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Abstract—Compensating CSP (cCSP) is a language
defined to model long running business transactions
within the framework of standard CSP process alge-
bra. In earlier work, we have defined both traces
and operational semantics of the language. We have
shown the consistency between the two semantic
models by defining a relationship between them. Syn-
chronization was missing from the earlier semantic
definitions which is an important feature for any pro-
cess algebra. In this paper, we address this issue by
extending the syntax and semantics to support syn-
chronization and define a relationship between the se-
mantic models. Moreover, we improve the scalability
of our proof technique by mechanically verifying the
semantic relationship using theorem prover PVS. We
show how to embed process algebra terms and seman-
tics into PVS and to use these embeddings to prove
the semantic relationship.

Keywords: Compensating CSP, synchronization, se-

mantics, theorem proving, PVS

1 Introduction

Business transactions involve multiple partners coordi-
nating and interacting with each other. These transac-
tions have hierarchies of activities that need to be orches-
trated. Business transactions also need to deal with faults
that can arise at any stage of the transactions. Compen-
sation mechanisms [1] are very important for handling
faults for transactions that require a long period of time
(also called Long Running Transaction, LRT). Process
calculi are models or languages for concurrent and dis-
tributed interactive systems. Based on the framework
of Hoare’s CSP process algebra [2], Butler et al [3] in-
troduced compensating CSP, a language to model long
running transactions. The language introduces a method
to declare a transaction as a process and it has constructs
for orchestration of compensations.

A formal semantics offers a complete, rigorous definition
of a language and provides a foundation for mathematical
proofs about programs. We have defined both traces [3]
and operational semantics [4] of the language. Having
two semantic models of a language, it is natural to verify
the consistency between them and check how they are
related. We have defined a relationship between the se-
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mantic models in [5] by following a systematic approach.

Synchronization is an important and well understood fea-
ture for concurrent and distributed processes. However,
synchronization was not included in our work. Based on
the definitions shown in [6], in this paper we extend the
cCSP semantic models to define the semantics for syn-
chronous processes, where processes synchronize over a
set of synchronizing events, and non-synchronizing pro-
cesses interleave with each other. We also show that the
same relationship that was defined for asynchronous pro-
cesses also hold for synchronous processes. We take our
work one step further by mechanical verifying the rela-
tionship by using the theorem prover PVS [7]. Mechan-
ical verification overcomes the problem in hand proofs,
also identifies potential flaws in the semantic definitions.

The rest of the paper is organized as follows. A brief
overview of cCSP language is given in § 2. We then
describe how the language terms are extended to define
synchronization of processes in § 3. We also give an ex-
ample of a web service specified by using cCSP and using
the extended feature of synchronization. In the follow-
ing two sections, we define how the trace and the oper-
ational semantics are extended to synchronization. § 6
defines a relationship between the semantic models and
sketches the proof steps. We describe the PVS embedding
of cCSP syntax and semantics in § 7. These embeddings
are then used to establish the relationship between the
synchronous semantic models. We outline some compli-
mentary work in the following section. Finally, we draw
our conclusions in § 9.

2 Compensating CSP

Processes in cCSP are modelled in terms of the atomic
events they can engage in. The language provides oper-
ators that support sequencing, choice, parallel composi-
tion of processes. In order to support failed transaction,
compensation operators are introduced. The processes
are categorized into standard, and compensable processes.
Compensation is part of a compensable process that is
used to compensate a failed transaction. We use nota-
tions, such as, P ,Q , .. to identify standard processes, and
PP ,QQ , .. to identify compensable processes. The asyn-
chronous subset of cCSP syntax is summarized in Fig. 1.

The basic unit of the standard processes is an atomic
event (A). The other operators are the sequential
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Standard Processes: Compensable Processes:

P ,Q ::= A (atomic event) PP ,QQ ::= P ÷Q (compensation pair)
| P ;Q (sequential composition) | PP ;QQ
| P 2 Q (choice) | PP 2 QQ
| P ‖ Q (parallel composition) | PP ‖ QQ
| SKIP (normal termination) | SKIPP
| THROW (throw an interrupt) | THROWW
| YIELD (yield to an interrupt) | YIELDD
| P � Q (interrupt handler)
| [PP ] (transaction block)

Figure 1: cCSP syntax

(P ; Q), and the parallel composition (P ‖ Q), the choice
operator (P 2 Q), the interrupt handler (P � Q),
the empty process SKIP , raising an interrupt THROW ,
and yielding to an interrupt YIELD . A process that
is ready to terminate is also willing to yield to an in-
terrupt. In a parallel composition, throwing an inter-
rupt by one process synchronizes with yielding in an-
other process. The basic way of constructing a compens-
able process is through a compensation pair (P ÷ Q),
which is constructed from two standard processes, where
P is called the forward behaviour that executes dur-
ing normal execution, and Q is the associated compen-
sation that is designed to compensate the effect of P
when needed. The sequential composition of compens-
able processes is defined in such a way that the compen-
sations of the completed tasks will be accumulated in re-
verse to the order of their original composition, whereas
compensations from the compensable parallel processes
will be placed in parallel. By enclosing a compensable
process PP inside a transaction block [PP ], we get a
complete transaction and the transaction block itself is
a standard process. Successful completion of PP rep-
resents successful completion of the block. But, when
the forward behaviour of PP throws an interrupt, the
compensations are executed inside the block, and the
interrupt is not observable from outside of the block.
SKIPP ,THROWW , and YIELDD are the compensable
counterpart of the corresponding standard processes and
they are defined by pairing an empty compensation with
them, e.g., SKIPP = SKIP ÷ SKIP .

