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Abstract — Many robotics problems do not take the 

dynamics of the actuators into account in the 

formulation of the control solutions. The fallacy is in 

assuming that desired forces/torques can be 

instantaneously and accurately generated. In practice, 

actuator dynamics may be unknown and can have 

significant transient effect on the overall results. This 

paper presents a Model Reference Adaptive Controller 

(MRAC) for the actuators of a biped robot that mimics 

a human walking motion.  The MRAC self-adjusts so 

that the actuators produce the desired torques in 

accordance with an inverse reference model.   

Lyapunov stability criterion is used to provide the 

MRAC structure, and a rate of convergence analysis is 

provided.   The control scheme for the biped robot is 

simulated on a sagittal plane to verify the MRAC 

scheme for the actuators.  

 
Keywords- Model reference adaptive control, biped robot, 

inverse reference model, actuator dynamics, Lyapunov. 

 

I. INTRODUCTION 

  Biped walking dynamics is highly nonlinear, has many 

degrees of freedom and requires developing complicated 

model to describe its walking behavior. Many novel 

approaches have emerged in the field of biped walking to 

address this complicated control mechanism. Existing 

biped walking methods [4]-[7], give precise stability 

control for walking bipeds. However these methods require 

highly precise biped walking dynamics. In recent years, 

biped walking through imitation has been a promising 

approach, since it avoids developing complex kinematics of 

the human walking trajectory and gives the biped a human  

like walking behavior. These methods combine the 
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conventional control schemes to develop the walking 

mechanism for the bipeds. Examples include, imitation 

based on intelligent control methods like genetic algorithm 

[8], [5], fuzzy logic [9], neural network approach [10], and 

other methods such as adaptation of biped locomotion [6], 

learning to walk through imitation [10] and reinforcement 

learning [12], [5], [9], [13]. But these methods cannot adapt 

their behavior to the changes in the dynamics of the process 

and the character of the disturbances [4]. Therefore, 

adaptive control approaches [14]-[17] are useful. 

To address the problem of poorly known actuator 

dynamic characteristics and unpredictable variations of a 

biped system, we propose a Lyapunov based model 

reference adaptive control system (MRAC) method for the 

biped walking control. In MRAC, the presence of the 

reference model specifies the plants desired performance. 

The plant (biped actuator) adapts itself to the reference 

model (desired dynamics for the actuators). In this paper, 

reference model output represents the desired torques.  The 

desired torques can be derived from a biped walking 

controller [1] that closes the loop of the biped motion to 

that of the desired motion or captured human gait. In the 

formulation of the MRAC, we will need to estimate the 

input of the reference model using an input estimator.  The 

resulting inverse reference model in effect predicts the 

needed input to drive the actuator.  Lyapunov’s stability 

criterion is used to provide the architecture for parameter 

tuning.  An analysis on determining the converge rate of 

the MRAC is also discussed.  Through this scheme, a robot 

can learn its behavior through its reference models. 

 

II. PROBLEM DESCRIPTION 

A. Objective 

Consider the objective of controlling a biped robot so 

that it imitates the movement of a person.  Fig. 1 shows the 

basic idea where the human movement is represented by 

dy  and the biped movement by y .  The biped motion is 

determined by the actuators which are controlled by the 

inputs au .  The overall objective is to find the adaptive au  

such that dy y .   

In the present problem, we will consider the case where 

the actuator dynamics have uncertainties including 

nonlinearities, unknown parameter values and delays.  

Actuator dynamics have not been widely addressed.  Fig. 2 

shows the adaptive actuator objective where the actuator 

output moment M is made to follow a required Md, which 

will be computed from the desired requirement that 
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y tracks
dy . The study presented in this paper deals with 

the formulation and simulation aspects of the MRAC 

actuator scheme.   

 

 

  Fig. 1.  Human movements, biped robot, its actuators  

 
 

Fig. 2.  MRAC scheme for the biped walker. 

