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Abstract— A theoretical model of the mode-locking

of light bullets in a planar slab waveguide array is pre-

sented. The model yields three dimensional localized

solutions that act as global attractors for particular

parameter values. The these solutions can be con-

trolled via non-uniformities in the gain applied to the

array. This manipulation is robust and allows for bul-

let routing as well as the production of the NAND

and NOR logic gates.
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1 Introduction

The technological feasibility and nonlinear properties of
semiconductor waveguide arrays (WGAs) make them an
ideal technology for all-optical signal processing applica-
tions. The property of WGAs that make them so attrac-
tive from a technological standpoint is that nonlinear self-
focusing is capable of overcoming discrete spatial diffrac-
tion for a sufficiently intense electrical field. This was
predicted theoretically by Christodoulides and Joseph [1]
and later shown experimentally by Eisenberg et al. [2].
Based on this work, the WGA was proposed as an ideal
component for both optical routing and switching pur-
poses [2–5], temporal mode-locking of lasers [6–9], and
the generation of spatial optical solitons [1–5].

In this manuscript, the generation of three-dimensional
spatial confinement is based on the generation of tem-
poral solitons in the WGA structure. Due to the planar
structure of the waveguides in this slab waveguide ar-
ray mode-locking model (SWGAML), the nonlinear mode
coupling that creates temporal solitons in the WGA will
generate the spatial confinement needed for light-bullet
formation [10–12]. In addition to the generation of bul-
lets, we propose further enhancements to the SWGAML
that allow the control and routing of bullets produced in
the slab waveguide structure [14, 15].
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Figure 1: Schematic of a slab waveguide array theoreti-
cally capable of producing light-bullets. Slab waveguides
(gray) are separated by light-gray non-guiding regions to
produce a weak coupling between adjacent arrays. Gain
is applied to the topmost waveguide via current injection.

The outline of the paper is as follows: In Sec. 2, a de-
scription of the physical system is given. In Sec. 3, the
governing equations and the parameters in the model are
given. In Sec. 4, the creation and stability of light bullets
are discussed for uniform gain profiles. In Sec. 5, bul-
let routing and control using non-uniform gain profiles
are demonstrated. In Sec. 6, the interactions of mul-
tiple bullets are used to produce the NAND and NOR
gate. Lastly, Sec. 7 contains some concluding remarks
and technological outlook for the WGA device and its
applications.

2 System Description

The proposed device is a slab waveguide array consisting
of three waveguides, as shown in Fig. 1. The three pla-
nar slab waveguides are labeled zero through two from the
top of the device to the bottom respectively. Non-guiding
regions are placed between the individual waveguides to
weaken the coupling between adjacent waveguides. Gain
could be provided to the system through a monolithic
gold layer attached to the zeroth waveguide [13]. This
layer allows for the injection of current into the zeroth
waveguide but does not inject current into any of the
other two. One modification useful for applications is to
partition the gold layer as in [15]. By injecting differ-
ent amounts of current into individual partitions, a non-
uniform gain profile is generated in the system. The uses
of these extra degrees of freedom will be explored later in
this manuscript.

This device is envisioned to operate like a VCSEL, so the
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phase velocity of light is in the vertical direction as shown
in Fig. 1. The light bullets themselves are stationary in
space and confined in each of the waveguides. This geo-
metrical structure extends the idea of the nonlinear mode
coupling (NLMC) [9, 16] so critical in temporal mode-
locking from a single dimension to the pair of dimensions
in the plane of the waveguide. This extension confines the
bullet in the plane. In order to have a stationary bullet,
a third dimension of confinement is required. The third
dimension of confinement is assumed to be created by the
structure of the array in the remaining spatial dimension.

There are a number of current technologies capable of
generating the additional dimension of confinement. One
particular example is the zero group velocity soliton,
which has been obtained theoretically and is the target
of ongoing experimental work [17, 18]. Another option,
particularly suited to the WGA, is the use of defects in
Bragg gratings to trap Bragg solitons [19]. By replacing
the guiding regions with Bragg gratings and using the
insulating regions as defects the geometrical structure of
the WGA itself should be sufficient to generate a trapped
Bragg soliton.