3 Extending cCSP with Synchronization

We define a parallel operator synchronizing over observ-
able events1 extending our earlier definition, where pro-
cesses interleave over observable events and synchronize
only over terminal events2. We assume a set of events
X over which processes will synchronize. The process
(P ‖X Q) represents the parallel composition of processes
P and Q , synchronizing over the set of events X . Op-
erationally, P and Q interact by synchronizing over the
events from X , while events not in X can occur inde-
pendently. An event where both processes synchronize

1We use normal and observable interchangeably; normal event:
a ∈ Σ

2Cause termination of a process term, a terminal event ω ∈ Ω =
{X, !, ? }

becomes a single event in (P ‖X Q), by a synchroniz-
ing operator which will be defined later. In the following
example a business transaction is modelled by cCSP con-
structs added with synchronization:

Example: (Car Broker Web Services) We model
a car broker web service Broker which provides online
support to customers to negotiate car purchases and ar-
ranges loans for these. The architectural view of the web
service is given in Fig. 2.

Order RFQ

Quote

OrderQuote

Ack

ReqLoan

Reply

Buyer Broker Supplier

LoanStar

Figure 2: Architectural view of Car Broker web Services

In cCSP, a process is described in terms of its interac-
tions with its environment or with other processes by
using atomic actions. The communications are defined
via channels as in standard CSP. A communication is an
event described by the pair c.v , where c is the channel
name and v is the value of the message. Input/output
are defined using same construct as in CSP. Concurrent
processes communicate via channels. We also use I/O
parameters for compensation pair:

A?x ÷ B .x ; P(x ) = �x∈S A.x ÷ B .x ; P(x )

The first step of the transaction is a compensation pair,
where the primary action is to receive an order from the
buyer and the compensation is to cancel the order. M is
used to represent the finite set of car models ranged over
by m.

Broker =̂
(Order?m : M ÷ CancelOrder .m) ;ProcessOrder(m)

ProcessOrder(m) =̂ RFQ .m ;Quote?q : FQ ;

�c∈q •

(
(Sendorder(c) ‖ Loan(a)) ‖ SendQuote(c)

)

SendOrder(c) =̂ (Order .c ÷ SKIP)

Loan(a) =̂ (ReqLoan.a : Amt ÷ CancelLoan.a) ;
(Reply?Accept ; SKIPP
2 Reply?Reject ;THROWW )

SendQuote(c) =̂ Quote.c ; (Ack?Accept ; SKIPP
2 Ack?Reject ;THROWW )

The Broker requests the Supplier for available quotes
(RFQ) and then selects a quote from the received quotes
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(Quote). The Broker arranges a loan for the quoted car
by requesting a loan from LoanStar. The loan amount
(Amt) of loan to be requested is decided from the selected
quote and passed to the process Loan. It requests loan
from LoanStar which is either accepted or rejected. If
the loan cannot be provided then an interrupt is thrown
to cancel the actions that have already taken place. A
compensation is added to ReqLoan (CancelLoan) so that
in the case of failure in a later stage the compensation
can be invoked to cancel the event. the quote is also sent
to the buyer (SendQuote). An interrupt can be raised
either by the Buyer by rejecting the quote or by the
LoanStar by rejecting the requested loan. In either case,
the Supplier will terminate yielding an interrupt thrown
by the Broker and compensations from both Broker

and Supplier will run in parallel.

The behaviour of the car broker web service is defined by
combining the behaviour of Broker, Buyer, Supplier,
and LoanStar, where the processes synchronize over the
sets A,B and C .

System =̂ Buyer ‖A
[
Broker ‖B Supplier

]

‖C LoanStar

A = {Order ,Quote,Ack}, B = {RFQ ,Quote,Order}
C = {ReqLoan,Reply}

The example illustrates the synchronization of processes
within a transaction block, [Broker ‖B Supplier ] and
between transaction blocks (Buyer and LoanStar are
transaction blocks). It also outlines how compensations
are handled in each case.

4 Extended Trace Semantics

A trace records the behaviour of a process up to some
moment in time. The traces of composite processes are
defined in terms of their constituent processes. Processes
are assumed to have an alphabet of actions Σ which does
not include the terminal events Ω = {X, !, ? }. Termi-
nal symbols indicate the way how a process terminates.
Standard processes are defined as non-empty set of traces
of the form s〈ω〉 where s ∈ Σ∗ and ω ∈ Ω. For traces
s and t , we write s .t as their concatenation. Operators
are first defined on traces and then lifted to set of traces
to define processes. The traces of a standard process P
is denoted as T (P). Compensable processes consist of
a set of pair of traces of the form (p〈ω〉, p′〈ω′〉), where
p〈ω〉 represents the forward behaviour and p′〈ω′〉 repre-
sents the compensation. T (PP) denotes the trace of a
compensable process PP .

Parallel processes synchronize over synchronizing events
and interleave over other events. When processes fail
to synchronize, the execution blocks and we get a par-
tial behaviour from the composition. To denote partial
behaviour, we assume a special terminal symbol ⊥ ∈ Ω

which indicates partial trace. Partial traces are analogous
to trace prefixes in standard CSP. With the definition of
partial behaviour, traces from standard processes satisfy
the following properties:

– 〈⊥〉 ∈ T (P)

– p〈x 〉q ∈ T (P) ⇒ p〈⊥〉 ∈ T (P) (x ∈ Σ)

We assume ⊥ acts as a cut for trace concatenation:
p〈⊥〉q = p〈⊥〉. With the introduction of the new ter-
minal event (⊥), we extend the original trace definitions.
The extended trace definitions for sequential operators
are defined in Fig. 3.

