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I. INTRODUCTION 

 
Abstract - There are occasions in which databases have 

feature values that are missing due to errors, irregularities, or 
unavailable data. Most current imputation methods address 
cases in which there are sufficient known data to infer an 
estimate of the missing feature data. This paper proposes a 
novel imputation algorithm that provides a reasonable solution 
for the problem domain, represented by databases with missing 
numerical feature values. This method derives imputed values 
by observing system configurations and parameters. Given an 
appropriate model, databases may also be observed. The 
proposed algorithm employs a weightless multi-classifier that is 
designed to process certain benchmark databases. Finally, the 
experiments demonstrate that databases with missing feature 
values and imbalanced data distributions can still be used 
effectively. 
 

 Index Terms - Incomplete data, Observation algorithm, 
System configuration, Weightless multi-classifier.  
 

An observation can be referred to as the recording of a 
measurable quantity of a system. A system can be 
represented in the form of databases. Databases are often 
discarded due to missing features. It is also commonly 
claimed that missing data imply missing information. It is 
possible, however, to a considerable extent, to gain full 
knowledge of the information that is contained in a given 
database despite the missing features. This paper explores the 
issues that govern this problem domain. 

The area of data imputation has attracted much attention. 
Current state-of-the-art methods impute feature values by 
deductions that are made from existing known data. The 
state-of-the-art methods work well when sufficient amounts 
of data are available. For databases in which the features are 
represented by few or insufficient feature values, state-of-
the-art methods or similar methods can lead to biased 
decisions. The research in this paper explores other 
alternatives by observing system configurations and 
parameters to impute missing feature values, which may not 
be an estimate or zero. It is noteworthy that the methodology 
that is presented can be applied beyond the case in this 
report. The case that is presented here involves the 
implementation of the algorithm in a weightless multi-
classifier for testing purposes. 

Because classifiers are typically designed to use complete 
data that are specified at their input, it is difficult for a 
weightless multi-classifier to perform well when used for 
databases that contain missing features. The choice of base 
classifiers for the multi-classifier stems from the need to 
mitigate imbalances in class distribution, if such imbalances 
in class distribution are significant and not required. 
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Imbalance class distribution typically occur whenever, using 
a two-class example, there are many samples of one class, 
the majority class, and few samples of the other class, the 
minority class. This phenomenon occurs naturally in, for 
example, fraud detection, risk management, and medicine. It 
is often potentially dangerous to ignore minority classes. 

Real-life applications produce real data, such as those at 
http://archive.ics.uci.edu/ml/datasets.html. A real-life 
application that produces no data might not have a history. 
There are various reasons why values for a feature might be 
missing, effecting the grouping of data into categories [1], 
[2], [3]. The categories are as follows: 

Missing Completely At Random (MCAR):- MCAR refers 
to a situation wherein a missing feature value is not related to 
variables, methods, or mechanisms that are used to acquire 
the data. In this case, it is difficult to ascertain when, why, or 
how the data are missing. 

Missing At Random (MAR): This is a situation in which 
the feature value is missing at random, for which the reasons 
are traceable, such as process defects and lack of 
maintenance. Although the source of the missing data is 
known, as in Shen [4],  it might not follow a specific pattern. 

Missing Not Completely At Random (MNAR): Missing not 
at random refers to a situation wherein the source and reason 
for the missing feature value is known. It is possible to 
quantify and estimate the present and future amounts of 
missing feature values, respectively. Because it is possible to 
state the position and value (estimate) of the missing data 
precisely, such missing data is often referred to as non-
ignorable [1], [5], [6] or informatively missing (IM). 

The current state-of-the-art methods that are used to 
impute the missing feature values or minimise the effects of 
the missing feature value are divided into value estimation 
methods and neural networks: 

Value Estimation: Value estimation methods model the 
data generator using the available data and represent the 
generator of the data as a density function or mixtures of 
density functions. A good candidate of this method is the 
Gaussian mixture model. This method requires the 
availability of large amounts of data from the real generator, 
or the error in the estimated value for the missing feature 
value becomes very large. A single value estimate is referred 
to as a simple imputation. Many and various values for a 
missing feature value often involve testing each value and 
estimating the error of a certain objective function. This 
advanced method includes the multivariate Gaussian mixture 
model and Expectation-Maximisation (EM) methods. The 
many-valued estimate methods are referred to as multiple 
imputations. Similarly, the method in this report is also 
multi-valued but might not depend on an available known 
database that is meant for processing, as detailed in section 
II.  

Neural Networks: Conventional neural networks, such as 
multi-layered Perceptron (MLP) and the Radial Basis 
Function (RBF) network, can be used singly or in a multi-
expert system to acquire information in the databases, despite 
the missing feature values. At missing data points, a special 
neural network is used or the activation function is set to 
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zero. Several methods of neural networks [7], [8] that also 
estimate missing feature values exist. Muňoz [9] designed a 
similarity neurone that ignores feature values. 