Either of the previous two mechanisms would be sufficient
to create effectively zero-group velocity bullets. Since
the interaction of solitons in the adjacent waveguides is
modeled via coupled mode theory [20], the exact mech-
anism is not important to the overal structure of the
governing equations. The slab waveguide mode-locking
model (SWGAML) discussed in the next section is robust
enough to capture both situations. The combination of
these two effects, NLMC in the plane of the waveguide
and the Bragg or gap-soliton in the normal direction, is
sufficient to produce confinement in all three spatial di-
mension resulting in what we are calling a light-bullet.
As will be shown, these light bullets act as global attrac-
tors to the system and will therefore form naturally from
a cold cavity.

3 Governing Equations

Mode-locking in waveguide arrays is created by a com-
petition between the saturable absorption generated by
NLMC [9] of the waveguides and the bandwidth lim-
ited gain. The waveguide array mode-locking model
(WGAML) [8] describes the temporal mode-locking in
traditional ridge waveguide arrays. To model this slab
waveguide system, the WGAML was heuristically ex-
tended from one to two spatial dimensions:

i
∂A0

∂t
+

D

2
∇2A0 + β|A0|

2A0 + CA1 + iγ0A0 (1a)

− ig(x, y, t)(1 + τ∇2)A0 + iρ|A0|
4A0 = 0

i
∂A1

∂t
+ C(A0 +A2) + iγ1A1 = 0 (1b)

i
∂A2

∂t
+ CA1 + iγ2A2 = 0 (1c)

where ∇2 = ∂2

x + ∂2

y . The impact of current injection is
modeled as a saturating gain:

g(x, t, y) =
2g0f(x, y)

1 + ||A0||2/e0
. (2)

In (1), A0, A1, and A2 are the envelopes of the electric
fields in the 0th, 1st, and 2nd waveguides respectively.
Unlike the WGAML [8], the SWGAML is in a stationary
frame and soD is the diffraction coefficient where the sign
of D is the sign of the index of refraction. β determines
the strength of the Kerr nonlinearity, ρ is proportional to
the probably of three photon absorption occurring, the
γj are the aggregation of linear losses for each waveg-
uide, and C is the strength of evanescent coupling be-
tween adjacent waveguides. The saturable gain g(x, y, t)
accounts for the depletion of minority charge carriers at
high optical intensities, resulting in a saturating gain.
The filtering term, gτ∇2 results in higher frequency spa-
tial modes receiving lower amounts of gain than lower
frequency modes. This term can be though to arise from
diffusion which results in more explicit models of the gain
medium [21].

The function f(x, y, t) in (2) accounts for the possibility
of non-uniform gain profiles. In order to uniquely specify
the gain, it is imposed that the mean of f(x, y, t) is one
at all times and f(x, y, t) ≥ 0. Therefore, larger values
of g0 always correspond to larger total injection currents
regardless of the exact form of f(x, y, t). The addition
of non-uniform gain allows for a variety of additional dy-
namics not found in the uniform gain case. In particular,
a non-uniform gain breaks translational invariance in the
system and creates solutions where the bullets translate
in space.

4 Uniform Gain Dynamics

The study of the uniform gain dynamics in an important
first step in describing the SWGAML. With uniform gain,
f(x, y, t) = 1 and there are two distinct asymptotically
stable types of mode-locked solutions – stationary solu-
tions and breather solutions. For both types of solutions,
the system can have an arbitrary number of bullets, e.g.,
a double bullet stationary solution. In this section, we
explore these types of solutions and their dependence on
the total gain, g0, applied to the system.