 

B. Biped Dynamics 

Equations for describing the dynamics of a biped robot 

were introduced in [1], and can be summarized as follows. 

 

            
   , , ,q BA q q q q M F                      (1) 

 

where q
 

is the generalized coordinates of the robot, 

q and q  are the first and second derivatives, M  the 

moments/torques applied to the joints in the robot and F  

the reaction forces at the contact of the robot’s feet and 

ground surface.  The relationship (1) has been well studied 

[1]. 

 

C. Uncertain Actuator Dynamics 

  In the literature, it is assumed that M can be readily 

generated without considering the dynamics of the 

actuators. As an example, if a set of desired torques are 

calculated as dM , then it would assume that dM M  and 

applied directly as inputs to the robot. However, this is not 

a valid assumption since in practice the moments M will be 

generated by actuators which normally have unknown 

parameters, time delays and nonlinearities.  The moments 

M can be modeled as the states of 

    

 ( ) ( ) ( ( ), ( ), ( ))a a a a a a extt t t t t t  x A x B u d q q τ  

        a aM C x                  (2) 

 

where au are inputs of actuators,   is the transport delay in 

the response of the actuator  and ( , , )a extd q q τ  represents 

disturbance torques to the actuators due to robot 

movements. extτ is an external disturbance torque.  We 

assume that the moments/torques M  can be measured; for 

example, by measuring the currents in motors or pressure 

in hydraulics.  In pre-tuned actuators, we can assume that 

aM x , i.e., a C I . 

 

D.  Desired Moments Md 

The desired moments dM  can be derived as the output 

of a controller that operates on dy  and y . For example, 

 

                          d c ds s s s M G y y                  (3)  

                      

where s is the Laplace variable,  c sG  is the controller 

transfer function. The controller 
cG  is designed to generate 

the desired moments dM , required for the adaptive 

actuator scheme by using the information from y and  
dy  . 

 

E. Adaptive Control Approach 

The problem here is that we have to deal with unknowns 

and uncertainties in the dynamics and parameters of the 

actuators (2). More specifically, we would like the actuator 

output M to follow Md.  Defining ( ) ( ) ( )dt t t e M M as 

the tracking error, we would like to see that ( ) 0t e  as 

t   with asymptotic stable dynamics. An MRAC 

scheme based on Lyapunov stability synthesis is proposed 

for dealing with the issue. The MRAC should generate an 

estimate for the unknown parameters with bounded 

tracking error and sufficient speed of adaptation in order to 

maintain the performance requirements of the mimicking 

robot.  Fig. 2 shows the adaptation scheme. 

 

III. SOLUTION 

A. Reference Model for Actuator  

To apply the MRAC approach to the actuator (2), a 

reference model for the actuator is needed as follows.  The 

computed desired moments dM (3) will be represented as 

the states of the reference model 
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where 
mA  and 

mB  represents the desired dynamics for the 

actuator to follow.  ( )m tu  represents the command input to 

the reference model of the actuator and is required for the 

MRAC.   

 

B. Inverse Model Reference  

However, we do not know the input
mu .  So the approach 

here is to estimate the unknown 
mu  knowing .mx

 
The 

unknown 
mu  can be represented as the output of an 

waveform shaping model, i.e.,  

 

                        

u u u u

m u u

 



x A x w

u C x
             (5)                 

                                 

where 
uA and 

uC  represents approximate waveform 

characteristics and uw is a sparse and  small shaping input. 

