
 
 

 

 
Abstract—An array antenna system with innovative signal 

processing can enhance the resolution of a signal direction of 
arrival (DOA) estimation.  The performance of DOA using an 
estimation signal parameter via a rotational invariant technique 
(ESPRIT) is investigated in this paper.  The DOA angles are 
derived from the auto-correlation and cross-correlation 
matrices. Three matrix estimation methods, (1) temporal 
averaging, (2) spatial smoothing, (3) temporal averaging and 
spatial smoothing are used to evaluate the performance. 
Extensive computer simulations are used to demonstrate the 
performance of the processing algorithms. The DOA 
performance as a function of signal to noise ratio (SNR), number 
of snapshots and effect of spatial smoothing are discussed. The 
position of array antenna elements may deviate from the ideal 
location. The imprecise element position will increase the DOA 
estimation variance. Sensitivity analysis due to non-ideal 
element position is also discussed in this paper 

 

 
Index Terms—DOA estimation, array antenna, ESPRIT 

algorithm, advanced signal processing.  
 

I. INTRODUCTION 
Accurately estimating the direction of arrival (DOA) has 

many important applications in communication and radar 
systems. Using the conventional fixed antenna, the resolution 
of DOA is limited by the antenna mainlobe beamwidth. Using 
an array antenna and advanced signal processing techniques, 
the DOA estimation variance can be greatly reduced. 

Two important classes of signal processing techniques are 
the model based approach and the eigen-analysis method [1]. 
The model based method assumes that the received data is 
modeled as the output of a linear shift invariant system. The 
DOA information can be obtained indirectly from the 
estimated model parameters. Several eigen-analysis methods 
such as multiple signal classification (MUSIC) [2], root 
MUSIC [3,4], polynomial root intersection for 
multi-dimensional estimation (PRIME) [5,6] have been 
investigated by many authors. This paper studies DOA 
finding using an estimation signal parameter via a rotational 
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invariant technique (ESPRIT) [7]. Two different array 
antennas are used in this simulation study. In this paper DOA 
performance is discussed as a function of signal to noise ratio 
(SNR), number of snapshots and the effect of spatial 
smoothing. 

Sample time can be precisely defined in a digital processor. 
Thus, applying the ESPRIT [8-12] method in time domain 
analysis provides an excellent result. However, it is relatively 
difficult to maintain the precise array element position, and 
the estimation variance of ESPRIT in spatial application will 
be increased. This paper provides statistical analysis of DOA 
estimation resulting from an imprecise array element position. 
Using the spatial smoothing method, an array with a large 
number of elements tends to average out the imprecise 
element position effect. The effects of the number of array 
elements, rank of matrices, number of snapshots, and signal to 
noise ratio (SNR) to the DOA performance are studied in this 
paper. 

 

II. NARROWBAND SIGNAL MODELING 
Two different array antennas are considered in this paper, a 

square array with 9 elements and a honeycomb array with 19 
elements. Array elements are uniformly placed on an x-y 
plane as shown in Figure 1. The inter-element spacing d 
equals half of the signal wavelength. 
 

 

        
 

Figure 1 Two Dimensional Arrays with 9 and 19 Elements 
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Assume a narrowband signal impinging on the array from an 
elevation angle θ and azimuth angle φ as shown in Figure 2. 
The narrowband signal is defined by the signal bandwidth and 
is a small fraction of c/D where c is the speed of light and D is 
the diameter of the array antenna. The narrowband signal 
waveform sc(t) can be expressed as  

 
 sc(t) = m(t) tj2πfce  (1) 
        
where m(t) is the baseband waveform and fc is the center 
frequency of the narrowband signal. 

