
 

        
    Abstract—Image deconvolution is an important problem in 
image processing. It is an ill-posed inverse problem, so 
regularization techniques are used to solve this problem by 
adding constraints to the objective function. Various popular 
algorithms have been developed to solve such problem. This 
paper proposes a new approach to the nonlinear neutron 
degraded images restoration problem which is useful in many 
images enhancement applications, based on swarm intelligence. 
We use the particle swarm optimization (PSO) applied for total 
variation (TV) minimization, instead of the standard Tikhonov 
regularization method. In this work, we attempt to reconstruct 
or recover neutron radiography images that have been 
degraded during acquisition; using some a priori knowledge of 
the degradation phenomenon. The truncated singular value 
decomposition (TSVD) method is also considered for image 
deconvolution in this paper. A comparison between the five 
methods is conducted, using several images.  
 

      Index Terms—Deconvolution, ill-posed, TV, 
Ti khonov, TSVD, PSO, regularization 
 

I.  INTRODUCTION 

By image restoration, we seek to recover the original 
sharp image using a mathematical model of the blurring 
process. The key issue is that some information on the lost 
details is indeed present in the blurred image, but this 
information is “hidden” and can only be recovered if we 
know the details of the blurring process. Due to various 
unavoidable errors in the recorded image, we can not 
recover the original image exactly. The most important 
errors are fluctuations in the recording process and 
approximation errors when representing the image with a 
limited number of digits [1].  

We can broadly classify restoration techniques into two 
classes: the filtering reconstruction techniques and the 
algebraic techniques. The filtering techniques are rather 
classical and they make use of the fact that noise signals 
usually have higher frequencies than image signals. This 
means that image signals die out faster than noise signals in 
high frequencies.  
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By selecting the proper filter, one can get a good estimate 
of the original image signal, by reducing the effect of noise. 
Examples of the restoration filters are the deconvolution 
filter, in which the transfer function of the degraded system 
is inverted to produce a restored image, and the Wiener filter 
that uses the mean-squared error (MSE) criterion to 
minimize the error signal between the original and degraded 
images. A limitation in this filter is that it cannot handle 
dynamically changing image and noise signals. Regularized 
deconvolution can be used effectively when constraints are 
applied on the recovered image (e.g., smoothness) and 
limited information is known about the additive noise. 

The ill-posedness of this problem arises from the fact that 
the kernel of the blurring function is badly conditioned and 
the degraded image contains noise. As a result, small 
perturbations in additive noise may lead to significant 
oscillations in the inversion result when using matrix 
inversion solution. Therefore, to correctly recover the 
unknown original image, regularization is necessary. We 
can use regularization in frequency domain but this can 
result in unlimited amplification of noise. The main 
shortcoming of the frequency domain regularization 
methods is the difficulty of finding the appropriate ending 
frequency at which the blurring function will vanish quickly 
[2].  

Spatial domain regularization methods are a wide 
research field for image restoration problems. In the spatial 
domain, the canonical regularization method is the 
Tikhonov regularization. The basic regularization theory 
was first proposed by Tikhonov and Arsenin [3].  

The solution methods for this optimization problem 
include singular value decomposition (SVD) based direct 
method [3], Newton and quasi-Newton method [4], gradient 
methods (e.g. steepest descent (SD) method and conjugate 
gradient (CG) method) and various preconditioning 
techniques. CG method has proven to be an efficient 
iterative regularization method for recovering the correct 
image from its degradation [5]. This method overcomes the 
difficulty of choosing the regularization parameter by 
controlling the iteration indices but, the optimal stopping 
iteration index still depends on the noise level.  

