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Nested vs. Joint Optimization of Vehicle Routing
Problems with Three-dimensional
Loading Constraints

Grzegorz Koloch *

Abstract—In the paper we examine a modification
of the classical Vehicle Routing Problem (VRP) in
which three-dimensional shapes of transported cargo
are accounted for. This approach, in contrast to the
standard capacitated VRP (CVRP) formulation, is
appropriate when transported commodities are not
perfectly divisible, but have fixed and heterogeneous
dimensions. However, nesting a version of a three-
dimensional Container Loading Problem (CLP) as a
subproblem of the standard CVRP formulation adds
a significant amount of optimization complexity. In
this paper two approaches - a nested and a joint one
- to solving the VRP with 3D loading constraints are
proposed and compared on artificial test cases as well
as on a real life case study.

Keywords: Vehicle Routing Problem, 3D Container
Loading Problem, heuristic optimization

1 Introduction

Vehicle Routing Problems (VRPs) attract attention of
operations research literature, for they are NP-hard, yet
have many practical applications!. An important in-
stance of a VRP formulation is the so called capacitated
VRP (CVRP, see Beham, 2007), where volume of trans-
ported goods cannot exceed vehicle’s container capacity.
In practice, however, one often has to be able to ver-
ify, wether given composition of goods really fits into the
container. This requirement is referred to as a loading
capacity constraint. It emerges when transported goods
are not divisible, i.e. have fixed, possibly heterogeneous,
shapes?. In particular, in the paper we consider a real-life
business case study of a postal company which gives rise
to such constraints in a natural way.

Loading capacity constraints are tighter than standard
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capacity constraints in the sense that optimal solution
of the standard CVRP problem may be infeasible when
spatial characteristics of transported goods are accounted
for. To verify, whether a collection of goods fits into vehi-
cle’s container, one has to solve a version of the Container
Loading Problem (CLP), see Lodi et al. (2002). Both
VRP and CLP are NP-hard problems, see Jozefowiez et
al. (2006) and Martello (2000), so solving efficiently their
superposition is an issue that deserves consideration.

In this paper we study a Vehicle Routing Problem with
3D Loading Constraints (3D-VRP) and propose two ap-
proaches to solving it. We refer to them as a nested and
a joint approach. They are based on the same memetic
genetic algorithm engine, which solves the VRP part of
the problem, but they differ with respect to the way the
CLP part is treated.

In the nested approach, each time a vehicle is to be as-
signed to a route, CLP is solved by a version of a wall-
building procedure to verify whether orders that have to
be executed along this route fit into vehicle’s container.
This procedure yields feasible positioning of goods in the
container or claims that such a positioning does not exist.
Only feasible positionings are allowed. However, such a
structure of 3D-VRP formulation yields high computa-
tional burden per iteration. Moreover, since solutions
space exploration is restricted to feasible regions, the al-
gorithm is more likely to get stuck in a local optimum.
Therefore, as an alternative, a joint approach is consid-
ered. In this approach genetic representation of VRP
solutions is extended by dimensions responsible for posi-
tioning of goods in vehicles’ containers and the CLP part
of the problem is solved jointly with the VRP part in
course of the same genetic search. However, genetic op-
erators we use, do not guarantee that offspring solutions
are feasible, i.e. it may be the case that goods do not fit
into vehicle’s container. Therefore a measure of infeasi-
bility is introduced, and, to avoid divergence, the fraction
of infeasible solutions during the search is controlled for3.

The comparison of proposed approaches is based on sev-
eral artificial test cases and on one real life case study

3Such an approach turned out to be more efficient than imposing
penalties on infeasible solutions.
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from postal shipment company. Our goal is to construct
a transportation plan for a fleet of vehicles which mini-
mizes distance traveled by utilized vehicles subject to the
fact that all orders placed by clients are executed and
that loading capacity constraints are satisfied. The com-
parison criteria of the algorithms are: the quality of the
solution obtained and their running time.

Remainder of the paper is organized as follows. Section 2
puts forward our 3D-VRP formulation. Section 3 outlines
details of the nested and the joint algorithm. Section 4
provides results of selected test cases. The final section
concludes.

2 Problem formulation

The 3D-VRP studied in this paper is defined using four
types of objects: cargo boxes, orders, vehicles and trans-
portation plan®.