4.1 Stationary Light-Bullets

The first type of mode-locked solution is the stationary
bullet solutions which have constant amplitudes in time.
With uniform gain,the SWGAML is a radially symmet-
ric system of equations. Although non-radially symmet-
ric solutions could exist, the radially symmetric solutions
are of lower energy and are therefore the favored solutions
when starting from a cold cavity. The radial symmetry
can be exploited to remove a spatial dimension from the
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Figure 2: Example of a radially symmetric stationary
solution with the parameters from (3). The initial condi-
tion is noise in the zeroth waveguide and zero in the other
two waveguides. The radially symmetric bullet solution
forms from noise and appears to be a global attractor of
the system.

problem allowing for faster and more accurate simula-
tions. Figure 2 shows an example of a radially symmetric
solution obtained with

(D,C,γ0,γ1,γ2, e0,τ, ρ, g0)=(−1, 10, 0, 0, 10, 1, 0.1, 1, 35)
(3)

The system quickly settles into a steady state starting
from noisy initial conditions. To obtain this result, a fi-
nite difference scheme was used with Neumann boundary
conditions at the origin. The computational domain uses
is larger than that shown in Fig. 2 so the Dirichlet bound-
ary condition used at the far end is unlikely have caused
a major impact on the resulting dynamics.

For the particular parameters chosen, this solution ap-
pears to be the only stable attractor in the system. In
previous works [8, 22] on the one dimensional WGAML,
it has been shown that another branch of low amplitude
solutions exist. The software package AUTO [23] was
used to track the branch of stationary solutions using
a finite difference approximation to compute the deriva-
tives. This coarse approximation to the function was used
as a starting point for a more accurate calculation using
a Chebyshev collocation method [24]. This collocation
method approach allows for the eigenvalues of the lin-
earized operator to be computed with spectral accuracy.
Errors in the eigenvalue are estimated to be on the order
of 10−8. This combined approach was used to generate
the bifurcation diagram and example spectra in Fig. 3
for the stationary solutions. In Fig. 3, black regions are
linearly stable and gray regions are linearly unstable. It
is clear that a saddle-node bifurcation is responsible for
the creation of the single-pulse solution. The maximum
amplitude of the pulse is directly related to the gain pro-
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Figure 3: The bifurcation diagram and spectrum of se-
lected radially symmetric bullet solutions. In the bifur-
cation diagram, the black curve is where the bullet is
linearly stable while the gray regions are where it is not.
In the spectra, gray xs represent eigenvalues with positive
real parts. Light bullet solutions are born out of a saddle
node bifurcation near point 1 and go unstable near point
3 due to a Hopf bifurcation.

vided to the system, but around g0 = 50 a Hopf bifurca-
tion occurs and the periodic breather solutions become
the stable solutions.

4.2 Time-Periodic Breather Solutions

Due to the Hopf bifurcation, it is known that time-
periodic breather solutions occur for some range of the
bifurcation parameter g0. While more complicated than
the stationary solutions, breather solutions contain both
a larger peak intensity and a larger total energy and may
be useful in applications where these traits are desired
and a stationary bullet profile not required.

Figure 4 shows an example of a time-periodic breather
solution using the parameters:

(D,C,γ0,γ1,γ2, e0,τ, ρ, g0)=(−1, 10, 0, 0, 10, 1, 0.1, 1, 50).
(4)

All the parameters except for g0 are the same as the single
bullet case. In Fig. 4, it was assumed that the periodic
solutions were also radially symmetric. However, in full
two-dimensional simulations it was found that a low am-
plitude non-radial background occurs in addition to the
central radial bullet [25]. This non-radial component is
never captured by the radial solution approximation. It
is unclear whether or not this non-radial background is
inherent in the PDE or is a result of the periodic bound-
ary conditions and square domain imposed in the two-
dimensional problem. However, in both the radially sym-
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Figure 4: The amplitude in the zeroth waveguide as a
function of time for a time-periodic breather solutions
using the parameters in (4). At higher gains, the sta-
tionary solution is unstable and the breather solution the
dominant solution time.

metric case and the full PDE the results are qualitatively
similar. If quantitative predictions of bullet dynamics
are required, the radially symmetric approximation is no
longer valid for the parameters used in simulation.