Total variation (TV) is a regularization approach that 
performs edge preserving image restoration, but at a high 
computational cost. Total variation regularization requires 
linearization of a highly nonlinear penalty term, which 
increases the restoration time considerably for large scale 
images. In the total variation method, we will consider an 
iterative regularization approach in the spatial domain, 
which was first addressed in optimization as the Barzilai-
Borwein minimization (BB) method [6]. Iterative techniques 
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have a common problem: the error starts increasing after it 
reaches a minimum. The first few iterations restore the low 
frequency components of the signal and, as the number of 
iterations increases, the algorithm attempts to restore the 
high frequency components, which are dominated by noise. 
Solution to such problem can be attained by adding a 
median filter to maintain a low error by preserving the edge 
information while reducing the high frequency error [7].  

Most of the optimal techniques that have been proposed 
in literature over the past few decades to solve such problem 
by iterative optimization procedures are computationally 
demanding and time consuming. The novel approach 
introduced in this paper is to take advantage of particles 
swarm intelligence in order to facilitate the optimization 
process in total variation regularized methods. For our test 
images, we consider the physical meaning of the widely 
used 8-bit images; the pixel value varies from 0 to 255. We 
then reformulate the optimization problem by imposing the 
nonnegative constraints.   

 

II.  DECONVOLUTION USING A GENERAL LINEAR MODEL 

We model the blurring of images as a linear process 
characterized by a blurring matrix H of dimensions NxN, 
with N=mxn and an observed image g which, in vector 
form, are related by the equation:   

gHf =                                          (1) 

Where f is the original image 

   The reason H-1g cannot be used to deblur images is the 
amplification of high-frequency components of the noise in 
the data, caused by the inversion of very small singular 
values of H. Practical methods for image deblurring need to 
avoid this pitfall [1]. Obtaining f from Equation (1) is not a 
straight forward task since, in most cases of interest, the 
matrix H is ill-posed. Mathematically this means that certain 
eigenvalues of this matrix are close to zero, which makes the 
inversion process very unstable. For practical purposes, this 
implies that the inverse or the pseudo-inverse solutions: 
f1=H -1g and f2= ( HT 

Η)-1 
Η

T g amplify the noise and provide 
incorrect results. This means that image signals die out 
faster than noise signals in high frequencies. 
 

III.  SINGULAR VALUE DECOMPOSITION 

    Singular value decomposition (SVD) is one of the most 
successful tools in the theory of inverse problems. It can be 
used to understand the ill-posed inverse problem and for 
describing the effect of the regularization method. It has 
been widely applied in image processing. In numerical 
analysis, the SVD provides a measure of the effective rank 
of a given matrix. In statistics and time series analysis, the 
SVD is particularly a useful tool for finding least-squares 
solutions and approximations.  
    Singular value decomposition has been successfully 
applied to many image restoration problems. Usual 
applications include linear space invariant and linear space 
variant pseudoinverse filtering, image enhancement, 
separation of 2-D filtering operations into 1-D filtering 
operations, generation of small convolution kernels, etc... 
Among all unitary transformations, SVD is optimal for a 
given image in the sense that the energy packed in a given 

number of transformation coefficients is maximized. 
Although applicable in many image restoration applications, 
SVD is severely limited because of a large number of 
computations required for calculating singular values and 
singular vectors of large image matrices. 
The SVD of an mxn matrix A is given by:   

A=U∑VT                                       (2) 

    Where U=( u1, u2,..,un)∈Rmxm  and  V=(v1, v2,.. vn)∈Rnxn 
are two column-orthogonal matrices. Σ is a diagonal matrix 
with entries  σ1 ≥ σ2 ≥ … ≥ σN ≥ 0.  For a blurring matrix, all 
the singular values decay gradually to zero and the condition 
number cond(A) = σ1 / σN  is very large.  We use the SVD 
approach to damp the effects caused by ………... One 
approach to damp the effects caused by division of small 
singular values is to simply discard all SVD components 
that are dominated by noise, typically the ones above a 
certain truncation parameter. The resulting method is, for 
obvious reasons, referred to as the truncated SVD, or TSVD 
method [1]. 
 