There are Kp > 1 cargo boxes available. Let B = {b;,i €
Ik, } be a set of all boxes. Each cargo box b € B is
modeled as a cuboid - it is characterized by its length,
width and height. Cargo boxes B are located in a single
depot, from which they are delivered to clients’ locations
according to placed orders.

There are Ko orders. Let O = {o0;,i € Ik, } be a set
of all orders. Every order o € O is characterized by a
set of demanded cargo boxes b(o) C B. We assume that
a single box cannot enter two different orders, that is
V04,00 € O : 04 # 0p = b(04) Nb(0p) = 0.

There are Ky vehicles available in the depot. Let V =
{v; : i € I, } be a set of all vehicles. Each vehicle has
a container in which cargo boxes are transported. We
identify vehicles with their containers. Each container
v € V is modeled as a cuboid.

Let w represent a generic cuboid (either a cargo box b € B
or a container v € V). We denote length, width and
height of w by l(w), w(w) and h(w) respectively. Volume
of w is denoted by p(w) = l(w)w(w)h(w). Let Q be a set
of generic cuboids. Volume of Q is denoted by p(Q2) =

Zweﬂ M(w)'

A transportation plan I' consists of Kt routes z;, ¢ € I,
ie. T = {x1,x9,....,xx.} and of a function v : T' — V
which assigns vehicles to these routes®.

Route z; is represented as a sequence of [ K,, = 1 orders
which are executed along it according to their order in
the sequence. Let o, ; denote the j-th order executed
along the route x;. We assume that each route starts
and finishes in the depot. The set of cargo boxes that

4We will use the notation Iy = {1,2,..., K}, K > 1, to denote
a generic index set.

5A route has exactly one vehicle assigned, but one vehicle can
be assigned to more than one route.

have to be loaded in order to execute orders along route
z; will be denoted by B(z;) = U;cr, 0(0s,,5)-

If vehicle v is to be assigned to route x;, we have to verify
wether cargo boxes B(x;) fit altogether into the container
v(a;).

In standard CVRP formulation routes must satisfy the
following condition:

S(xi) = plo(zi) — p(B(w:)) =0 (1)

i.e. the sum of volumes of cargo boxes in all the orders
along the route cannot exceed vehicle’s container volume.
However, notice that standard CVRP approach is not
sufficient for solid cargo®. Verification whether boxes in
B(x;) fit into v(z;) is NP-hard in general case.

A feasible solution of 3D-VRP is a transportation plan I'
for a fleet of vehicles V', such that each order is assigned
to exactly one route and all vehicle capacity constraints
are met.

In the paper we assume that the objective function for
3D-VRP problem is to minimize the total distance trav-
eled. Let us denote by d(o;,0;) the distance between
locations of delivery points of orders o; and o;. Let 0 de-
note the depot, so d(0,0;) is a distance of order o; from
the depot. Notice that several orders can be placed in
the same location. In such a case distance between them
equals 0. Distance d(x;) traveled along route x; equals
to:
K., —1
d(0,00,1) + Y (0,00, 541) + d(0s, K., ,0)  (2)

j=1

and total distance traveled of the transportation plan I’
equals: d(I') = > d(z).

Using the above assumptions we can formulate the 3D-
VRP problem as follows:

d(T") — min

subject to:

YVt € I, 1 324,75 : 00 = 04, 5

Vi € Ik, : B(x;) fits into v(x;)

(3)

In the next section we describe two approaches to solving
outlined 3D-VRP problem formulation.

3 Optimization procedures

In this section we describe two approaches to solving
the 3D-VRP as defined in the previous section. These

61If boxes were one-dimensional, i.e. if they were modeled as in-
tervals, condition (1) would be sufficient. If at least two dimensional
case is considered, this is no longer true. A trivial example goes as
follows. Consider two squares, both having dimensions 1.6 x 1.6.
Their total volume is 5.12, still, they do not fit into the 3 x 3 rect-
angle which volume equals 9.

(Advance online publication: 13 May 2010)



Engineering Letters, 18:2, EL._ 18 2 10

are the nested and the joint approach. They are both
based on the same genetic algorithm engine, which solves
the CVRP part? of the problem. This procedure will be
called the main genetic procedure. Two approaches differ
in the way they handle the CLP part of the problem.

