentioned previously, existing performance

testing methodologies do not permit fine-grained control

over workload characteristics (e.g., perturbing mix while

keeping other characteristics unchanged) for supporting such

studies.

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

The toolset described in this work supports such

flexibility by enabling the automated construction of

controlled synthetic workloads. Specifically, the application

model allows generation of a large trace of sessionlets that

preserve the correct inter-request dependencies for a system

under study. This trace of sessionlets permits automated

construction of synthetic workloads with specified

characteristics. Furthermore, the application model also

allows correct data dependencies to be enforced in an

automated manner. The ability to automate the construction

of synthetic workloads and the ability to achieve arbitrarily

desired workload characteristics can greatly improve the

effectiveness of the performance testing process.

VIII. CONCLUSIONS AND FUTURE WORK

This paper developed a model-based toolset for testing

the performance of Web applications. The toolset uses a

formal model to capture an application’s inter-request and

data dependencies. The model can be used to obtain several

sequences of requests representing how users typically

interact with the Web-based application. The sequences can

in turn be used to construct synthetic workloads with

specified characteristics.

The proposed approach offers several advantages over a

traditional performance testing approach. The application

model provides an indirection which allows a common set of

workload generation tools to be used for testing different

applications. As an example, we found the modeling

methodology underlying the toolset to be expressive enough

to describe two different Web applications. Due to this

model-based approach, less effort is needed for developing

and maintaining the workload generation tools and more

effort can be dedicated towards the performance testing

process. Furthermore, the approach can improve the

effectiveness of the performance testing process since it

enables automated and flexible control over the

characteristics of synthetic workloads. To the best of our

knowledge, we are not aware of other model-based tools that

provide support for the types of complex dependencies in

Web applications discussed in this paper.

Future work will focus on reducing the effort needed to

develop an application model. Specifically, we intend to

explore ways in which application documentation (e.g.,

UML object diagrams, message sequence charts) can be

exploited to generate application models. Our future work

will also further refine the manner in which dynamically

generated parameter values are handled. Currently in our

toolset whenever the request generator (httperf)

encounters a placeholder tag for a dynamically generated

parameter it parses the HTTP response of the last submitted

request in the session to obtain that parameter’s value. This

approach was found to be sufficient for the Pet Store

application. In future, more complex operations will be

supported by encoding a placeholder tag with a condition

based on values obtained from the parsed response and an

action that generates a value for the dynamic parameter

based on the condition.

We intend to model other types of Web applications such

as online banking and trading applications. Modeling of

applications in enterprise environments such as SAP will

also be explored. Insights gained from these studies would

be used to enhance the modeling approach. We are

currently developing an open-source implementation of our

toolset. We also plan to make available models for popular

Web applications such as the Java Pet Store, TPC-W, TPC-

App, and RUBiS.
REFERENCES

[1] Andrews, A., Offutt, J., Alexander, R, 2005. Testing Web-

Applications by Modeling with FSMs, Software and Systems

Modeling 4(3), 326-345.

[2] Andrzejak, A., Arlitt, A., Rolia, J., 2002. Bounding the Resource

Savings of Utility Computing Models, Hewlett-Packard Labs

Technical Report (HPL-2002-339).

[3] Arlitt, M., Krishnamurthy, D., Rolia, J., 2001. Characterizing the

Scalability of a Large Web-based Shopping System, ACM

Transactions on Internet Technology 1(1), 44-69.

[4] Banga, G., Druschel, P., 1999. Measuring the Capacity of a Web

Server under Realistic Loads, World Wide Web 2(1-2), 69-83.

[5] Barford, P., Crovella, M., 1998. Generating Representative Web

Workloads for Network and Server Performance Evaluation,

International Conference on Measurement and Modeling of Computer

Systems (ACM SIGMETRICS), 151-160.

[6] Crovella, M., Bestavros, A., 1997. Self-similarity in World Wide Web

Traffic: Evidence and Possible Causes, IEEE/ACM Transactions on

Networking 5(6), 835-846.

[7] Ferrari, D., 1984. On the Foundation of Artificial Workload Design,

International Conference on Measurement and Modeling of Computer

Systems (ACM SIGMETRICS), pp. 8-14.

[8] Jain, R., 1991. The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation, and

Modeling, John Wiley and Sons, New York.

[9] Java Pet Store, 2007. http://java.sun.com/developer/releases/petstore/

[10] Kant, K., Venkatachalam, M., 2002. Modeling Traffic Non-

stationarity in E-commerce Servers, International Symposium on

Performance Evaluation of Computer and Telecommunication

Systems (SPECTS 2002), 949-956.

[11] Kelly, T, 2005. Detecting Performance Anomalies in Global

Applications, Second Workshop on Real, Large Distributed Systems

(WORLDS 2005).

[12] Krishnamurthy, D., Rolia, J., Majumdar, S., 2006. A Synthetic

Workload Generation Technique for Stress Testing Session-Based

Systems, IEEE Transactions on Software Engineering 32(11), 868-

882.

[13] Krishnamurthy, D., 2004. Synthetic Workload Generation for Stress

Testing Session-Based Systems, PhD. Thesis, Department of Systems

and Computer Engineering, Carleton University, Ottawa, Canada.

[14] Lee, D., Yannakakis, M., 1996. Principles and Methods of Testing

Finite State Machines - A Survey, IEEE 84(8), 1090-1123.

[15] Menasce, D., Almeida, V., Reidi, R., Pelegrinelli. F., Fonesca, R.,

Meira Jr., W., 2000. In Search of Invariants in E-Business

Workloads, ACM International Conference on Electronic Commerce,

56-65.

[16] Menasce, D., Almeida, V., Fonesca, R., Mendes, M., 1999. A

Methodology for Workload Characterization of E-Commerce Sites,

ACM Conference on Electronic Commerce, 119-128.

[17] Mosberger, D., Jin, T, 1998. httperf – A Tool for Measuring Web

Server Performance, ACM SIGMETRICS Performance Evaluation

Review 26(3), 31-37.

[18] Parekh, J., Jung, G., Swint, G., Pu, C., Sahai, A., 2006. Issues in

Bottleneck Detection in Multi-Tier Enterprise Applications,

International Workshop on Quality of Service, 302-303.

[19] Paxon, V., Floyd, S., 1995. Wide Area Traffic: The Failure of Poisson

Modeling, IEEE/ACM Transactions on Networking 3(3), 226-244.

[20] RUBiS – Rice University Bidding System, 2007.

http://rubis.objectweb.org/

[21] Shams, A., Krishnamurthy, D., Far, B., 2007. A Model-Based

Approach for Testing the Performance of Web Applications,

Technical Report, Software Engineering Research Group, University

of Calgary, Calgary (SERG-2007-10).

[22] Stewart, C., Kelly, T., Zhang, A., 2007. Exploiting Non-stationarity

for Performance Prediction, European Conference on Computer

Systems (EuroSys 2007).

[23] TPC-W – Transactional Web E-Commerce Benchmark, 2007.

http://www.tpc.org/tpc

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

[24] TPC-App – Application Server and Web Services Benchmark, 2007,

 http://www.tcp.org/tpc_app/

[25] Vallamsetty, U., Kant, K., Mohapatra, P., 2003. Characterization of

 E-Commerce Traffic, Electronic Commerce Research Journal 3(1-2)

Engineering Letters, 18:2, EL_18_2_01

(Advance online publication: 13 May 2010)

__