IV.  TIKHONOV REGULARIZATION 

    The main objective of regularization is to incorporate 
more information about the desired solution in order to 
stabilize the problem and find a useful and stable solution. 
The most common and well-known form of regularization is 
that of Tikhonov [8]. 
     The Tikhonov regularized minimum norm solution of the 

equation: η+= Hfg  is the vector NF ℜ∈δ  that 

minimizes the expression : 
2

2

22

2
LfgHf λ+−                            (3)  

where λ > 0 is called a regularization parameter    
We denote: 

{ }2

2

22

2
minarg LfgHfF

f
λδ +−=                   (4) 

Regularization can be understood as a balance between two 
requirements: 

1. f should give a small residual Hf-g. 
2. f should be small in L2 norm. 

       
The regularization parameter λ >0 can be used to “tune” the 
balance. Note that in inverse problems there are typically 
infinitely many solutions  f satisfying (4) . 
 

V. TOTAL VARIATION REGULARIZATION  

   Total variation (TV) is often used for image filtering and 
restoration. TV based filtering was introduced by Rudin, 
Osher, and Fatemi [9]. It is an effective filtering method for 
recovering piecewise-constant signals. Many algorithms 
have been proposed to implement total variation filtering. 
The most famous one used in this comparison is by 
Chambolle [10]. The derivation in this algorithm is based on 
the min-max property and the majorization-minimization 
procedure. Rudin, Osher and Fatemi introduced in 1992 the 
following idea: 

Instead of minimizing:  
2

2

2

2
LfgHf λ+−                     (5) 

They minimized:           
1

2

2
LfgHf λ+−                     (6) 
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Recall that:              
22

1

2

2
... NZZZ ++=  

And:                       NZZZ ++= ...11
 

 
    The idea is that (6) should allow occasional larger jumps 
in the reconstruction leading to piecewise smoothness 
instead of overall smoothness. It turns out that (6) is a 
justified objective function, but the minimization is more 
computationally involved. 
 

VI.  PARTICLE SWARM OPTIMIZATION  

    The particle swarm optimization algorithm was first 
described in 1995 by James Kennedy and Russell C. 
Eberhart [11]. The technique has evolved greatly since then. 
Particle swarm optimization is a stochastic, population-
based evolutionary computer algorithm for problem solving. 
In a PSO system, a swarm of individuals (called particles) 
fly through the search space. Each particle represents a 
candidate solution to the optimization problem. The position 
of a particle is influenced by the best position visited by 
itself (i.e. its own experience) and the position of the best 
particle in its neighborhood (i.e., the experience of 
neighboring particles). When the neighborhood of a particle 
is the entire swarm, the best position in the neighborhood is 
referred to as the global best particle, and the resulting 
algorithm is referred to a global best PSO. When smaller 
neighborhoods are used, the algorithm is generally referred 
to a local best PSO. The performance of each particle (i.e. 
how close the particle is from the global optimum) is 
measured using a fitness function that varies depending on 
the optimization problem. 
     Each particle in the swarm is represented by the 
following characteristics: 

 ix
: The current position of the particle; 

iv
: The current velocity of the particle; 

iy
: The personal best position of the particle. 

ŷ  : The neighborhood best position of the particle. 
 

     The personal best position of particle i  is the best 
position (i.e. the one resulting in the best fitness value) 

visited by particle i  so far. Let F  denote the objective 

function. Then the personal best of a particle at time step t  
is updated as: 

( )
( ) ( )( ) ( )( )

( ) ( )( ) ( )( )







++

≥+
=+

tyFtxFiftx

tyFtxFifty

ty

iii

iii

i

p11

1

1

                (7) 
  

For the gbest model, the best particle is determined from 
the entire swarm by selecting the best personal position. If 
the position of the global best particle is denoted by the 

vectorŷ , then: 

{ }ss yyyyyy ,,....,,ˆ 1210 −=∈
                       (8) 

Where:    
( )( ) ( )( ){ }tyFtyFy ...,minˆ 0=

                        (9) 
And:  s  denotes the size of the swarm. 