 
Figure 2 Coordinate of array system and signal direction 

 
Let sc(t) be the signal at the reference point. Without loss of 

generality, this reference point is assigned to the sensor at the 
center of the array, which is sensor 5 for the 9 element sensor 
and sensor 10 for the 19 element sensor array. Due to the 
propagation path difference, the signal at the ith sensor si(t) is 
related to the reference sc(t) by   
 

 si(t) = sc(t - τi) = m(t- τi)
)-(tj2πf ice τ  (2) 

 
where the propagation delay time of the ith element τi is  
τi = –sinθ(xicosφ + yisinφ)/c. For the narrowband signal,  
m(t- τi) ≈  m(t), thus 
 
 si(t) = m(t) tj2πfce  iτc-j2πfe = sc(t) iβje  (3) 
  
where the electrical angle of the ith element βi is 
 

 )siny  cossinθ(x
λ
2π  β iii φ+φ=  (4) 

 
where (xi, yi) are the coordinates of the ith element. 
 

If there are L signals impinging on this array, assume the kth 
signal at the reference sensor is sc,k(t). For the narrowband 
waveform, this signal at the ith sensor is related to the 
reference signal sc,k(t) by a electrical angle βi,k as given by  
 

 si,k(t) = sc,k(t) k,jβe i , i = 1, . . , M and k = 1, . . , L (5) 
  

The continuous sensor output waveform may be sampled at 
the sampling rate. Define the received data vector at sample n 
as y(n) = [y1(n), y2(n), . . , yM(n)]T, where yi(n), i = 1, 2, … , M 
is the signal at ith sensor and the reference sensor yc(n) is y5(n) 

for the 9 element sensor and y10(n) for the 19 element sensor 
array.  The received data vector y(n) consists of a signal 
component s(n) and a noise component w(n),  
 
 y(n) = s(n) + w(n) (5) 
   
where  

 s(n) = ∑
=

L

1k
kkc, (n)s v  (6) 

 

where vk is the array manifold vector of kth signal  and ,i ke βj is 
the phase factor of ith element due to kth signal, and wi(n), i = 
1, 2, … , M are independent white noise sequences. 
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III. ESPRIT ALGORITHM 
 
A brief description of the ESPRIT algorithm is presented in 

this section. Two different antennas investigated in this study 
are (a) a 9 element square array antenna and (b) a19 element 
honeycomb array antenna. Their configurations are shown in 
Figure 1(a) and 1(b) respectively. The inter-element spacing 
is d = λ/2, where λ is the signal wavelength.  

 
Equation (4) shows that the signal DOA angles (θ, φ) are 

related to the electrical angle β. The ESPRIT algorithm 
derives the DOA angles from the phase factor β. Determining 
two angles (θ, φ) requires two different phase factors. Two 
independent phase factors can be derived from two 
independent position shifts. A brief description of ESPRIT 
using a 9 element square array is as follows: 

The waveform y received by the subset consists of elements 
(1, 2, 4, 5) as shown in Figure 3 and can be expressed as: 
 
 y(n) = s5(n)s + [w1(n), w2(n), w4(n), w5(n)]T (9) 
 
where s5(n) is the signal received by center element, s = 
[ 1jβe , 2jβe , 4jβe , 1]T, and wk(n) k = 1, 2, 4, 5 are the white 
noise received by the elements of this subset. The correlation 
matrix Ryy of this subset is 
 
 Ryy = E[yyH] = 2

sσ ssH + 2
wσ I (10) 
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where 2
sσ  and 2

wσ  are the variance of signal and noise 
respectively. 

 
Figure 3 subset selections on 9 Element Square Array  

 
Shifting this subset horizontally to the right forms a new 

subset consisting of elements (2, 3, 5, 6). The received 
waveform of this new subset z(n) is 
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The cross correlation matrix Ryz is 
 Ryz = E[yzH] = 2

sσ 6jβe ssH + 2
wσ Q   (12) 

 

where Q = 
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Arranging the eigenvalues of matrix Ryy λ1, λ2, λ3, λ4 in 
descending order, the noise variance 2

wσ  can be estimated by 
the following equation. 
 