4.3 Multiple-Pulse Solutions

At larger gains, the breather solution loses stability and a
stationary solution with a larger number of bullets domi-
nates. These stationary solutions are essentially equiv-
alent to the single-bullet solutions in Sec. 4.1. In all
of the simulations run, final solution has been two non-
interacting stationary bullets. This is similar to what has
been seen in the one-dimensional WGAML [8].

While the final state of the solution is quite simple, the
route taken from a single to a double bullet is compli-
cated and the transition may persist for long periods of
time. Figure 5 shows the time evolution of a solution
that splits. The initial condition is a single stationary
solution bullet, but gain is too large for the stationary or
even breather solutions to be stable. The bullet then ra-
diates energy and eventually a second bullet forms from
the energy travelling around the periodic domain. If the
second bullet forms in close proximity to the existing bul-
let, the bullets will recombine into a single unstable bullet
which starts the splitting process over again. Ultimately,
this process results in two bullets sufficiently separated
that they will not recombine. For this reason, the multi-
ple bullet solution may be treated as a number of single
non-interacting bullets.

The splitting process in Fig. 5 appears to be chaotic in
nature and the SWAGML may remain in this chaotic
state for protracted periods of time. Note that the 160
time units in Fig. 5 is shorter than the typical amount of

Figure 5: Time evolution of the splitting of a single light
bullet into a pair of light bullets. Due to the larger gain,
the single pulse sheds energy which eventually results in
the formation of a second pulse. Note that the resulting
bullets are far separated in space. If the second bullet
forms in close proximity, it will interact with the orig-
inal bullet and be absorbed which repeats the splitting
process.

time requires for bullets to split. For many parameters,
this transition process may exist for over a thousand time
units and is heavily dependent on the initial condition.
In many ways, despite the presence of structures in the
plane of the waveguides the splitting process is chaotic in
nature.

It should be noted that it is possible to form stationary
solutions where the bullets do interact. For identical bul-
lets, separations have been found where the relative phase
difference between the bullets determines whether or not
the pair persists or recombines. However, this situation
has only occurred when very specific initial conditions are
employed and never when a single bullet was used as the
initial conditions. Therefore, the multiple bullet solutions
can be treated as a pair of non-interacting single bullets
as those are the only types of solutions that have been
observed in numerical experiments studying the splitting
process. While solutions with interacting bullets do ex-
ist, in this work as well as in previous works [15,25] these
solutions have never appeared except from very specific
initial conditions.
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Figure 6: Plot of the velocity of the bullet as a function
of the slope of the gain profile. The velocity of the bullet
is directly related to the slope of the gain. Furthermore,
for sufficiently small gain ramp the velocity is linearly
related to gain.

5 Non-Uniform Gain Dynamics

Using f(x, y, t) = 1, the governing equations (1) contain a
number of symmetries, including translational invariance.
The translational invariance eliminates the possibility of
creating a single spatial location that attracts bullets in
the array. In experimental works on similar systems [12],
external lasers were used to pump the system and manip-
ulate the location where bullets formed. A similar effect
can be obtained in this system using variations in the
current injected to the system.

5.1 Constant Gain Slope

The simplest non-uniform gain profile is a linearly sloped
gain profile. In this work, the slopes of the gain profile
were kept small. This restriction serves two purposes.
First, the use of small slopes allows the non-uniformity to
be considered a perturbation of the uniform case. In this
regime, the branches of solutions obtained in Fig. 3 will
remain valid to leading order. Therefore, the solutions
from the uniform case can be use as initial conditions
without a large amount of transient behavior resulting.
Second, the inclusion of large gain slopes often creates re-
gions with large enough gain that a second bullet simply
forms in that region, annihilating the first bullet. Al-
though there is no inherent technological limitation to
small gain slopes and this type of motion may be phys-
ically realistic, this type of motion is more difficult to
control and will not be considered in this manuscript.