We define a synchronization operator on events writ-
ing A&A′ for the synchronization of events A and A′.
Consider two processes synchronizing over events a and
a′, the synchronization is defined as: a&a = a, and
a&a′ = ⊥ when a 6= a′ and do not synchronize with
each other.

We define a synchronization operator over terminal
events from the set Ω. Table 1 enumerates the evalua-
tion of this operator. We also define the synchronization
operator to be commutative. From Table 1 it can be seen
that the operator is well-defined for all the operands in
the set Ω. Case analysis shows that the synchronization
operator is associative.

Table 1: Synchronization of terminal events
ω ! ! ! ? ? X ⊥
ω′ ! ? X ? X X ω

ω&ω′ ! ! ! ? ? X ⊥

Assuming a, a′ ∈ X and b, b′ 6∈ X , the parallel compo-
sition of traces from standard processes are defined as
follows:

〈ω〉 ‖X 〈ω′〉 = { 〈ω&ω′〉 }
〈a〉p ‖X 〈ω〉 = { 〈⊥〉 }
〈a〉p ‖X 〈a′〉q = { (a&a′)r | r ∈ (p ‖X q) }

〈b〉p ‖X 〈ω〉 = { 〈b〉r | r ∈ (p ‖X 〈ω〉) }
〈b〉p ‖X 〈a〉q = { 〈b〉r | r ∈ (p ‖X 〈a〉q) }
〈b〉p ‖X 〈b′〉q = { 〈b〉r | r ∈ (p ‖X 〈b′〉q) }

∪ { 〈b′〉r | r ∈ (〈b〉p ‖X q) }

The parallel and synchronization operators are symmet-
ric. For brevity we omit the symmetric cases. The paral-
lel composition of standard processes is defined as follows:

T (P ‖X Q) = { r | r ∈ (p ‖X q)

∧ p ∈ T (P) ∧ q ∈ T (Q) }

With the definition of partial behaviour (⊥), a pair of
traces (p〈ω〉, p′〈ω′〉) of a compensable process satisfies
the following properties: For x ∈ Σ,
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Atomic Action:

For A ∈ Σ T (A) = {〈⊥〉, 〈A,X〉, 〈A,⊥〉}

Basic Processes:

T (SKIP) = {〈X〉, 〈⊥〉}, T (THROW ) = {〈!〉, 〈⊥〉},

T (YIELD) = {〈?〉, 〈X〉, 〈⊥〉}

Choice: T (P 2Q) = T (P) ∪ T (Q)

Sequential Composition:

p〈X〉 ; q = p.q, p〈ω〉 ; q = p〈ω〉, where ω 6= X

T (P ; Q) = {p ; q | p ∈ T (P) ∧ q ∈ T (Q)}

Interrupt Handler:

p〈!〉 � q = p.q, p〈ω〉 � q = p〈ω〉 where ω 6= !

T (P � Q) = {p � q | p ∈ (P) ∧ q ∈ T (Q)}

(a) Standard

Choice: T (PP 2PQ) = T (PP) ∪ T (QQ)

Sequential Composition:

(p〈X〉, p′) ; (q, q ′) = (pq, q ′ ; p′)

(p〈ω〉, p′) ; (q, q ′) = (p〈ω〉, p′) where ω 6= X

T (PP ; QQ) = {pp ; qq | pp ∈ T (PP) ∧ qq ∈ T (QQ)}

Compensation Pair:

p〈X〉 ÷ q = (p〈X〉, q) and

p〈ω〉 ÷ q = (p〈ω〉, 〈X〉), (p〈ω〉, 〈⊥〉) where ω 6= X

T (P ÷Q) = {(〈?〉, 〈X〉)} ∪ {p ÷ q | p ∈ T (P) ∧ q ∈ T (Q)}

Transaction Block:

[p〈!〉, p′] = p.p′, [p〈X〉, p′] = p〈X〉, [p〈⊥〉, p′] = p〈⊥〉

T ([PP ]) = {[p, p′] | (p, p′) ∈ T (PP)}

(b) Compensable

Figure 3: Trace semantics of sequential processes

– (〈⊥〉, p′) ∈ T (PP)

– (p〈x 〉q, p′) ∈ T (PP) ⇒ (p〈⊥〉, ) ∈ T (PP)

– (p, p′〈x 〉q ′) ∈ T (PP) ⇒ (p, p′〈⊥〉) ∈ T (PP)

The trace semantics for compensable parallel processes is
defined as follows:
(p, p′) ‖X (q, q ′) =
{(r , r ′) | r ∈ (p ‖X q) ∧ r ′ ∈ (p′ ‖X q ′) ∧ last(r) 6= ⊥}

∪ {(r , 〈⊥〉) | r ∈ (p ‖x q) ∧ last(r) = ⊥}

T (PP ‖X QQ) = { rr | rr ∈ (pp ‖X qq)

∧ pp ∈ T (PP) ∧ qq ∈ T (QQ) }

last(t) returns the terminal symbol from a trace t .