In the nested approach CLP constitutes a subproblem of
the CVRP problem. The main genetic procedure is sup-
ported by a subroutine which solves the CLP each time
loading constraint has to be verified, i.e. when, for a vehi-
cle v assigned to route z, it has to be checked if collection
of boxes B(z) fits into v. Run-time of the subroutine is
variable, for it stops after having found first feasible posi-
tioning of boxes B(z) in container v or after a predefined
number of iterations have been executed without obtain-
ing any feasible positioning. This approach enforces fea-
sibility of all solutions in the course of genetic search®.

In the joint approach the genetic representation of CVRP
problem is extended by dimensions responsible for encod-
ing positioning of cargo boxes in vehicles’ containers along
with encoding of the routes to which they are assigned.
The CLP is therefore solved jointly (simultaneously) with
the CVRP in the course of the same genetic search. Ge-
netic operators which govern evolution of the main proce-
dure are augmented so that they also affect positionings
of boxes in vehicles’ containers. They can, however, pro-
duce infeasible positionings. The fact that CLP does not
have to be solved each time a vehicle is assigned to a route
results in a significant runtime reduction per iteration of
the resulting algorithm. This comes at a cost of its longer
convergence (in terms of number of iterations) and a risk
of divergence to search space regions, where no position-
ings are feasible. During the design of this algorithm we
have found that this risk could be high in general. How-
ever, imposing the condition that infeasible solutions are
allowed to enter the population with a probability which
value decreases with iterations has turned out to be an
effective method to avoid divergence.

In subsequent three sections the main genetic procedure
and two proposed approaches to solving the 3D-VRP are
discussed. Next, the performance of nested and joint ap-
proaches is compared by means of numerical simulations.

3.1 Main genetic procedure

The main genetic procedure consists of two phases. In
the first one initial population Py of solutions, i.e. trans-
portation plans of the form of I', is constructed. In the
second one P, is evolved in the process of genetic search.

A modified version of the Push Forward Insertion Heuris-
tic (PFIH), see Solomon (1987), is employed to generate
Py. A generic transportation plan in Py is initiated by

"By the CVRP part of the 3D-VRP problem we mean the part
for which solution of the CLP problem is exogenous.

8i.e. all vehicles are capable of transporting cargo boxes associ-
ated with routes to which they are assigned.

a single order. Denote this, yet incomplete, plan by ;.
Each of remaining Ko — 1 orders is inserted for a try in
all possible places® into ;. Best insertion in terms of
distance increase indicates an order that will be inserted
and its insertion place. This leads to v2. The process
continues until g, is constructed. Each inserted order
can become a part of some route of the transportation
plan or can initiate a new route in it. After each inser-
tion a vehicle is assigned to the route to which an inserted
order belongs. Spatial constraints are forced to be sat-
isfied, i.e. insertions that lead to infeasible solutions are
not allowed, so vk, is feasible and it becomes an element
of Po.

Whole P, is constructed by initiating the PFIH proce-
dure with a predefined number of different orders from
O. Next we add random noise to the obtained solutions
and exert local search on them. For the latter we em-
ploy a hill-climbing procedure based on As-interchange,
see Thangiah et al. (1994). It works as follows. For
a given solution, a subset of its routes is drawn, from
which random subroutes are chosen. For every chosen
subroute, it is deleted from the plan and then reinserted
in the spirit of the PFIH procedure, i.e. all possible in-
sertion places are considered and the best one is chosen.
Feasibility is still enforced. To this end, solutions in Py
are pre-optimized, but not homogeneous, which would
make the genetic search suffer from the lack of diversity.

The evolution of initial population is governed by selec-
tion, crossover and mutation. Transportation plans are
selected for crossover by tournament selection. For two
tournament winning plans, crossover operator picks at
random two routes - one from the first one, and one from
the second. Then subroutes of these routes are drawn.
Elements from the first subroute are deleted from the
second plan and wvice versa. Finally, first subroute is in-
serted into the second plan and wvice versa. This is done
in the spirit of PFIH procedure. On top of that, with a
predefined (small) probability, Ae-interchange procedure
is exerted on newly constructed plans. To save runtime,
however, not all possible, but only a predefined number of
random insertion places are considered. Mutation works
by selecting a random number of orders from the plan,
deleting them from it and reinserting at random.