 2

wσ  = ( λ2 +  λ3 +  λ4)/3 (13) 
 
Define matrices Cyy and Cyz as 
 
 Cyy = Ryy - 

2
wσ I  = 2

sσ ssH (14) 
 
 Cyz = Ryz - 

2
wσ Q  = 2

sσ 6jβe ssH (15) 
 
Then Cyy – λCyz = 2

sσ (1 -  λ 6jβe )ssH, thus λ = 6-jβe  is one of 

the roots of det(Cyy – λ Cyz). One phase factor β6 can be 
obtained by finding the root of det(Cyy – λ Cyz) closest to the 
unit circle. 

Forming subset (4, 5, 7, 8) by shifting the subset (1, 2, 4, 5) 
down by d, the second independent phase factor can be 
obtained. The received data vector of this subset v is: 
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The cross correlation matrix Ryv is 
 
 Ryv = E[yvH] = 2

sσ 8jβe ssH + 2
wσ Q1 (17) 
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Define matrices Cyy and Cyv as: 

 
 Cyy = Ryy - 

2
wσ I  = 2

sσ ssH (18) 
 

 Cyv = Ryv - 
2
wσ Q1  = 2

sσ 8jβe ssH (19) 
 

Then Cyy – λCyv = 2
sσ (1 - λ 8jβe )ssH, thus λ = 8-jβe  is one 

of the roots of det(Cyy – λ Cyv). The second phase factor β8 
can be obtained by finding the root of det(Cyy – λ Cyv) closest 
to the unit circle. 

Since β6 = πsinθcosφ, β8 = -πsinθsinφ, DOA information 
can be obtained by solving φjπsinθcose = r1 = 1je α where r1 is 
the root of det(Cyy – λ Cyz) closest to unit circle and 

φ-jπsinθsine = r2 = 2je α where r2 is the root of det(Cyy – λ Cyv) 
closest to unit circle. 
 
  πsinθcosφ = α1 (20) 
 
 −πsinθsinφ = α2 (21) 
 
The azimuth and elevation angles can be found from the 
following equations. 
 
 φ = tan-1(-α2/α1) (22) 
 
 θ = sin-1(α1/πcosφ) (23) 
 
DOA information using the 19 element honeycomb array can 
be obtained in similar manner. 

 

IV. MATRIX ESTIMATION  
Section 3 shows that the DOA angles are derived from the 

auto-correlation and cross-correlation matrices. DOA 
performance depends on the accurate estimation of matrices 
Ryy, Ryz, Ryv. Elements of matrices are estimated from the 
received data y(n) = s(n) + w(n) where s(n) and w(n) are the 
signal and white noise of the received data. Three matrix 
estimation methods, (1) temporal averaging, (2) spatial 
smoothing, (3) temporal averaging and spatial smoothing, are 
described in this section[13]. 
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A. Temporal Averaging Method 
This method estimates the matrix element rij by averaging 

the products of data received by the ith and jth elements over N 
snapshots according to the following equation: 
 

 rij = (n)(n)yy
N
1 N

1n

*
ji∑

=

 (24) 

 

B. Spatial Smoothing Method 
Since the number of elements in the array is larger than the 

size of the subset, instead of discarding the data from elements 
outside of the subset, those data can be used to improve the 
estimation of rij. For example, elements of the correlation 
matrix of square array for subset (1, 2, 4, 5) are computed 
from the following equations. 
 

r11(n) = r22 = r44 = r55 = (n)(n)yy
9
1 9
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 (25) 
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 r25(n) = r14(n) (30) 
 
 r45(n) = r12(n) (31) 
 

Elements of the cross-correlation matrices can be computed 
in a similar manner.  

This method estimates the matrix element based on a single 
snapshot. A good estimation would require an array with a 
large number of elements. Thus, the 19 element honeycomb 
array would produce a much better spatial smoothing than the 
9 element square array. Elements of the cross-correlation 
matrices can be computed in a similar manner. 