      The velocity update step is specified for each 

dimensionj :      
{ }dNj ,......1∈

 

Hence, jiv ,  represents the 
thj element of the velocity vector 

of the 
thi particle. Thus the velocity of particle i  is updated 

using the following equation: 
 

( ) 2211,, ∆⋅+∆⋅+⋅= CCtvv jiji ω
             (10) 

Where: 

          
( ) ( )( )txtyr jijij ,,,11 −⋅=∆

                          (11) 

   
( ) ( )( )txtyr jij

n
j ,,22 −⋅=∆

                         (12) 

ω  is the inertia weight, 1C  and 2C  are the acceleration 

constants, and jr ,1 , jr ,2  are random coefficients  distributed 

as:     [ ]1,0,2,1 ∈jj randr                                    (13) 

    The position of particlei , ix
 is then updated using the 

following equation:  

          ( ) ( ) ( )11 ++=+ tvtxtx iii                            (14)  
        This process is repeated until a specified number of 
iterations is exceeded, or velocity updates are close to zero. 
The quality of particles is measured using a fitness function 
which reflects the optimality of a particular solution. The 
following steps summarize the basic PSO algorithm [11,12]: 
 
Algorithm: 
For each particle i =1,...,s do 

Randomly initialize xi 
Randomly initialize vi (or just set vi to zero) 
Set yi = xi 

endfor 
Repeat 
For each particle i = 1,...,s do 

Evaluate the fitness of particle i, f(xi) 
Update yi using equation (7) 

Update ŷ  using equation (9) 
For each dimension j = 1,...,Nd do  
Apply velocity update using equation (10) 
endloop 
Apply position update using equation (14) 

endloop 
Until some convergence criteria is satisfied 

    
     It is important to clarify that a good choice of the initial 
population can make the PSO converges to the global 
minimum. For this reason the work in [13] used the normal 
cloud method to find the best initial population. In this 
paper, for the presented case, the choice of the initial 
population is made by a simple instruction:  

( )randj
k

x ji +−⋅= 1
2

)0(,

π
   

   Where k is the dimension of the objective function. 
 

VII.  SIMULATION RESULTS 

     The benchmark image used for comparison is created 
using the checkerboard MATLAB function. The original 
image is hardly blurred using the motion blur function, 
Fig.1: 
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a) b)

 
Fig.1: The 2-D Motion Blur Function, a)plotting the PSF in 

two dimensions h(i,j), b)showing the blur image   
     
    In our application we consider a common additive noise 
model that comes essentially from the following three 
sources: 

• Photoelectric noise of background photons, from 
gamma sources. This kind of noise is typically 
modelled by a Poisson process. 

• Noise from electronics used to capture images, 
modelled usually by a white Gaussian noise, with zero 
mean and a fixed standard deviation proportional to 
the amplitude of the noise. 

• Film grain noise, from the randomness of silver halid 
grains in the film used for recording. 

• Quantization noise which occurs during image 
digitization.  

    
      In Fig.2, we present the restoration of a checkerboard 
image that has been blurred and with added noise using a 
motion function, Fig.2.b. Three methods of restoration: 
inversion filter, zero padding in frequency domain and 
truncated singular value decomposition (Fig.2.c, d and e).  
In the TSVD, the condition number cond(A) = σ1 / σN  was 
found to be 7.337638 x 104

 .  

                   a)      b)  
 

   c)        d)  
 

e)  
Fig.2:a)Original Image, b)Blurred and Noisy Image, 
c)Restored with Inverse Filter, d)With FFT and zero 

padding, e)With Truncated Singular Value Decomposition 
(TSVD) 

 