5 Extended Operational Semantics

The operational semantics are defined by using labelled
transition systems [8]. Inference rules are used to de-
fine the transitions that a process may perform, which
for composite processes are given in terms of the pos-
sible transition of the constituents (See [4] for detail).
Two types of transition rules are defined: normal and
terminal. Normal transition is caused by a normal event
resulting in a transition of a process term from one state
to another. Terminal transition is caused by a terminal
event where standard process terms terminate to a null
process and the forward behaviour of compensable pro-
cess terms terminate leaving the attached compensation
for future reference. Note that the language terms are ex-
tended to define the null (0) process that cannot perform
any action. For standard and compensable process terms
P and PP (where P ,PP 6= 0), the normal and terminal
transitions are defined as followed:

P
a

−→ P ′, PP
a

−→ PP ′ (a ∈ Σ)

P
ω

−→ 0, PP
ω

−→ P (ω ∈ {X, !, ?})

(P is the compensation of PP)

We extend the transition rules by defining the transitions
by a ⊥ where both standard and compensable processes
terminate to a null process. For any process terms P and
PP (where P ,PP 6= 0), the transitions by a ⊥ are defined
as follows:

P
⊥
−→ 0, PP

⊥
−→ 0 (1)

The transition rules defined in equation (1) cover the
transitions for both standard and compensable process
terms by the ⊥. Hence we do not need to define addi-
tional transition rules by a ⊥. The transition rules for
sequential standard and compensable processes are de-
fined in Fig. 4(a) and Fig. 4(b) respectively.

As ⊥ is introduced during process synchronization and ⊥
is a useful semantic device that helps us deriving semantic
correspondence, we define the extended transition rules
for parallel processes and define those transitions that in-
troduce a ⊥. For a compensable process the transition by
a ⊥ lead to a null process and according to our definition
no compensations are stored (being partial behaviour).
The transition rules for standard and compensable par-
allel processes are shown in Fig. 5(a) and Fig. 5(b) re-
spectively.

6 Semantic Relationship

Over the years, several techniques have been used to es-
tablish relationship between different semantic models.
Widely used techniques are deriving one semantics from
another (e.g. [9, 10]), extracting the behaviour from one
semantic model and showing its relation with another
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Atomic Action: A
A

−→ SKIP (A ∈ Σ)

Basic Processes:

SKIP
X
−→ 0, THROW

!
−→ 0, YILED

?
−→ 0, YIELD

X
−→ 0

Sequential Composition:

P
a

−→ P ′

(P ; Q)
a

−→ (P ′ ; Q)

P
X
−→ 0 ∧Q

α

−→ Q ′

(P ; Q)
α

−→ Q ′

P
ω

−→ 0

(P ; Q)
ω

−→ 0
(ω 6= X)

Choice:

P
α

−→ P ′

P 2Q
α

−→ P ′

Q
α

−→ Q ′

P 2Q
α

−→ Q ′
(α ∈ Σ ∪Ω)

Interrupt handler:

P
a

−→ P ′

P � Q
a

−→ P ′ � Q

P
!

−→ 0 ∧ Q
α

−→ Q ′

P � Q
α

−→ Q ′

P
ω

−→ 0

P � Q
ω

−→ 0
(ω 6= !)

(a) Standard

Choice:

PP
a

−→ PP ′

PP 2QQ
a

−→ PP ′

QQ
a

−→ QQ ′

PP 2QQ
a

−→ QQ ′

PP
ω

−→ P

PP 2QQ
ω

−→ P

QQ
ω

−→ Q

PP 2QQ
ω

−→ Q

Sequential Composition:

PP
a

−→ PP ′

PP ; QQ
a

−→ PP ′ ; QQ

PP
X
−→ P ∧QQ

ω

−→ Q

PP ; QQ
ω

−→ Q ; P

PP
ω

−→ P

PP ; QQ
ω

−→ P
(ω 6= X)

PP
X
−→ P ∧QQ

a
−→ QQ ′

PP ; QQ
a

−→ 〈QQ ′,P〉

QQ
a

−→ QQ ′

〈QQ ,P〉
a

−→ 〈QQ ′,P〉

QQ
ω

−→ Q

〈QQ ,P〉
ω

−→ Q ; P

Compensation Pair:

P
a

−→ P ′

P ÷Q
a

−→ P ′ ÷Q

P
X
−→ 0

P ÷Q
X
−→ Q

P
ω

−→ 0

P ÷Q
ω

−→ SKIP
(ω 6= X)

Transaction Block:

PP
a

−→ PP ′

[PP ]
a

−→ [PP ′]

PP
X
−→ P

[PP ]
X
−→ 0

PP
!

−→ P ∧ P
α

−→ P ′

[PP ]
α

−→ P ′
(α ∈ Σ ∪Ω)

(b) Compensable

Figure 4: Operational Semantics for sequential processes

P
ω

−→ 0 ∧ Q
ω ′

−→ 0

P ‖X Q
ω&ω ′

−−−→ 0

p
a

−→ P ′ ∧ Q
a ′

−→Q ′

P ‖X Q
a&a ′

−−−→ P ′ ‖X Q ′
(a,a ′ ∈ X )

P
a

−→ P ′ ∧ Q
ω

−→ 0

P ‖X Q
⊥

−→ 0

P
ω

−→ 0 ∧ Q
a

−→Q ′

P ‖X Q
⊥

−→ 0
(a ∈ X )

P
b

−→ P ′

P ‖X Q
b

−→ P ′ ‖X Q

Q
b

−→Q ′

P ‖X Q
b

−→ P ‖X Q ′
(b 6∈X )

(a) Standard

PP
b

−→ PP ′

PP ‖X QQ
b

−→ PP ′ ‖X QQ

PP
a

−→ PP ′ ∧ QQ
a ′

−→QQ ′

PP ‖X QQ
a&a ′

−−−→ PP ′ ‖X QQ ′
(a &a ′ 6=⊥)

PP
ω

−→ P ∧ QQ
ω ′

−→Q

PP ‖X QQ
ω &ω ′

−−−−→ P ‖X Q
(ω &ω ′ 6=⊥)

PP
ω

−→ P ∧ QQ
ω ′

−→Q

PP ‖X QQ
ω &ω ′

−−−−→ 0
(ω &ω ′ =⊥)

PP
a

−→ PP ′ ∧ QQ
ω

−→Q

PP ‖X QQ
⊥

−→ 0

PP
a

−→ PP ′ ∧ QQ
a ′

−→QQ ′

PP ‖X QQ
a&a ′

−−−→ 0
(a &a ′ =⊥)

(b) Compensable

Figure 5: Operational Semantics for synchronous processes

(e.g. [11]) etc. Roscoe [12] outlines how to define the se-
mantic relationship for CSP. In our earlier work [5, 13], we
have adopted a systematic approach showing a relation-
ship between the semantic models. Traces are extracted
from the transition rules of the operational semantics and
show that the extracted traces correspond to the original
traces for each term of the language and finally, prove the
correspondence by structural induction over the process
terms. The steps are depicted in Fig. 6.