 

C. Temporal Averaging and Spatial Smoothing Method 
This method combines spatial smoothing and temporal 

averaging. After estimating the matrix elements rij(n) from 
spatial smoothing, an estimated rij is obtained by further 
averaging over N snapshots according to the following 
equation.  

 

 rij = (n)r
N
1 N

1n
ij∑

=

 (32) 

 

V. SIMULATION RESULTS  
Assume a tone signal impinging the array from azimuth 

angle φ = 60°, and elevation angle θ = 30°. The signal to noise 
ratio SNR = 10 dB. DOA estimation is done using a 9 element 
square array and generating two independent equations by 
shifting subset (1, 2, 4, 5) to subset (2, 3, 5, 6) and subset (4, 5, 
7, 8) as shown in Figure 3. 
 

Figure 4(a) shows the scatter plot based on 1000 
independent simulations using the 9 element square array. 
The estimated 4 × 4 matrices are obtained by temporal 
averaging over only 32 snapshots. Most of the data points are 
centered on the true signal direction (30°, 60°). There are also 
points scattered over the other angles. With temporal 
averaging and spatial smoothing, Figure 4(b) shows an 
improved scatter plot where most of the data points are 
concentrated on (30°, 60°). The averaged estimated angle 

errors for (a) and (b) are 11.84° and 2.19°, respectively. The 
estimated angle error ε is computed by the following 
equation. 
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Figure 4 Scatter Plots Based on 1000 Independent Simulations 
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A 19 element honeycomb array was used and with two 
independent equations generated by shifting subset (1, 2, 4, 5) 
to subset (2, 3, 5, 6) and subset (4, 5, 8, 9) is shown in Figure 
5. 

 
Figure 5 Subset selections on 19 Element Square Array 
 
Figure 6 shows the scatter plots using a 19 element 

honeycomb array and 4×4 matrices. Figure 6(a) shows the 
scatter plot of 1000 independent simulations assuming SNR = 
10 dB using temporal averaging over 32 snapshots. The result 
of the combination of temporal averaging and spatial 
smoothing is shown in Figure 6(b). The estimated angle errors 
are 12.98° and 0.97° for (a) and (b) respectively. Comparing 
Figures 4 and 6, the 19 element honeycomb array provides 
much better performance with spatial smoothing. 
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Figure 6 Scatter Plots Based on 1000 Independent Simulations 

Increasing the number of temporal averaging improves 
DOA performance. Figure 7 shows the estimated angle error 
as a function of the number of snapshots N using a 19 element 
honeycomb array. Increasing the number of temporal 
averaging improves the matrix element estimation; 
consequently the estimated angle error is reduced. The 19 
element array provides sufficient spatial smoothing in matrix 
element estimation. The estimated angle error after spatial 
smoothing is considerably smaller than the estimated angle 
error without spatial smoothing. After spatial smoothing, 
temporal averaging over 200 snapshots provides a very good 
estimation. Further increasing the number of snapshots does 
not significantly reduce the estimation error. 
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Figure 7 Estimated Angle Error as a Function of the Number of Temporal 

Averaging N  
 

Better SNR help improves the DOA performance. Figure 8 
shows the estimated angle error using 19 element honeycomb 
array with N = 32. 
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Figure 8 Estimated Angle Error as Function of SNR 

 
With the elevation angle fixed at θ = 30o, Figure 9 shows 

that the estimation error is fairly independent of the azimuth 
angle. This result is based on using a 19 element array with 
SNR = 10 dB and temporal averaging over 32 snapshots; all 
matrices are 4×4. Figure 9 also indicates that the estimation 
error can be reduced by an order of magnitude if the elements 
of matrix rij are estimated by spatial smoothing and temporal 
averaging methods. 
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 Figure 9 Estimated Angle Error as a Function of Elevation and Azimuth 