This report is arranged as follows. Section II describes the 
observation algorithm, and section III discusses the multi-
classifier with which the algorithm is tested. The experiments 
are described in section IV and use actual databases that 
correspond to real-life problem domains. The results are 
presented and analysed in section V. Section VI evaluates the 
algorithm and compares it with other imputation methods. 
Section VII concludes. 
 

II. THE OBSERVATION ALGORITHM 

A. Background 
A measure space (M, A, µ) is a set, M, with subsets of M. 

A measure µ on this space is a rule that assigns a non-
negative number µ(A) (including ∞) to each subset A in M. 
If M = R, the real-number line, the definition of Lebesgue 
measurable sets is required on M, e.g., if ρ is any integrable 
function with ∫ ρ(x)dx = 1, then ρ determines a probability 
measure ρdx on R. 
 

Definition I: Let (M, A, µ) be a measure space; a state ρ of 
(M, A, μ) is a probability measure on M of the form ρμ (ρ ≥ 
0), where ρ corresponds to an integrable function such that 
∫ρ(x)dx = 1, i.e., ρμ(A) = ∫A ρμ. For any system (M, A, μ) and 
any state ρ, entropy is defined as: 

ρent = - logρ ρ µ
∞

−∞
∂∫ . The equilibrium state of the system 

(M, A, μ) is the position of maximum ρent. 
       

Definition II: The property or variable of a system that 
affects the functionality or performance of a system is an 
observable; therefore, it is worthy of observation. An 
observable of a system is a numerical, measurable property 
or variable of the state. If the observable of a system is 
denoted by y, a map is an ordinary numerically valued 
function f: M→R, which gives an observable y of space M, a 
numerical value in R such that for yϵM, f(y)ϵR. The 
observables depend on configurable system parameters.  
 

Definition III: Let y be an observable and ρ be a state; if 
the observable y is represented as a function, then the 

expected value of y is defined as .
M

y ρµ∫ with respect to the 

probability measure ρμ. 
    

*   *   * 
 

Energy is often defined as force multiplied by distance in the 
direction of the force. Energy change, dE, is defined as  

dE = w * ds 
where w represents a "generalised force" and ds is the 
change in distance in the force direction. With regard to the 
upcoming discussion, w is replaced by the system under 

consideration, and ds is also replaced by functions that 
express the system’s parameters. Then, the left hand side dE 
becomes y, the observed “energy.” For an observed energy y 
( = dE), define the integral 

( ) y

M

f y e dyγ µ−= ∫ ;                     (1) 

then, the corresponding state is defined as 
1
( )

y
y e

f y
γρ −=                            (2) 

From the state ρy, the corresponding entropy can be 
defined. The function f(y) represents the data imputation 
system, while ρy is the imputed value. Note that f(y) 
depends on y, and y in turn depends on the system 
configuration. If y is such that f(y) < ∞, then ρ y is an 
equilibrium state of the system with respect to y. 

For multi-variable and multi-dimensional imputations 
(i.e., multi-imputation), we define the energy y as the 
vector valued function y = [y1, y2, y3... yk]. Then, y: M→ Rk 
such that y maps a basis function of M onto the vertices of 
a simplex, Rk. The observed energy y and the states are 
correspondingly defined as 

1 2

( ) 1 ...
k

i i i i i iy y y
if y e e eγ γ γ− − −= + + + +            (3) 

and 

0

1 ;
( )i

if yγρ =   
1

1
1

;
( )

i i

i

y

y
i

e
f y

γ

ρ
−

=   etc.                (4) 

 
 respectively. Here, j

iγ
ρ are states that correspond to possible 

imputation values. The constants j
iγ ; i = 0,1,2, ..., are shape 

constants. Generally, they are of the sequence 3/2; 5/2; ..., 
etc. The constants j

iγ are derived from thermodynamics 
and quantum mechanics of matter, the details of which 
are beyond the scope of this report. 

B. The Algorithm 
The process of filling in the missing values is as follows: 

1. Locate the position of the missing values when all system 
parameters are zero—that is, before learning begins. 

2. Perform a simple imputation. This is a case when y = y0 
is a constant, or zero if the leading coefficient is not a 
constant. 

3. Perform the normal multiple imputations, and while 
moving away from extrema (Minimum-Maximum) 
points, perform a multiple imputation. At this stage, 
learning/recognition must have started. 