A.  Total Variation Minimization with Regularization 

     An implementation of the Total Variation based filtering 
introduced by Rudin, Osher, and Fatemi [9], was done using 
the conjugate gradient method and the Newton Algorithm 
for minimizing Total Variations with Laplacian 
regularization. Fig.3 shows restorations both with Tikhonov 
regularization (Fig.3a) and with R.O.F (Fig.3b) and also 
shows TV energy evolution with iterations (Fig.3c):  
 

a)       b)          
 

c)   
Fig.3: a)Restoration with Tikhonov Regularization, b)With 
(Rudin, Osher and Fatemi) method, c)TV Energy evolution 

with iterations 
 

B.  Minimization using Chambole Algorithm 

     Antonin Chambolle describes in [10] an iterative 
algorithm for the resolution of the TV regularized 
restoration problem (the so called "Rudin-Osher-Fatemi" 
method). This algorithm exploits a dual formulation of the 
minimization problem, and uses a fixed point iteration to 
find a solution of the dual formulation. Chambolle proves 
that these iterations are contractant, and thus converge to a 
solution with linear speed. Chambolle also exposes some 
important extensions of this algorithm such as the 
regularization parameter lambda that can be updated during 
the iterations in order to solve the L2 constrained problem 
(instead of Lagrangian regularization). This is very useful if 
one knows the level of noise that is perturbs the 
measurements. Fig.4 illustrates a restoration result of the 
previous blurred/noisy image (Fig.4a) with estimation of 
regularization parameter and TV energy evolution with 
iterations (Fig.4b).   
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a)      
 

b)  
 

Fig.4: a)Image Restored using Chambolle Algorithm,  
b)Regularization parameter and TV energy evolution   

 

C.  TV minimization Using PSO 

   In this section, we introduce a new approach to solve a 
constrained optimization ill-posed problem in order to 
improve a blurred or noisy neutron radiography image. We 
convolve many types of degradation functions with images 
of different sizes, and then attempt to restore the original 
image.  Our starting image is a grey level image contained 
in the mxn matrix.  Each element in the matrix represents a 
pixel's grey intensity between black and white (0 and 255). 

Assume we know how fast the blurring function operator 
is known. The simplest approach is to solve the problem in a 
sense of least square error between the estimated and the 
true image under the requirement of preserving the image 
smoothness:   

         )min( 2gXh −∗                            (16) 

 
In practice the results obtained with this simple approach 

tend to be noisy, because this term expresses only the 
fidelity to the available data g. To compensate for this, a 
regularization term is added to improve smoothness of the 
estimate:  

         2004.0 XL∗∗                               (17) 

 
Where || || is the spectral norm and L is the discrete 

Laplacian, which relates each pixel to those surrounding it. 
L = del2(X) is a discrete approximation of: 
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L                  (18) 

 
Where X is the estimated matrix. The matrix L has the 

same size as X with each element equal to the difference 
between an element of X and the average of its four 
neighbors. 

Since we know that we are looking for a gray intensity, 
we also impose the constraint that the elements of X must 
fall between 0 and 255. 

To obtain a deblurred image, we want to solve for X:  
 

min(|| h*X - g ||2 + 0.004*|| L*X ||2 )              (19) 
 
We can implement our objective function using this 

expression; the number of variables in this objective 
function to be minimized will be mxn which is the size of 
the matrix representing the original image.   
    We carried out computer simulations to validate the 
applicability of this algorithm in image restoration. We run 
the algorithm using Intel Pentium4 PC with 1.80GHZ CPU 
and memory size of 1Go. The average processing time is 
dependent upon computation machine, image size and 
choice of PSO algorithm parameters (varies from few 
seconds to few minutes). Some simple images of sizes: 8x8, 
16x16, 24x24 and 32x32 created by the MATLAB function 
checkerboard are used. Different PSO parameters are 
choosen: C1 = 1.5; C2 = 4 - C1; minInertia = 0.3; 
maxInertia = 0.95; Swarm Size = 10,20,50,120; Maximum 
Iterations = 20,50,100,200. We took the value 0.004 as a 
regularization parameter. In Fig.5(a, b, c and d), we increase 
gradually the swarm size and iterations to reach improved 
restoration results. The cost function minimization is traced 
in Fig.6a without regularization and in Fig.6b with 
regularization.  
 