Figure 6: Steps for semantic correspondence

In this paper, we extend our earlier approach to define
and prove the relationship between the synchronous se-
mantic models. Due to the introduction of partial be-
haviour, proving the correspondence for synchronous se-
mantic modes becomes critical. We briefly describe the
steps shown in Fig. 6 for asynchronous processes and ex-
tend those steps for synchronous processes.

The operational semantics leads to lifted transition re-
lations labelled by sequences of events. This is defined

recursively. For a standard process P :

P
〈ω〉
−→ Q = P

ω

−→ Q

P
〈a〉t
−→ Q = ∃P ′ · P

a
−→ P ′ ∧ P ′ t

−→ Q

For a standard process P , the derived trace DT (P) is
defined as follows:

Definition 1. For a trace t , t ∈ DT (P) = P
t

−→ 0

For compensable processes, it is required to extract traces
from both forward and compensation behaviour. First,
we define the lifted forward behaviour and then add the
behaviour of compensation by reusing the above defini-
tion. For a compensable process PP , we get the following
definition:

Definition 2. For traces t and t ′,

(t , t ′) ∈ DT (PP) = PP
(t,t′)
−→ 0

= ∃P ′ · PP
t

−→ P ′ ∧ P
t

−→ 0

Finally, the semantic relationship is defined as follows:

Theorem 1. For a standard process term P (P 6= 0),

DT (P) = T (P)

For a compensable process terms PP, where PP 6= 0

DT (PP) = T (PP)

Engineering Letters, 18:3, EL_18_3_04

(Advance online publication: 19 August 2010)

 
______________________________________________________________________________________ 



The theorem is proved by showing that

t ∈ DT (P) = t ∈ T (P)

(t , t ′) ∈ DT (PP) = (t , t ′) ∈ T (PP)

We apply induction over process terms and define sup-
porting lemmas for the structural cases. Traces are ex-
tracted for each term of the language and show their cor-
respondence with the original trace semantics. For stan-
dard processes, P and Q , for all the operators, we show
that,

t ∈ DT (P ⊗Q) = t ∈ T (P ⊗Q) (2)

For each such operator ⊗, the proof is performed by
induction over traces assuming DT (P) = T (P), and
DT (Q) = T (Q). For compensable processes, PP and
QQ , we show,

(t , t ′) ∈ DT (PP ⊗QQ) = (t , t ′) ∈ T (PP ⊗QQ) (3)

Consider the sequential composition of processes P and
Q . By using (2), the semantic relationship is shown by,

t ∈ DT (P ; Q) = t ∈ T (P ; Q)

From Def. 1, we get the following equation,

t ∈ DT (P ; Q) = (P ; Q)
t

−→ 0

We also expand the definition of trace semantics as fol-
lows:

t ∈ T (P ;Q)

= ∃ p, q · t = (p ; q) ∧ p ∈ T (P) ∧ q ∈ T (Q)

= ∃ p, q · t = (p ; q) ∧ p ∈ DT (P) ∧ q ∈ DT (Q)

= ∃ p, q · t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Finally, from the above definitions of traces, the following
lemma is formulated for the sequential composition of
standard processes:

Lemma 1.

(P ; Q)
t

−→ 0 = ∃ p, q · t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

The lemma is proved by applying induction over the trace
t , where t = 〈ω〉 is the base case, and t = 〈a〉t is the
inductive case. Similarly, the supporting lemmas for all
the other terms of the language are defined and proved.

For synchronous processes, we follow the same approach
added with the newly defined ⊥ event. With the in-
troduction of partial behaviour, the definition of derived
traces remains the same except for the compensable pro-
cesses. For a pair of traces (t and t ′), the derived traces of
synchrnous compensable processes is defined as follows:

PP
(t,t′)
−→ 0 =

{
∃R · PP

t
−→ R ∧ R

t′

−→ 0 last(t) 6= ⊥

PP
t

−→ 0 ∧ t ′ = 〈⊥〉 last(t) = ⊥

Considering Theorem 1, for synchronous processes we
prove the following lemma:

Lemma 2. For standard process terms P and Q,

DT (P ‖X Q) = T (P ‖X Q)

For compensable process terms PP and QQ,

DT (PP ‖X QQ) = T (PP ‖X QQ)

By following the approach shown earlier we formulate the
following lemma for standard processes:

Lemma 3. (P ‖X Q)
t

−→ 0 = ∃ p, q · t ∈ (p ‖X q)

∧ P
p

−→ 0 ∧ Q
q

−→ 0

Based on the scenario when synchronizing processes fail
to synchronize and return partial behaviour, we state two
separate lemmas. First, we assume that there is no failure
during the synchronization of processes:

Lemma 4. (PP ‖X QQ)
t

−→ R =

∃ p, q,P ,Q · t ∈ (p ‖X q) ∧ last(t) 6= ⊥

∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖X Q)

The following lemma is defined for the cases when the
synchronizing processes fail to synchronize:

Lemma 5. (PP ‖X QQ)
t

−→ 0 =

∃ p, q · t ∈ (p ‖X q) ∧ last(t) = ⊥

∧ p ∈ T (PP) ∧ q ∈ T (QQ)

In earlier work [14], we have shown how to mechanically
proof the relationship between the asynchronous seman-
tic models by embedding the cCSP syntax and semantic
models into the theorem prover PVS, where the mechani-
cal proofs have followed the similar proof steps as in hand
proofs shown in [5]. After extending the semantic models
to synchronization, instead of proving the relationship by
hand, we directly prove them by using PVS. In the fol-
lowing section, we describe how we define and prove the
semantic relationship for synchronous models by extend-
ing the asynchronous embeddings in PVS.