The reference model and shaping model can be 

augmented as  

    

mu mu mu mu u

m mu mu

 



x A x B w

x C x
              (6)

                      

where  , ,
0

m m m u

mu mu mu

u u

     
       

    

x A B C 0
x A B

x A I
 and 

 mu C I 0 ; and0 I  are null and identity matrix, 

respectively, of appropriate dimensions.  An estimate of the 

of mu  can be found using an observer of the form 

 

 

ˆ ˆ ˆ

ˆ ˆ

mu mu mu mu m mu mu

m m mu

    



x A x K x C x

u 0 C x
        (7)                                      

 

where muK  is chosen such that mu mu muA K C  has 

exponentially stable eigenvalues.   We refer to (7) as the 

inverse reference model, where the state mx  is given and 

the input mu  is estimated by the inverse model as the 

output ˆ
mu .  ˆ

mu  can be interpreted as a prediction of mu  

needed to produce mx .  The dynamics of the prediction 

error is given by 

 

                 

 

 
mu mu mu mu mu mu u

m u mu

 



x A - K C x B w

u 0 C x
                  (8)       

 

where ˆm m m u u u .  

 

In the ensuing analysis we will assume that uw is 

negligible so that the ˆ mu  generated by the input observer 

converges to the unknown mu .  ˆ mu  will be used as the 

input to the MRAC to be shown in Section C.   

 

 

 

C. MRAC Scheme 

 

(i)  Configuration of MRAC Actuator 

The adaptive actuator scheme is shown in Fig 3 below, 

where the reference model is specified by  

 

                         m m m m m x A x B u                             (9) 

          

and the control to the actuator by, 

 

                      
ˆ

a a m u Lx Nu                                (10)

               

The adaptation algorithm in the MRAC will adjust the 

gains L and N based on Lyapunov stability criteria as 

follows.  

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. The MRAC with the input Predictor 

  

(ii)  Error Dynamics  

Define the errors e between the actuator torque  

a x M  and the desired torque m dx M  as  

 

             m a e x x                           (11)

        

It can be shown that   

 

        

 

  ˆ ( , , ) (12)

m m a a a

m a m a ext

   

  

e A e A A B L x

B B N u d q q τ
       

 

 

 

 

au  

Inverse Reference Model 

m dx M  

  cG s  
Input 

Predictor 

Actuator 

Dynamics 

Adaptation 

Mechanism 

  N  

L  

qC q  

 , ,a extd q q   

ax M  

 

y  

 

r  
 

ˆ
mu  

Engineering Letters, 18:2, EL_18_2_07

(Advance online publication: 13 May 2010)

 
______________________________________________________________________________________ 



 

 

 

(iii)  Lyapunov Stability Analysis 

Define a candidate for a Lyapunov function as  

  

   

    (13)

T

T

m a a m a a

T

m a m a

v

trace

trace



    

  

e Pe

A A B L Q A A B L

B B N R B B N

          

where 0T P P , 0T Q Q  and 0T R R   

are positive definite matrices.  Then  

 

    
    

     
     

2

2

2 ( , , )

2

ˆ2 (14)

T T

T

m a a a

T

m a a

T T T T

m m m a ext

T T

m a a a a

T T

m a m a

v

trace

trace

trace

trace

 

  

  

    

   

   

e Pe e Pe

A A B L Q B L

B B N R B N

e PA A P e e A d q q τ

A A B L Pex Q B L

B B N Peu R B N

 

From inspection we choose

 

        
1

1 ˆ (15)

T

a a

T

a am







 

B L Q Pex

B N R Peu

so that 

 

 

          
2 ( , , )T T T T

m m m a extv     e PA A P e e A d q q τ           (16)   

    

We next choose an 0T S S  and solve P from 

 

                   
T

m m  PA A P S                (17)  

 

We arrive at 

 

             
2 ( , , )T T T

m a extv   e Se e A d q q τ               (18) 

                     

where v  is negative under the assumption that  

 

           
2 ( , , )T T T

m a exte Se e A d q q τ              (19) 

 

A sufficient condition to satisfy (19) is  

 

   

 
 
 

 max

min

2 ( , , ) (20)
mT T

a ext




 q q τ

-A
e e e d

S  

 

which implies that the magnitude of error should be larger 

than the disturbance.  In practice this means that the system 

should be persistently excited.  Hence we conclude that the 

overall dynamic system comprising of (12) and (15) has a 

candidate function that satisfies the Lyapunov stability 

criterion under condition (19). 