Reallocation of subroutes between two transportation
plans (PFIH, Ay, crossover) or between different routes
within a single plan (mutation), boils down to realloca-
tion of sequences of orders of which these subroutes con-

91n case of 71, there are three insertion possibilities for an new
order that has not yet been inserted: between the depot and the
only order in =i, vice versa, and insertion of the form: depot - an
order - depot. Insertion of the form: depot - an order - depot,
initiates a new route in the transportation plan. Generally, in case
of v¢, 1 < k < Ko, a new order is inserted at the beginning and
at the end of all the routes in 7, between all the orders along all
the routes in v and finally a route of the form: depot - an order -
depot is considered.

(Advance online publication: 13 May 2010)



Engineering Letters, 18:2, EL._ 18 2 10

sist. If a subroute z is to be inserted into the plan'® T,
it becomes an element of some route in I'. Cargo boxes
associated with orders in z, i.e. elements of B(x), have to
be moved accordingly. For a generic route x, to which a
generic vehicle v(x) is assigned, positioning of boxes from
B(z) in v(z) is represented by a |B(xz)|-element sequence
o(xz) = (b € B(x)), i.e. by a permutation of elements of
B(z).

Let x denote a route to which a subroute z’ is to be in-
serted. Positioning of boxes B(x) in the container v(z) is
represented by a permutation o(z) of elements of B(x).
Therefore boxes from B(z') have to be inserted into the
sequence o(z). As far as nested approach and the PFIH
procedure are concerned, permutation o(z) must remain
feasible after insertion of boxes from B(z'), i.e. it must
represent a positioning of boxes that fits into v(x) af-
ter 2’ has been inserted into z. Section (3.2) describes
how this is achieved. Joint approach does not yield, in
general, feasible positionings in o(x) after insertion of z’
into z. Genetic search is controlled in such a way that the
amount of infeasibility is limited and, after convergence,
the final population tends to consist mainly of feasible
solutions. The way it is achieved is described in section
(3.3).

3.2 Nested approach

As stated in the previous section, reallocation of sub-
routes entails reallocation of orders and hence boxes.
When a generic order o € O is inserted into route =z,
boxes from B(o0) are inserted into o(x). In the nested
approach they are appended at the end of o(z) and a
vehicle is reassigned to z.

If vehicle v is to be assigned to route x, one has to verify
whether boxes B(x) fit altogether into v. To do this, a
genetic algorithm is run to solve the CLP. It stops as
soon as first feasible arrangement of boxes B(z) in v is
found or after a predefined number of iterations has been
executed. In the latter case, assignment is claimed to be
infeasible and vehicle v cannot be assigned to route z. If
no vehicle can be assigned to x after order o has been
inserted to it, this order cannot be inserted into x.

Population of solutions in the k-th iteration of the CLP
solver consists of n > 2 solutions P, = {oy,i € Ip,}.
The algorithm consists of two phases. First, initial pop-
ulation Py is constructed. Solutions of Py are random
permutations og;,7 € I,

After initial population has been constructed, second
phase, i.e. evolution of solutions starting from Py is ini-
tiated. The k-th iteration this phase goes as follows:

10Plan I is incomplete at this stage, since it lacks orders from z,
for they have not yet been inserted into it (if PFIH is considered)
or has been deleted in order to be inserted (if genetic operators are
considered).

1. Feasibility check of solutions in Pj_.
2. Evaluation of solutions in Py_1.
3. If P,_1 does not contain any feasible solution, then:

(a) Selection of solutions from Pj_; to the parent
solutions set Py_1.

(b) Reproduction and mutation of selected solu-
tions in Py_1, resulting in the k-th iterartion’s
population of solutions P.

4. Stop-criterion verification.

Steps 1-2 are performed simultaneously by means of a
version of a ”"wall-building” procedure, see George and
Robinson (1980). This procedure constitutes an approach
to CLP, see Pisinger (2002). For a generic solution o,
which represents positioning of boxes from B(z) in the
container v, it works as follows. If u(v) < u(B(z)), solu-
tion o is infeasible. Otherwise, permutation o is checked
if it renders a feasible positioning.