7 Mechanizing Relationship

An embedding is a semantic encoding of one specifica-
tion language into another, especially, to reuse the exist-
ing tools of the target language. Mechanization steps of
synchronous processes are outlined in this paper. Detail
mechanization steps are described in [13]. PVS mecha-
nization steps are sketched in Fig. 7.
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Figure 7: PVS mechanization steps

7.1 cCSP Syntax

First, we define the cCSP syntax. Separate notation is
used to define the standard and compensable processes.
As PVS supports overloading, same notations can be
used for the operational and the trace semantics. Fig. 8
summarizes the PVS definition of asynchronous subset of
cCSP syntax.

Standard Compensable

PVS PVS
cCSP (Operational) (Trace) cCSP (Operational) (Trace)

A act(a) act(a)

SKIP Skip SKIP SKIPP Skipp SKIPP

THROW Throw THROW THROWW Throww THROWW

YIELD Yield YIELD YIELDD Yieldd YIELDD

P 2 Q choice(P,Q) choice(P,Q) PP 2 QQ cchoice(PP,QQ) cchoice(PP,QQ)

P ; Q seq(P,Q) seq(P,Q) PP ; QQ cseq(PP,QQ) cseq(PP,QQ)

P ‖ Q para(P,Q) parallel(P,Q) PP ‖ QQ cpara(PP,QQ) parallel(PP,QQ)

P � Q P |> Q intr(P,Q) P ÷ Q cpair(P,Q) cpair(P,Q)

[PP ] blk(PP) block(PP)

Figure 8: cCSP syntax in PVS

The syntax is then extended to define the terms for syn-
chronization. To denote the trace semantics, we write
full_parallel(X)(P,Q) (P ‖X Q) for standard pro-
cesses and cfull_parallel(X)(PP,QQ) (PP ‖X QQ) for
compensable processes.

7.2 Process Algebra Terms

Proofs about properties of a process algebra often use
induction on the structure of the algebra. PVS has a
mechanism called abstract datatype [15], for which PVS
generated an induction scheme, and it is convenient to
model process algebra terms as an abstract datatype.
cCSP has standard, and compensable process terms and
importantly, these process terms are mutually dependant
on each other. Mutually recursive datatype is not directly
admissible by PVS. However, PVS has an extended sup-
port of sub-datatype [15, 16], where it is possible to define
two mutually recursive datatypes as a single datatype.
A sub-datatype collects together groups of constructors
of a datatype that form one part of a mutually recursive

datatype definition. By using this facility we define cCSP
process algebra terms as follows:

pa_terms : DATATYPE WITH SUBTYPES stand, comp

BEGIN

Skip : skip? : stand

choice(P: stand, Q: stand) : choice? : stand

seq(P:stand, Q:stand) : seq? : stand

|>(P: stand, Q: stand) : inthnd? : stand

cseq(PP : comp, QQ : comp) : c_seq? : comp

cchoice(PP : comp, QQ : comp) : c_choice? : comp

cpair(P: stand, Q : stand) : cpair? : comp

blk(PP : comp) : blk? : stand

synpara(X:setof[normal],P:stand,Q:stand)

:synpara? : stand

csynpara(X:setof[normal],PP:comp, QQ:comp)

:csynpara? : comp

...% other terms are omitted from this presentation

END pa_terms

synpara and csynpara are the extended definitions for
the synchronous process terms. We define a single
datatype pa_terms that consists of two sub-datatypes:
‘stand’ for standard processes, and ‘comp’ for compens-
able processes. We can now define processes of types
‘stand’ and ‘comp’.

7.3 Trace Semantics

The trace semantics are defined in PVS in the same way
as they are originally defined. Operators are first defined
at the trace level, and then lift to the sets of traces to
define the processes. The same approach is taken for both
standard, and compensable processes. For synchronous
processes, we first define the synchronization of terminal
evens shown in Table 1 by extending the asynchronous
definition (parallel).

syn_parallel(w3:terminal)(w1,w2:terminal):bool=
IF w3 = bottom THEN

w1 = bottom OR w2 = bottom
ELSE parallel(w3)(w1,w2) ENDIF

The trace semantics for synchronous processes are then
defined by following the definitions shown in Sec. 4. First
we define operators over traces then lift it over set of
traces to define processes. The trace semantics of both
standard and compensable processes are defined in PVS
as follows:

full_parallel(X)((s1,w1))((s2,w2))((s3,w3)):RECURSIVE bool=

CASES s3 OF
null:null?(s1) AND null?(s2) AND syn_parallel(w3)(w1,w2)

OR cons?(s1) AND X(car(s1)) AND null?(s2) AND w3 = bottom
OR cons?(s2) AND X(car(s2)) AND null?(s1) AND w3 = bottom
OR cons?(s1) AND X(car(s1)) AND cons?(s2) AND X(car(s2))

AND car(s1) /= car(s2) AND w3 = bottom,
cons(a,tail):