Figure 6 shows that the velocity of the light bullet is di-
rectly related to slope of the gain. For the small slopes
used, the bullet is not noticeably deformed from the sta-
tionary bullet case. Additionally, the bullet trajectory is
the same as the gradient of the gain function, and there is
no spurious motion in any other direction. The ramped
gain case can serve the conceptual starting point for more
complex gain profiles, and it provides a simple mechanism
for imparting velocity onto the light-bullets. For more

Figure 7: Bullet routing using the gain equation in (5).
The dotted lines show the location of the bullet center
as time progresses. The piecewise linear gain routes the
bullet through the junction.

complex behaviors, one approach is to use piecewise lin-
ear functions to trace out paths in the plane.

5.2 Bullet Routing with Sloped Gain

The use of sloped gain generates a simple method of bul-
let routing. As shown in Sec. 5, bullets gain velocity in
the direction of the gradient of the gain. The simplest
types of functions would be comprised of piecewise lin-
ear functions. These functions are capable of a robustly
routing bullets even through large angles.

As an example, a junction can be created generating a
single gain ramp but superimpose it with forbidden re-
gions that contain no gain. Mathematically, gain was
modelled as

f(x, y, t) =

{

(1 +mx+ ny) |x| < 8 or |y| < 8

0 otherwise
(5)

where m and n control the direction in which the bullet
moves. The result is a plus-shaped junction where one
arm is the input and the other three outputs. Directing
the light bullets is done simply by changing the value of
m or n which control the direction of the slope of the
gain. Figure 7 shows the three possible routings with
m = 0.01. The final bullet location is chosen by the
value of n. When n = 0.01 the bullet is routed up, when
n = 0 the bullet is routed across, an when n = −0.01 the
bullet is routed downward.

In the application of a piecewise linear gain, the regions
of zero gain in Fig. 7 prevent the bullet from entering the
region and do not destroy or trap the incoming bullet.
The result is the bullet being routed through the junc-
tion rather than taking the most direct path between the
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outputs. The inclusion of these regions creates great flex-
ibility in the generation and construction of devices used
for bullet routing.

5.3 Time Dependent Gains

Stationary gain profiles are the simplest to construct but
have inherent limitations due to their stationary nature.
As an example, stationary gain profiles are unable to ma-
nipulate light-bullets into a time-periodic orbit. For small
enough gain slopes, light-bullets follow the gradient of
the gain function. However, no continuous function can
have a closed orbit with an always increasing gradient.
Additionally as shown in Sec. 5.2, the solutions to the
SWGAML have effectively no momentum so the discon-
tinuity cannot be overcome.

However, time-periodic orbits can be obtained by using a
time-periodic gain function. The simplest case is a gain
profile that translates in time but is otherwise stationary
in time such as the following Gaussian profile:

f(x, y, t)=exp
(

−α
(

[x−10 cosωt]
2
+ [y−10 sinωt]

2
))

(6)
where numerically α = 0.001 and ω = 2π/5000. The
angular frequency of movement, ω, is small relative to
the timescale that dynamics typically occur on in the
SWGAML. This is consistent with most physical sys-
tems where gain manipulations occur on much slower
timescales than the evolution of the bullets.

Due to the slow translation of the gain the movement of
the bullet can be thought of as an adiabatic process. For
any position of the gain, the bullet has sufficient time
to follow the gain gradient to the maximum of the gain
profile. As the gain translates, this process repeats. The
effect is a light bullet that is bound to the top of the
translating gain profile and follows a path nearly iden-
tical to the moving gain. This process is shown for the
Gaussian profile in Eq. 6 in Fig. 8.

In Fig. 8, the x and y position of both the bullet and
the gain are shown for a variety of times. In order to
determine the bullet center, the following formulas were
used for both the bullet and the gain:

bullet center=

∫∫

x|A0|
2dxdy

||A0||2
x̂+

∫∫

y|A0|
2dxdy

||A0||2
ŷ. (7)

As the gain is a radially symmetric solution and bullet
is to leading order a radially symmetric solution, this
formula accurately describes the centers of both func-
tions. The bullet and gain overlap to a significant degree.
There is a slight lag between the centers of the gain and
the bullet since this process is not completely adiabatic.
Nonetheless, it is clear these translating gains can ma-
nipulate light bullets in time-periodic orbits and indeed
any arbitrary continuous path. Since the current injected
into the system is controlled by external electronics, these
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Figure 8: Bullet control using time dependent gain. The
+ and ◦ show the x and y coordinates of the bullet center
as a function of time. The gray lines show the x and y
coordinates of the gain function in (6) as a function of
time.

same external electronics indirectly provide a mechanism
for bullet routing and control.