IV. MRAC FOR WALKING BIPED ACTUATORS 

A. Dynamics of Walking Biped 

The bipedal model in this project has five links connected 

by 4 pin joints as shown in the Fig. 4a One link represents 

the upper body and two links are for each lower limb. The 

biped has two hip joints, two knee joints and two ankles at 

the tips of the lower limbs. There is an actuator located at 

each join and all of the joints are considered rotating only 

in the sagittal plane. As the system can move freely in the 

x-y-plane and contains five links, it has seven degrees of 

freedom. The corresponding seven coordinates are selected 

according to Fig. 4a as 

 

         
 , , , , , ,

T
o o L R L Rx y     q                   (21) 

        

The coordinates  ,o ox y  fix the position of the center of 

mass of the torso, and the rest of the coordinates describe 

the joint angles.  The link lengths are denoted as 

 0 1 2, ,h h h  and masses as  0 1 2, ,m m m .  The centers of 

mass of the links are located at the distances  0 1 2, ,r r r  

from the corresponding joints. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4a.  Biped robot with the corresponding 7 

co-ordinates  , , , , , ,
T

o o L R L Rx y     q  

  

The model is actuated with four moments two of them 

acting between the torso and both thighs and two at the 

knee joints, which is shown in Fig. 4b. 

 

                   1 1 2 2, , ,
T

L R L RM M M MM                          (22)    

             (2-2)                  

The walking surface is modeled using external forces 

that affect both leg tips shown in Fig. 4b. 
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                   , , ,Lx Ly Rx RYF F F F   F                              (23)

     

When the leg should touch the ground, the corresponding 

forces are switched on to support the leg.  As the leg rises, 

the forces are zeroed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4b.  Biped robot with the moments 

 1 1 2 2, , ,
T

L R L RM M M MM and the walking surface 

external forces , , ,Lx Ly Rx RYF F F F   F  

 

Using Lagrangian mechanics, the dynamic equations for 

the biped system can be derived as shown in (1) where 
7 7XA(q) is the inertia matrix and   7 1Xb q,q,M,F  

is a vector containing the right hand sides of the seven 

partial differential equations. The closed form formulas for 

both A and b are presented in [1]. 

 

B. Computation of Desired Moments 

The desired human movement angles will be measured 

and represented by  

 

               
 [ ]T

d m Lm Rm Lm Rm     y          (24) 

   

An output y is constructed from the biped feedback 

information q as  

 

           
 [ ]T

L R L R yC      y q
             

(25)
          

 

 

The desired torque is derived as the output of a 

controller that operates on the error between r and y. That 

is  

  

                 ( ) ( ) ( )d cs s s s M G r y         (26)

    

                   
 1 2 3 4

T
d d d d dM M M MM

      
(27)

 
 

C. Dynamics of Actuators 

We note that the actuator states a x M are the torques 

that will drive the biped robot.   The goal is to find au such 

that dM M . We assume that dc motors are used as 

actuators. It follows that (2) can be decoupled into 

individual motors representing the first-order stator-rotor 

dynamics ( ,ai aia b ) that generates output torque ( aix ) 

while subject to disturbance ( aid ), that is   

 

              

 

 

1 2 3 4

1 2 3 4

T

a a a a a

T

a a a a a

x x x x

u u u u





x

u
, 

              

 

 

1 2 3 4

1 2 3 4

, , ,a a a a a

T

a a a a a

diag a a a a

diag b b b b





A

B
  

 1 2 3 4( , , )
T

a ext a a a ad d d dd q q τ
 

 

aA aB  and 
ad are the uncertain parameters vectors. 