Given some orientation of v, the first box in o is placed
in the left-upper corner of the container. The next box
is placed to the right of it in the same layer. If it is not
possible to do this, a new higher layer is initiated with
this box. If it is also not possible, new wall is started with
it. For every box, if necessary, rotations are performed.
If it is not possible to position some box to the right to
the previous one in the same layer, in the higher layer
or at the beginning of the new wall, it goes to the list
of omitted boxes 6(o,v). After all the boxes in B(x)
have been positioned or inserted in the omitted list, we
evaluate solution ¢ by the volume of boxes in the omitted
list v(6(o,v)). If v(0(o,v)) = 0, permutation o is feasible
for the container v.

Selection in step 3 is done by tournament selection.
Crossover operator used is the partially mapped crossover
(PMX), see Goldberg (1989). For permutations o7 and
09, PMX selects two crossing points ¢ < j uniformly at
random. Subsequences 51 = (01(i),01(¢ + 1), ...,01(4))
and 69 = (02(i),02(¢ + 1),...,02(j)) are exchanged be-
tween o1 and oy. Corresponding elements of subse-
quences 1 and 9 define a mapping of exchanges of boxes
between o1 and o9, which is applied to elements of o1 and
o9 with indexes smaller than ¢ or bigger than 5. Mutation
of the permutation is performed by means of a reverse
mutation operator.

3.3 Joint approach

As stated in section (3.1), when two solutions, say I’y
and I's, are crossed-over in the run of the main genetic
procedure, two subroutes, say x; from I'y and z; from
I'5, are transferred between I'y and I's and vehicles are
reassigned to the newly constructed routes. This entails

(Advance online publication: 13 May 2010)
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reallocation of boxes B(z;) and B(z;) into some permu-
tations o9 in I'; and o7 in I'y respectively. In the joint
approach, best insertion places in o5 and o7 are sought for
boxes in B(x;) and B(z;) respectively. To save runtime,
not all possible insertion places are investigated, but a
predefined number of them is chosen at random. Best
insertion is insertion which renders feasible permutation
or, when all insertions render infeasible permutations, for
which the volume of boxes left outside the container, i.e.
the volume of the omitted list ©(6(o,v)) is the smallest.
To determine which boxes go to the omitted list, the same
wall-building approach to positioning of boxes as in the
nested algorithm is used.

The volume of boxes which stay outside the container in
route xz; with vehicle v(x;) assigned to it will be called
excess and will be denoted by e(z;) = u(0(o(z;), v(z;))).

Excess of a solution T is denoted by e(T") and equals the
sum of excesses over its routes. If e(I') > 0, T is infea-
sible for at least one of its routes contains an infeasible
positioning.

Evolution starts from the initial population Py which con-
sists of feasible solutions. In the course of joint optimiza-
tion some solutions may become infeasible. In fact, for
the test cases considered, if no limitation on infeasibility
is imposed, all solutions soon became infeasible, for they
are significantly better than the feasible ones. Therefore
we employ a limitation on a number of infeasible solutions
in the population. Namely we alow for such a solution to
enter the population with probability ¢y (k is an itera-
tion number) which decreases with k. Such an approach
allows to explore the solution space extensively at the
beginning, yet tends to yield final population solutions
to be feasible. We found such an approach superior to
penalizing infeasibility.

We compare the performance of both optimization meth-
ods using numerical simulations.

4 Algorithms’ performance comparison

We compare nested and joint algorithms based on 14 ar-
tificial test cases and one real life case study, see Table
1. Since we are not aware of any reference test cases for
the 3D-VRP, we constructed 15 problem instances, 14 of
which are artificial. For the first four artificial test cases
optimal solutions are known and they serve as a test for
algorithms’ ability to obtain them. Remaining problem
instances serve as a medium and large scale comparisons
of algorithms’ efficiency in terms of solution found and
running time. The real life case study comes from the
postal delivery industry.

Specification of the most important parameters of both
algorithm is as follows. From 50 to 150 solutions were
generated for each initial population in the main genetic

procedure. Its stopping criterion checks that during 20
iterations best solution in the population did not change
its evaluation by more than 0.1%. In the nested algorithm
the CLP genetic subroutine worked with from 50 to 150
initial solutions and performed up to 300 iterations. In
the joint algorithm probability, that an infeasible solution
entered the population in the k-th iteration was given by:
max{107°;0.1 — 10~ *k}.

Table 1: Description of test cases.
artificial, Type = R means real.