 

a)      b)    
 

c)     d)  
 

Fig.5: Restoration of Blurred and Noisy Images with 
Regularization Constraint and four different swarm sizes 
and iterations: a)10,20,b)20,50,c)50,100, and d)120,200 
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a)   

b)  
Fig.6: Evolution of Cost function: a)Without regularization,     

b)With regularization,  
 

         To evaluate the restoration performance of our 
approach quantitatively, we record the evolution of the root 
mean squared error (RMSE) and the peak signal to noise 
ration (PSNR) in Table1 and Fig.7.a, b: 
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Table1: Evolution of the (RMSE) and the peak signal to noise ratio 

(PSNR) with swarm size and number of iterations 
 RMSE PSNR 

Blured/Noisy 0.921 48.81 
(10,20) 0.162 64.21 
(20,50) 0.041 75.49 
(50,100) 0.014 87.06 
(120,200) 0.001 102.17 

 
Table2: Values of the RMSE) and the PSNR for five 

different known methods 
 RMSE PSNR 

Blured/Noisy 0.921 48.81 
FFT 0.1680 64.01 

TSVD 0.0795 70.47 
Tikhonov 0.0682 71.47 
TV (CG) 0.2124 61.53 

TV (Chambolle) 0.1401 65.26 
 

 

a)  

b)  
Fig.7: Evolution of: a) RMSE, b) PSNR  

With Swarm Size & Number of Iterations 
 

In our experiment, the proposed particle swarm method 
always converges to acceptable results, from a quality point 
of view, with the computation time proportional to the 
matrix (image) size. Different types of blurring and noises 
are tested with the optimal regularization parameter λ 
chosen based on many trials and PSNR progress. In Table2, 
we applied five methods to restore the test image; numerical 
results show that these methods are promising for large-
scale image restoration problems. We remark also that using 
TSVD as a direct method; the computed restorations are 
comparable to iterative methods but are computationally less 
expensive. Though in particle swarm intelligence method, 
we can obtain a closer approximation of the true image with 
very good RMSE and PSNR (0.001 and 102.17) compared 
to the other five methods; the number of iterations is a little 
larger and requires long computation time which merits 
further research, and regularization deserves a rigorous 
study to attain better results.   

D. Application to Neutron Images: 

The digital neutron image is acquired by a certain 
radiological procedure such as neutron radiography system, 
Fig.8, installed around a nuclear reactor. It is a two-
dimensional mxn array of non-negative integers (gray 
levels). For neutron radiography, the gray level value 
represents the relative linear neutron attenuation coefficient 
of the object [14]. In the following, we present some 
experiment results that we try to restore using the new 
approach based on the PSO algorithm, Fig.9. the blurring is 
due to the neutron beam distribution from channel and we 
consider a common additive noise that comes essentially 
from gamma sources, electronics used to capture images, 
and from grains in the film used for recording. There are 
many varying parameters (swarm size and number of 
iterations) on which the quality of restorations depends. 
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Although it is very difficult and almost impossible to 
determine the best set of these parameters, it is very 
important that a reasonably effective set of these parameters 
is chosen, so that the deblurred image quality is accepted 
enough for use. 

 
 

 
 
 
 
 
 
 
 

 
Fig.8: Neutron Radiography System [14] 

 

a)          

b)            

c)          
 

Fig.9: Neutron Radiography Images Restoration 
(Regularized) with swarm size and iterations (120,200):  

a)Original,   b)Blurred/Noisy,   c)Restored       

VIII.  CONCLUSION 

    In this work, we investigated the performance of an 
enhancement method for neutron radiography images 
blurred and with noise added during acquisition. The new 
approach introduced in this paper is the PSO algorithm with 
normal cloud mutation to solve the ill-posed minimization 
problem. The Laplacian constraint has been used for 
regularization to smooth the deblurred images in the 
presence of unknown type of noise. Computer simulations 
and visual inspection of produced images illustrate that the 
PSO algorithm yields optimistic results and good efficiency 
in restoration of images degraded by noise with comparison 
to other classical techniques. To achieve better results in 
visual quality, further efforts are requested.  
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