 

D. Inverse Reference Model 

Estimation of mu  can be obtained from the input 

estimator given by (7) 

 

                

 1 2 3 4ˆ ˆ ˆ ˆ ˆ (28)
T

m m m m mu u u uu

 

From (5), 

 

 

 4

4

0
,  0 ,

0 0
u u

I
I

 
  
 

A C

         
([ 20 20 20 20]),m diag    A

 
 

([ 20 20 20 20]).m diag    B

   

   

       

The adaptation gain matrix muK is a Hurwitz matrix with 

stable eigenvalues Re[ ] 0s   to ensure stability for the 

tracking error, the choice of the eigenvalues depends on the 

application.   

 

E. Configuration of MRAC Actuator 

The control is specified by  

 

                ˆ
a a m u Lx Nu             (29) 

   where, 

 

         
 

 

1 2 3 4

1 2 3 4

, , ,

, , ,

diag l l l l

diag n n n n





L
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It follows from the Lyapunov design that the gains 

 1 2 3 4, , ,diag l l l lL and  1 2 3 4, , ,diag n n n nN  are 

adjusted according to   

 

                   

1
( )

1
ˆ( )

i i di ai ai

ai i

i i di ai mi

ai i

l p M x x
b q

n p M x u
b r

 

  

              (30) 

 

F. Convergence Analysis of MRAC 

The convergence of the MRAC depends on the following 

dynamics 

 

        

ˆ ( , , )

ˆ

i mi i ai ai i ai mi i ai ext

i ai

i i

ai i

i mi

i i

ai i

e a e b x l b u n d

p x
l e

b q

p u
n e

b r

   

 



q q τ

            (31)                  

 

where 
i m aie x x  , * ˆ

i i il l l    & 
* ˆ

i i in n n  ,  and 
*

il and 

*

in  are the true value of parameters  and  i il n .  The 

convergence dynamics is characterized by the polynomial 

 
3 2

1 2 3 0c c c     
 

 

where 1 mic a  , 

2 2

2

ˆ
i ai i mi

i i

p x p u
c

q r
   and 3 0c  .   

We would assign 1 2and  c c
 
to define the convergence 

characteristics.  1c in turn defines 
mia .  We next choose a 

large value for 
is  to ensure that the Lyapunov rate is 

satisfied, 

 
2 2 ( , , ) 0 (32)i i i mi i ai extv s e a e d   q q τ

                         
 

We can now compute , ,i ip q and 
ir  for the algebraic 

Lyapunov function as  

 

2

i

i

mi

s
p

a
   

2

2

2 i a

i

p x
q

c
  

2

2

2 i m

i

p u
r

c
  

 

The analysis here was used to assist tuning of the 

parameters.  

 

 

V. SIMULATION RESULTS 

The proposed control scheme for the 5 link biped model 

is simulated with the MRAC scheme.  The biped is excited 

with a walking cycle that is manually developed and 

provided as the desired human gait. This walking cycle is 

repeated for every 1.5 seconds.     A display of the biped 

walking cycle is shown in Fig. 5.1. 

 

 
 

Fig. 5.1. A 2-step animation of biped walking on the  

sagittal plane 

 

In the simulation, the desired movement angles 

 [ ]T

d m Lm Rm Lm Rm     y  are given (24).   The 

biped movements  [ ]T

L R L R     y
 
 (25) are 

measured and used to generate the desired torques   

 1 2 3 4

T

d d d dM M M M
d

M (27).  Equations (28), (29) and 

(30) were implemented as the MRAC scheme.  Two sets of 

simulation runs are shown below.  The first simulation 

does not include the disturbance torque ( , , )a extd q q τ .  We 

introduced the disturbance in the second simulation. 

 

A. First Simulation (without disturbance) 

(i)  Results of the feedback biped movement angles y  and 

desired biped movement angles 
dy  

Fig. 5.2 to Fig. 5.5 shows the output states y plotted 

against desired output states 
dy . It can be observed that the 

both the desired and observed output states of the biped 

converged smoothly.  