6 Gain Mediated Interactions

In Sec. 4.3, it shown that the SWGAML is capable of
supporting multiple-bullet solutions. By employing non-
uniform gain profiles as in Sec. 5, it is possible to route
both of the bullets simultaneously. Therefore, it is possi-
ble to make use of multiple bullets and their interactions.
The interaction of multiple bullets occurs through two
distinct processes. The first is a direct interaction when
two bullets are physically close enough to interact, simi-
lar to the interactions seen in the nonlinear Schrödinger
equation [26]. Similar to NLS, the resulting dynamics of
the interaction depends heavily on the separation of the
two bullets as well as the relative phase difference be-
tween them. The resulting dynamics is therefore heavily
influenced by the initial condition of the SWGAML.

In the applications envisioned for this device, it is un-
likely one would be able to guarantee a particular phase-
difference. The simpler and more robust of the interac-
tions are gain-mediated interactions. These types of in-
teractions occur only through the gain term in (2). In the
gain term, the level of saturation is determined by the L2

norm. This non-local term allows bullets that are physi-
cally separated to influence one-another by increasing or
reducing the gain of the system. While less powerful than
direct interactions, this mechanism is still capable of pro-
ducing both the NOR and NAND logic gates and would
therefore be useful in applications.

6.1 NOR Gate

The first of the two master-gates implemented in the
SWGAML is the NOR gate. The NOR gate has up to
three inputs. The clock bullet must always exist in the
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system, but the input bullets will only exist if that par-
ticular input is a logical high input. The NOR gate is
produced using three stationary gain ramps which route
both input bullets and well as a clock bullet from the in-
put of the NOR gate to the output. If the clock bullet
reaches the output of the gate, then the result is logical
high. Otherwise, the output is logical low.

What differentiates this from the bullet routing shown
in previous sections is that, while there are three bullets,
the system is given sufficient gain to support only a single
bullet. Therefore, all three of the bullets will decay. To
select which of the three bullets survives, each of the gain
ramps is given different amounts of gain. Specifically,
the clock bullet ramp receives less gain than either of the
two input bullets. From the stability results of Fig. 3,

Figure 9: A plot of all possible cases for the NOR gate.
Both the clock and input bullets experience a sloped gain
which routes all bullets from left to right. Gain is biased
so the clock receives less gain than either of the input
bullets. The system possesses enough gain to support
a single bullet so the clock bullet will be destroyed if
either input bullet exists. If neither exist, the clock bullet
translates right giving a high output.

a slightly reduced gain is not of consequence in the long
run because single bullets are stable for a range of gains.

If the clock bullet is the only bullet in the system, it will
have enough gain to persist and translate to the output.
If any of the two input bullets are introduced to the sys-
tem, then all of the bullets will decay. Due to the lower
gain given to the clock bullet, it will decay faster than
either of the input bullets. Therefore, it will always be
destroyed if any of the inputs exist. This is consistent
with a NOR gate.

Figure 9 shows each of the four possible scenarios for
the NOR gate. Because these interactions are completely
gain mediated, this process does not require any partic-

Figure 10: Four possible cases for the NAND gate. Note
that each of the four possible bullets experiences a time
periodic gain similar to (6) that translates the bullet from
left to right. However, the overall gain given to each
bullet, from lowest to highest, is: the auxiliary bullet,
the clock bullet, the input one bullet, and the input two
bullet. The NAND gate has enough gain to support a
pair of bullets so if at most one of the inputs bullets exist
the output is high. Otherwise, the output is low.
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ular phase difference between the input bullets to exist.
Furthermore, while both of the input bullets in Fig. 9 re-
ceived the same gain, that need not be the case. As long
as the clock bullet receives less gain than either of the
two input bullets, the result will be a NOR gate similar
to what is shown in Fig. 9 although the results at the
final time may be different.