Type = A means

’ Case \ Type \ Orders \ Vehicles | Known sol. ‘
1 A 6 2 Yes
2 A 6 2 Yes
3 A 14 1 Yes
4 A 14 2 Yes
5 A 25 6 No
6 A 25 20 No
7 A 49 4 No
8 A 49 10 No
9 A 49 20 No
10 A 75 10 No
11 A 75 20 No
12 A 100 5 No
13 A 100 25 No
14 A 100 50 No
15 R 96 14 No

Simulations results are summarized in Tables 2 and 3.
Averages over 10 simulation runs for each problem in-
stance are provided. For small data sets we report if algo-
rithm was able to find known optimal solution. Distance
traveled is normalized to 100 for the nested approach.
Runtimes are reported for Intel Core 2 Duo 2GHz CPU.

Table 2: Optimization results - small test cases.

’ Case \ Alg. \ Solution \ Time \ Optimum ‘
1 Nested 100 9.99 s. No
1 Joint 94 | 14.12 s. Yes
2 Nested 100 7.89 s. Yes
2 Joint 115 6.12 s. No
3 Nested 100 | 34.12 s. Yes
3 Joint 111 | 19.09 s. No
4 Nested 100 | 33.76 s. Yes
4 Joint 108 | 19.91 s. No

For small test cases nested approach most of the time
is able to find exact optimal solution. So in terms of
accuracy it outperforms the joint approach. This is due
to the fact that nested approach is more precise while
for small problems it is easy to explore a vast range of
admissible solutions. Run times are short enough to treat
differences between the two approaches as insignificant
from the business user perspective.

(Advance online publication: 13 May 2010)
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Table 3: Optimization results - large test cases (obtained
solutions and procedure execution times given).

’ Case \ Nested \ Joint ‘
5 100 / 226 s. | 108 / 425 s.
6 100 / 298 s. | 102 / 441 s.
7 100 / 886's. | 84 / 1732 s.
8 100 / 901 s. | 86 / 2121 s.
9 100 / 960 s. | 80 / 2200 s.
10 100 / 1321 s. | 71 / 2507 s.
11 100 / 1399 s. | 86 / 2579 s.
12 100 / 1801 s. | 96 / 3412 s.
13 100 / 1952 s. | 81 / 3499 s.
14 100 / 2002 s. | 87 / 3618 s.
15 100 / 1748 s. | 95 / 3210 s.

For large test cases, in terms of quality of obtained solu-
tions, joint approach clearly outperforms the nested one.
It is due to the fact that it is able to ”jump out” of the
local optima via regions of infeasibility. The cost of this
flexibility is longer convergence time of the joint algo-
rithm. Difference in run times is not negligible, neverthe-
less both algorithms have practically acceptable compu-
tational burden.

In summary - nested approach is recommended when a
small scale problem is encountered. On the other hand -
in large tasks joint procedure is preferable, provided that
longer computation time is allowed by business users!!.

5 Summary

In the paper we analyzed a version of the Vehicle Rout-
ing Problem which takes into account spatial constraints
of transported commodities. The problem is relevant in
business practice, where cargo has fixed and heteroge-
neous shapes (as is the case in postal delivery business).

We have given a formal representation of the problem
and proposed two different algorithms to solve it. A nat-
ural, nested, approach all the time verifies feasibility of
constructed solutions with respect to loading constraints.
On the other hand a relaxed, joint, approach allows pack-
aging to be infeasible.

Using numerical simulations we have found that nested
approach is faster and more accurate for small problems,
whereas the joint approach, although slower, leads to bet-
ter solutions in large-scale tasks. It should be also noted
that joint algorithm is more sensitive to calibration of its
parameters.

Our research shows that in complex optimization prob-
lems involving several hard subtasks (VRP and 3D-CLP

HHowever, it should be noted that the proposed algorithm is eas-
ily implemented for parallel computation so it is possible to reduce
calculation time by increasing processing power of hardware.

in our case) there are at least two possible approaches.
One is using a composition of known algorithms for solv-
ing both - in our case this is a nested approach. The other
consists in devising a new solution method taking into ac-
count the more complex nature of the problem in question
- in our case this is a joint approach. We find that both
ways have their strengths and weaknesses. In further
research it would be interesting to analyze other compo-
sitions of hard optimization problems the same way we
did for 3D-VRP.
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