 

 
 

Fig. 5.2.  Biped torso angle  plotted against the 

desired torso angle m  
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Fig. 5.3.  Biped thigh angles  L R   plotted 

against the desired thigh angles  Lm Rm   

 

 
 

Fig. 5.4.  Biped left leg knee angle L  plotted against 

the desired left leg knee angle Lm  

 

 

 
 

Fig. 5.5.  Biped right leg knee angle R  plotted 

against the desired right leg knee angle Rm  

 (ii)  Results of the biped moments M  and desired biped 

moments 
dM  

Fig. 5.6 to Fig 5.9 show the torques 

 1 1 2 2

T

L R L RM M M MM  converging to the desired 

torques  1 2 3 4

T

d d d d dM M M MM
 
for one step cycle.  

It can be noted that the biped moments M converges to the 

reference model’s behavior immediately.  

Therefore this gives the biped walker a human like gait 

as described by dM .   

 

 

 
 

Fig. 5.6.  Response of 1LM  tracking 1dM  

 

 

 
 

Fig. 5.7.  Response of 1RM tracking 2dM  
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Fig. 5.8.  Response of 2LM tracking 3dM  

 

 

 
 

Fig. 5.9.  Response of 2RM tracking 4dM  

 

 

(iii)  Results of the biped walking simulation 

Fig. 5.10 plots the stable torso height oy  (see Fig 5) of 

the biped walking as the result of the adapted torques M.  

 

 
 

Fig. 5.10.  Height of the biped torso oy  

 

(iv)  Results of the MRAC gain adaptation 

 

The value of 10aia    and 10bib   were used to 

specify the actuator model, while 100mia    and 

100mib   were used for the reference model (Sec. IV.C).  

These values express that we would like to adapt the 

(slower) actuator to response like the (faster) reference 

model.  Since we want ai i

ai ai i

b n

s a b l 
 converge to mi

mi

b

s a
,  

it can be shown that the expected 10in  , and 9il  .   

Fig. 5.11 and 5.12 show the case for i = 1. 

 

 

 
 

Fig. 5.11.  Convergence of the gain 
1l  to approximately the 

expected value 9 

 

 
 

Fig. 5.12.  Convergence of the gain 
1n  to approximately 

the expected value 10 

 

B. Second Simulation (disturbance) 

 

(i) Results of the biped walking with torque disturbances 

Equation (2) includes disturbance torques ( , , )a extd q q τ  

which represents torque feedback and other external 

moments.  This causes the dynamics of the actuator to vary.  
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Fig. 5.13a and Fig. 5.13b show the biped moment 1,LM
 
 

and biped torso height ,oy  recovering from the impact due 

to the external disturbance to the biped walker, introduced 

by four impulses at 0.05 (s), 0.3 (s), 1.34 (s), and 2.2 (s) 

with a magnitude of 5 Nm and 6 Nm as shown in Fig. 

5.13c.   

 

 
 

Fig. 5.13a. 1LM with and without disturbance torques 

( , , )a extd q q τ , simulated  over 3 (s) 

 

 
 

Fig. 5.13b. Height of the biped torso with and without 

disturbance torques ( , , )a extd q q τ , simulated  over 3 (s) 

 

 

 
 

Fig. 5.13c.  Simulated external disturbance to (2), at 

 t=0.05 (s), t=0.3 (s), t=1.34 (s), and t=2.2 (s) 

VI. CONCLUSIONS  

In this paper, we presented an MRAC technique to 

ensure that the actuators faithfully produce desired torques 

necessary for a walking robot. An observer was used to 

predict an anticipated state of the desired torque, thus 

causing the adaptive actuators to anticipate motion torques. 

We provided a proof to show that the MRAC scheme 

results in a stable system in the sense of Lyapunov when 

errors between the desired and actuator torques are 

significant. Also, the convergence analysis for tuning 

,  ,  and  p q r  is provided.  Simulation results verify that the 

system is robust when tested with various parameters and 

unknown coefficients. We plan to implement the MRAC 

scheme with the transport and time delays in our future 

work. 
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