6.2 NAND Gate

The SWGAML can also implement the NAND gate. In
contrast to the NOR gate, this gate has been produced
using time-dependent gains similar to Sec. 5.3. For the
NAND gate, a Gaussian profiles is used to translate the
clock bullet, the auxiliary bullet, and any of the input
bullets. Figure 10 enumerates the four possible cases for
the NAND gate. As shown, the NAND gate is comprised
of up to four bullets. The clock bullet and auxiliary bullet
must exist regardless of inputs. There are additionally up
to two additional input bullets, depending on the inputs
to the gate. The gain profiles exist whether or not either
of the two inputs exists. Therefore, this NAND gate does
not require any prior knowledge about the inputs.

Like the NOR gate, the key to constructing a NAND
gate is to provide insufficient gain for all the bullets and
to use differences in the gain to select in which order
bullets are destroyed. For the NAND gate, enough gain
for two bullets is provided and the level of gain provided
to each of the bullets is, from highest to lowest, input two,
input one, the clock bullet, and the auxiliary bullet. If
neither of the inputs exist, there is enough gain to support
both the clock and auxiliary bullets . Therefore, they will
translate to the output. Since the clock bullet reaches the
output, this is a logical high. If one input exists, all three
bullets will decay. As the auxiliary bullet has the lowest
gain, it will be destroyed before the clock or input bullet.
At that point, the clock and input bullets translate to the
output and again logical high is the output. The final case
is if there are two input bullets. In this case, the ordering
of gain causes both the clock and auxiliary bullets to be
destroyed resulting in the output being logical low. These
four cases are consistent with the four possible cases of
the NAND gate.

In principal, the NAND gate could be constructed with
the same static gain profiles the NOR gate was con-
structed with, and the NOR gate could be constructed
using the same time-dependent gains the NAND gate was
constructed with. Furthermore, an auxiliary bullet could
be added to the NOR gate using the same gain ordering
as the NAND gate but with only enough gain for a single
bullet. Using a simple change in the overall level of gain
it is possible to convert a NOR gate to a NAND gate and
vice versa with no other external changes to the system.

Although the other gates will not be constructed in this
manuscript, the generation of the two master gates shows

that fully operational photonic logic devices can be con-
structed. Since the output of each device is a light-bullet
capable of serving as an input to an additional gate and
since the NAND and NOR gates are insensitive to small
delays in the input bullets, generating larger photonic cir-
cuits from these building blocks is trivial, and the other
gates can be easily realized through combinations NAND
and NOR. Therefore, it is possible to do photonically in
the SWGAML any computation that could be done dig-
itally.

7 Conclusions and Future Work

Light bullets hold tremendous potential as a critically
important technology in the field of photonics and a
number of research groups are focusing on this technol-
ogy [10–12,15,25,27–37]. There are numerous technolog-
ical methods both proposed and realized for engineering
and controlling light bullets, and our approach is cer-
tainly not the only viable option for producing light bul-
lets. However, as with all technologies, the implemen-
tation of light bullet technology requires the system to
be both robust and inexpensive. Using slab waveguides,
we have theoretically shown the ability of the SWGAML
to produce and stabilize light bullets starting from noise.
Furthermore, with the introduction of non-uniform gains
these light bullets can be routed. Light bullets that are
routable may be brought in close enough proximity to in-
teract via gain. Gain mediated interactions are capable
of reproducing the master logic gates and therefore all
logic gates. Furthermore, the SWGAML architecture re-
lies on simple input and output coupling as well as easily
addressable routing via modulations of the gain provided
to the system. Therefore, the SWGAML is able to con-
trol all-optical data streams and is capable of doing so in
a feasible and easy to implement manner.
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