Angles 
 

At high elevation angle, there are some special azimuth 
angles that yield a very large estimated angle error. The 
estimated angle error as a function of azimuth angle for a 9 
element array  for a signal impinging the array at high 
elevation angle (θ = 89o) is shown in Figure 10. This result is 
based on SNR = 10 dB and matrix elements are estimated by 
temporal averaging over 32 snapshots and spatial smoothing. 
For the signal impinging the 9 element array from azimuth 
angles of 0o, 90o, 180o and 270o, the estimated angle error is 
very large. This is due to the fact that the received signal 
vectors of subset (1, 2, 4, 5) and subset (2, 3, 5, 6) are very 
close if the signal impinging the array is from 90o or 270o. The 
received signal vector of subset (1, 2, 4, 5) and subset (4, 5, 7, 
8) are very close if the signal impinging the array from 0o or 
180o. The 9 element array produces very large estimation 
error whenever the signal impinging the array is from those 
special azimuth angles. Similarly, if a 19 element array is used 
to estimate signal’s DOA, using the subset (1, 2, 4, 5) and 
shifting this subset to (2, 3, 5, 6) and (4, 5, 8, 9),   it gives a 
large estimated angle error for the signal impinging the array 
at 90o, 270o, 150o and 330o. 
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Figure 10 Estimated Angle Error vs Azimuth Angle for Elevation Angle θ = 

89o 
 

Matrix element rij is computed from the received data y(n) 
where the estimated DOA angles from Equations 22 and 23 
assume the precise element position. Thus, whenever the 

array element position deviates from the ideal position, it 
degrades the accuracy of the estimation. The deviation of each 
array element position is assumed to be Gaussian with a 
standard deviation of δd where δ represents the percentage of 
inter-element spacing d. 

Assume a tone signal impinging the array from azimuth 
angle φ = 60°, and elevation angle θ = 30°. The signal to noise 
ratio SNR = 10 dB. Using a 9 element square array and 4 
element subarray, assume the percentage standard deviation 
of element position is δ = 2%, Figure 11 shows the scatter plot 
of the estimated DOA. The result of this scatter plot is 
obtained by testing over 100 different antennas; each antenna 
is simulated with 30 independent runs. The matrix element is 
estimated based on temporal averaging over 32 snapshots. 
Figure 11(a) shows the scatter plot without spatial smoothing 
and Figure 11(b) is the scatter plot with spatial smoothing. As 
shown in this figure, spatial smoothing tends to average out 
the effect of element position deviation. Consequently, the 
estimated signal’s DOA is heavily concentrated on the ideal 
signal point (30°, 60°). 

 
(a) 

 
(b) 

Figure 11 - Scatter Plots Based on 3000 Independent Simulations    
  

The estimated angle error as a function of SNR is shown in 
Figure 12. This Figure shows that as SNR improves, 
estimation error decreases. In estimating matrix element rij 
without spatial smoothing, the estimation error could be 
considerably larger than the ideal case (with all elements in 
perfect position). Increasing the percentage standard 
deviation of element position to 5% results in a quite large 
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estimation even in a high SNR environment as shown in 
Figure 12(a). With the spatial smoothing, the estimation angle 
error is very close to the ideal case even when the percentage 
standard deviation of position error is 5%, as shown in Figure 
12(b). 

 

 
(a) 

 
(b) 

Figure 12 - Estimated Angle Error vs SNR 
 

Increasing the number of temporal averagings improves the 
estimation accuracy. Figure 13 shows the estimated angle 
error as a function of the number of temporal averagings. This 
simulation is based on SNR = 10 dB with a 9 element square 
array. Matrix element rij is estimated by the temporal 
averaging and spatial smoothing method. This figure shows 
that the performance of the array with element position 
perturbation is very close to the ideal array case if the matrix 
element rij is estimated by the temporal averaging and spatial 
smoothing method. 
 