IF X(a) THEN cons?(s1) AND cons?(s2) AND
car(s1) = a AND car(s2) = a AND

full_parallel(X)((cdr(s1),w1))((cdr(s2),w2))((tail,w3))
ELSE cons?(s1) AND car(s1) = a AND
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full_parallel(X)((cdr(s1),w1))((s2,w2))((tail,w3))
OR cons?(s2) AND car(s2) = a AND

full_parallel(X)((s1,w1))((cdr(s2),w2))((tail,w3))
ENDIF ENDCASES

MEASURE length(s3)
full_parallel(X)(P,Q : process): process =

{t : trace | EXISTS (p:(P),q:(Q),s1,w1,s2,w2,s3,w3):
p = (s1,w1) AND q = (s2,w2) AND t = (s3,w3) AND
full_parallel(X)((s1,w1))((s2,w2))((s3,w3)) }

cfull_parallel(X)((p,p1))((q,q1))((r,r1)) : bool =

(full_parallel(X)(p)(q)(r) AND
full_parallel(X)(p1)(q1)(r1) AND r‘2 /= bottom)

OR full_parallel(X)(p)(q)(r) AND

r‘2 = bottom AND null?(r1‘1) AND r1‘2 = bottom
cfull_parallel(X)(PP,QQ:comp_process):comp_process=

{ tt:comp_trace | EXISTS (pp:(PP),qq:(QQ)) :
cfull_parallel(X)(pp)(qq)(tt) }

We represent traces as a pair: (s,w), where s is the
sequence of normal events and w is the terminal event.

7.4 Operational Semantics

The operational semantics is defined by using labelled
transition systems of the form P

e
−→ P ′, where the event

e makes the transition of the process term from state P to
P ′. Two types of transitions are defined: normal, and ter-
minal. Both transition rules are defined by using a recur-
sive boolean definition that determines whether there is a
transition from one state to another state. The definitions
are given by using equations derived from the transition
rules. The transition rules of some process terms depend
on the transition rules of both standard and compensable
processes. To define these rules, we need to combine the
transition rules for both standard and compensable pro-
cesses. The terminal transition for the process terms are
defines as wtrans and the normal transitions are defined
as ntrans (See [13],[14] for details). We then define the
transition rules for synchronous processes by following
the definitions given in Fig. 5(a) and 5(b).

In a normal transition, processes either synchronize or
interleave. By extending the transition rules of asyn-
chronous processes we defne the transition rules for syn-
chronous processes as follows:

synpara(X,Q,R):
IF X(a) THEN

EXISTS Q1,R1 : ntrans(a)(Q,Q1) AND ntrans(a)(R,R1) AND
Pa1 = synpara(X,Q1,R1)

ELSE EXISTS Q1: ntrans(a)(Q,Q1) AND Pa1 = synpara(X,Q1,R)
OR EXISTS R1: ntrans(a)(R,R1) AND Pa1 = synpara(X,Q,R1)

ENDIF

csynpara(X,QQ,RR) :
IF X(a) THEN

EXISTS QQ1,RR1:ntrans(a)(QQ,QQ1) AND ntrans(a)(RR,RR1) AND
Pa1 = csynpara(X,QQ1,RR1)

ELSE

EXISTS QQ1:ntrans(a)(QQ,QQ1) AND Pa1 = csynpara(X,QQ1,RR)
OR EXISTS RR1:ntrans(a)(RR,RR1) AND Pa1= csynpara(X,QQ,RR1)

The terminal transitions are defined as follows:

synpara(X,Q,R):

EXISTS w1,w2: syn_wtrans(w1)(Q,nul) AND
syn_wtrans(w2)(R,nul) AND

syn_parallel(w)(w1,w2) AND P1 = nul
OR EXISTS (a:normal,w1,Q1): X(a) AND ntrans(a)(Q,Q1) AND

syn_wtrans(w1)(R,nul) AND w = bottom AND P1 = nul
OR EXISTS (a:normal,w1,R1) : X(a) AND ntrans(a)(R,R1) AND

syn_wtrans(w1)(Q,nul) AND w = bottom AND P1 = nul
OR EXISTS (a1,a2:normal,Q1,R1):

X(a1) AND X(a2) AND a1 /= a2 AND
ntrans(a1)(Q,Q1) AND ntrans(a2)(R,R1) AND

w = bottom AND P1 = nul,
csynpara(X,QQ,RR):

EXISTS Q1,R1,w1,w2 : syn_wtrans(w1)(QQ,Q1) AND

syn_wtrans(w2)(RR,R1) AND syn_parallel(w)(w1,w2)
AND w /= bottom AND P1 = synpara(X,Q1,R1)

OR EXISTS (a:normal,w1,QQ1,R1): X(a) AND
ntrans(a)(QQ,QQ1) AND syn_wtrans(w1)(RR,R1) AND
w = bottom AND P1= nul

OR EXISTS (a:normal,w1,Q1,RR1): X(a) AND
syn_wtrans(w1)(QQ,Q1) AND ntrans(a)(RR,RR1) AND

w = bottom and P1 = nul
OR EXISTS (a1,a2:normal,QQ1,RR1):

X(a1) AND X(a2) AND a1 /= a2 AND
ntrans(a1)(QQ,QQ1) AND ntrans(a2)(RR,RR1) AND
w = bottom AND P1 = nul

7.5 Semantic Relationship

By following Def. 1, the derived traces for standard pro-
cesses are defined as ‘trans_trace’. It defines the tran-
sition of a process by a trace consisting of a transition by
a sequence of normal events followed by transition by a
terminal event. Consider a trace t , where t = t ′〈ω〉.

P
t′〈ω〉
−→ 0 = ∃P ′ · P

t′

−→ P ′ ∧ P ′ ω

−→ 0

We then define Lemma 3 by using the definition of both
derived traces and trace rules as follows:

synpara_lemma : LEMMA

trans_trace((s,w))(synpara(X,P,Q),nul) =

EXISTS (s1,w1,s2,w2) :

full_parallel(X)((s1,w1))((s2,w2))((s,w)) AND

trans_trace((s1,w1))(P,nul) AND

trans_trace((s2,w2))(Q,nul)

For compensable processes, we only need to prove that
the lifted forward behaviour corresponds to the original
traces and reuse the proofs of standard processes for com-
pensations. The definition of derived traces shown in
Def. 2 consists of the derived trace of both forward and
compensation behaviour. To prove our lemmas (Lemma 4
and 5) we only need to define the forward behaviour and

it is defined as ftrans_trace (PP
t

−→ P).

First, we define the lemma considering the processes will
not fail to synchronize and hence, there is no bottom
event in the derived traces:

csynpara_lemma : LEMMA

ftrans_trace((s,w))(csynpara(X,PP,QQ),R) =

EXISTS (s1,w1,s2,w2,P,Q): w /= bottom AND

full_parallel(X)((s1,w1))((s2,w2))((s,w)) AND

ftrans_trace((s1,w1))(PP,P) AND

ftrans_trace((s2,w2))(QQ,Q) AND

R = synpara(X,P,Q)
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Next, we define the lemma where compensable processes
fail to synchronize during their synchronization. The
main difference is that the derived trace now ends with a
⊥ representing the partial behaviour, and compensations
are not accumulated after termination.

lema_bot : LEMMA

ftrans_trace((s,w))(csynpara(X,PP,QQ),nul) =

EXISTS (s1,w1,s2,w2,P,Q): w = bottom AND

full_parallel(X)((s1,w1))((s2,w2))((s,w)) AND

ftrans_trace((s1,w1))(PP,P) AND

ftrans_trace((s2,w2))(QQ,Q)

All these lemmas are proved interactively by applying in-
duction over traces ((s,w)). PVS has a strong support
for induction scheme which facilities proving such lem-
mas.

8 Related Work

One of the contributions most related to our work is by
Basten and Hooman in [17], where the focus is on the
use of a general purpose proof checker, e.g., tool support
for the proof of theoretical properties of an ACP-style
process algebra [18] . The idea is to apply equational
reasoning. Mechanical support for both verification of
concrete applications and proving theoretical properties
of the process algebra are investigated.

PVS has been used in [19, 20] to mechanize the trace se-
mantics of CSP. Their goal is to verify an authentication
protocol specified in CSP to overcome errors in the man-
ual verification as well as improve the scalability of the
approach. The mechanization is based on a semantic em-
bedding of CSP. The traces are defined by using a list of
events and processes are defined by prefix-closed sets of
traces. The important distinction with the present work
is that cCSP traces are non-empty and completed and
processes are defined accordingly.

Camilleri [21] showed how to mechanize a subset of the
CSP operators by using the theorem prover HOL [22].
The trace model for a subset of the CSP operators
was mechanized in HOL. Initially, events, alphabets and
traces are defined and then CSP operators are defined
in terms of their trace semantic models. And later laws
related to the operators are proved from the sematic defi-
nition. In contrast to our approach no syntax is defined at
this stage and operators are defined directly in HOL. Syn-
tax is defined later and the semantics of the language is
shown based on the already defined semantics. A similar
work for the π-calculus can be found in [23]. One of our
main goals is to explore the ways of incorporating process
algebra in a general purpose theorem prover. In that re-
spect, a closely related research on the tool support for a
process algebra shown in [24], where a CSP-like algebra,
called DI-Algebra [25] is formalized in HOL. The algebra

is used to reason about synchronous circuits. Process
syntax and algebraic laws are defined, but no semantics
are defined.

9 Concluding Remarks

We have extended cCSP language to define synchroniza-
tion. We introduced the notion of partial behaviour
which allows to model the behaviour of synchronous pro-
cesses that fail to synchronize. The formal foundation of
the language is strengthen by establishing a relationship
between the semantic models by showing that traces ex-
tracted from the operational semantics correspond to the
original trace semantics. Demonstrating the relationship
between these two semantics of the ensures the consis-
tency of the semantic description of the language.

We have started mechanizing the semantic models and
their relationship in order to investigate the feasibility of
the mechanization process. We have achieved our goal
by successfully proving the semantic relationship for the
synchronous processes. Defining process algebras in PVS
is not new a new idea. The novelty of this experiment
is that, we have not only defined the cCSP process al-
gebra, and the two semantic models, but we have also
mechanically proved a relationship between these seman-
tic models.

In the hand proofs, it is easy to be imprecise about recur-
sion, and typing of the rules. The mechanization forces
to be strict about datatypes, and recursion. This helped
us to define the theorems, and the lemmas in a system-
atic way, and to prove all the lemmas by following a simi-
lar fashion. The mechanization also helped us identifying
some lemmas which were not explored earlier. The mech-
anization of the semantic models and their relationships
also deepen our understanding of the semantic models for
both standard and compensable processes.

Having a firm grasp of the semantic models, we are now
in a better position to extend the language by defining
some important operators for the process algebra, such
as event hiding, recursion, distinction between external
and internal choice in combination with compensations.
In standard CSP, the distinction between the two choice
operators is achieved by using the Failure/Divergences
model which can serve as the basis for our work on cCSP.
Our future plan also includes developing a tool support
for cCSP which will allow model check as well as animate
the specifications.
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