 
Figure 13 - Estimated Angle Error vs Number of Temporal Averaging 

 
Using the 19 element honeycomb array and 4 element 

subarray, with the same SNR = 10 dB, the scatter plots of a 
non-ideal array with percentage element position standard 
deviations = 2% and 5% are shown in Figure 14(a), 14(b) 
respectively. The estimated matrix element rij is obtained by 
temporal averaging over 32 snapshots using the spatial 
smoothing method. If we compare Figure 14 with  Figure 11, 
increasing the number of element reduces the estimation 
variance. 

 

 
(a) 

 
(b) 

Figure 14 - Scatter Plot with Percentage Element Position Standard 
Deviation (a) δ = 2% and (b) δ = 5% 
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The estimated angle error as a function of SNR is shown in 
Figure 7. The matrix element rij in Figure 15(a) is obtained by 
temporal averaging over 32 snapshots only. The matrix 
element rij in Figure 15(b) is obtained by temporal averaging 
over 32 snapshots and using spatial smoothing. 

 

 
(a) 

 
(b) 

Figure 15 - Estimated Angle Error vs SNR 
 

Increasing the number of temporal averagings improves the 
estimation accuracy. Figure 16 shows the estimated angle 
error as a function of the number of temporal averagings. This 
simulation is based on SNR = 10 dB with a 19 element 
honeycomb array. Matrix element rij is estimated by the 
temporal averaging and spatial smoothing method. This 
Figure shows that the performance of an array with element 
position perturbation is very close to the ideal array case if the 
matrix element rij is estimated by the temporal averaging and  
spatial smoothing method. Since this array has 19 elements, it 
provides an improved spatial smoothing. Compared to the 9 
element square array (shown in Figure 12), the 19 element 
honeycomb array yields a smaller estimated angle error. 

 
Figure 16 - Estimated Angle Error vs Number of Temporal Averaging 

 

VI. CONCLUSION 
The conclusions based on the results of this simulation study 

are summarized as follows: 
1.   The ESPRIT method estimates signal DOA by finding 

the roots of two independent equations closest to the unit 
circle. This method does not require using a scan vector 
to scan over all possible directions like the MUSIC 
algorithm. Compared with the MUSIC algorithm, the 
ESPRIT method obtains the DOA information by solving 
the simultaneous equations. This method reduces the 
processing requirements. It also sacrifices performance. 

2.   Estimation error is relatively independent of signal 
azimuth angle if the signal impinging the array is from a 
low elevation angle. 

3.   When the signal impinging the array is from high 
elevation angle, there are some critical azimuths angles 
that yield a very large estimation error. This is due to the 
fact that at those critical azimuth angles, the received data 
vectors are very close. Thus there is not sufficient 
information to process the received data. To avoid large 
estimation error, we suggest to alternatively choosing a 
different subset and shifting the subset in different 
directions. 

4.   Estimation error can be reduced by (a) using an array 
containing a large number of elements, (b) increasing the 
number of temporal averagings in matrix element 
estimation. 

5.   If the array element position deviates from the ideal 
position, DOA performance is degraded. However, 
spatial smoothing tends to average out the undesirable 
effect of random element position error. Whenever the 
matrix elements rij are estimated by the temporal 
averaging and spatial smoothing method, the estimated 
angle error is very close to the ideal case. 

6.   Increasing the number of array elements provides an 
improved estimation of matrix element rij by better 
spatial smoothing. Thus the estimated angle error of a 19 
element honeycomb array is smaller than the 
corresponding estimated angle error of a 9 element 
square array. 

7.   If the signal impinges on the array from some special 
angles, shifting the subarray may not provide sufficient 
phase information. Consequently, the resulting estimated 
angle error can be quite large. In this case, we may have 
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to choose a different subarray and shift the subarray in a 
completely different direction. Detailed analysis is 
proposed in the future. 
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