4. Repeat step 3 until all missing values have been filled. 
 
The observation algorithm is better described by an example 
that illustrates the basic functionality of the proposed system. 
Two variants of the Probabilistic Convergent Network (PCN) 
were developed locally and named the Enhanced 
Probabilistic Convergent Network (EPCN) [10] 
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When tested on unconstrained handwritten numbers from 
The Centre of Excellence for Document Analysis and 
Recognition (CEDAR) [11]  and other databases, the 
performance varied as the number of main-group layers 
varies. The graph that was obtained from the CEDAR (centre 
of Excellence for Document Analysis and Recognition) 
database, as performance varied with the number of main-
group layers, is displayed in Fig. 1. The database from 
CEDAR has no missing feature values, but the variation in 
main-group layers with respect to performance illustrates 
imputation values can be deducted from the system 
configuration. From Fig. 1, it follows that     

 
(a) when y=98.28 and γ=(3/2) 
     

(( 3)/2)98.0

3

283

0
e dx

−

−∫  = 5. 6814×10⁻⁶³ 

    g(x)=f(x)⁻¹e^{-γy} 
    f(x)⁻¹e^{γy}=( 5. 6814×10⁻⁶³)⁻¹×e^{((-3)/2)98.28} 
     ( 5. 6814×10⁻⁶³)⁻¹×e^{((-3)/2)98.28}= 1. 6667×10⁻² 
    ρ=1. 6667×10⁻² 
 
(b) when y = 98.28-28.29x and γ = (3/2) 
  

f(x) = (( 3 )/2)30

30

ye dx
−

−∫  

    g(x) = f(x)⁻¹e^{((-3y)/2)} 
    g(x) = 5. 9269×10⁻⁴⁸⁸exp(42. 435x-147. 42)  
     [5. 9269×10⁻⁴⁸⁸exp(42. 435x-147. 42) ]_{x=29.88}= 
0.26074;    ρ= 0.26074 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
(c) when y=98.28-28.29x+12.59x² and γ=(3/2) 

      f(x) = (( 3 )/2)30

30

ye dx
−

−∫ = 8. 7011×10⁻⁵⁵ 

g(x) = 1. 1493×10⁵⁴exp(-18. 885x²+42. 435x-147. 42) = 
1. 1493×10⁵⁴exp(-18. 885x²+42. 435x-147. 42)  

[1. 1493×10⁵⁴exp(-18. 885x²+42. 435x-147. 42) ] 
    Candidate(s) for extrema: {2. 4518}, at {[x=1. 1235]}  
[1. 1493×10⁵⁴exp(-18. 885x²+42. 435x-147. 42) ]_{x=0.8}= 
0.33971  ρ=0.33971 
 
   (d)  when y = 98.28-28.29x+12.59x²-2.042x³ and γ = (3/2) 

f(x)= ( )
30

30
3.063x³ 18. 885x² 42. 435x 147. 42 dxexp  

−
− + −∫ = 1. 

2607×10²⁹⁰²⁰ 

Fig. 2: A plot of y (see Fig. 1) for fix-PCN for 
power of  x=3. 

Fig. 1: A plot of the dependence of performance on main-group layers. 
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    g(x) = 7. 9324×10⁻²⁹⁰²¹exp(3. 063x³-18. 885x²+42. 435x-
147. 42)  
7. 9324×10⁻²⁹⁰²¹exp(3. 063x³-18. 885x²+42. 435x-147. 42)   
ρ= 0.30983 
 
  (e)  when y=98.28-28.29x+12.59x²-2.042x³+0.11x⁴ and 
γ=(3/2) 

f(x) = (( 3 )/2)30

30

ye dx
−

−∫  

    f(x) = ∫ ₋₃₀³⁰exp(-0.165x⁴+3. 063x³-18. 885x²+42. 435x-
147. 42)dx = 3. 0167×10⁻⁵¹ 
    g(x) = 3. 3149×10⁵⁰exp(-0.165x⁴+3. 063x³-18. 885x²+42. 
435x-147. 42)  
     3. 3149×10⁵⁰exp(-0.165x⁴+3. 063x³-18. 885x²+42. 435x-
147. 42) 3. 3149×10⁵⁰exp(-0.165x⁴+3. 063x³-18. 885x²+42. 
435x-147. 42)  
    Candidate(s) for extrema: {1. 1626×10⁻⁵,9. 0649×10⁻³,1. 
2724},   

 
 
 
    
 
 
 
 
 
 
 
 
 
 
 

 
 
 
at {[x=4. 8285],[x=7. 2601],[x=1. 8341]}  
    ρ= 6. 9548×10⁻³ 

*   *   * 
 

An appropriate imputation value minimises performance 
errors. It may not be a value that estimates the missing 
feature value. An estimate of the missing feature value would 
be an appropriate imputation value if y in equations (1) and 
(2) is replaced by a model of the data generator. Considering 
the source of imputation values, imputation methods can be 
grouped into three categories. The first category of 
imputation methods uses available known data to estimate 
the missing values. This category often uses statistical 
methods. A notable example is the EM algorithm. The EM 
algorithm, explained by Hui [7], is interesting. The concept 
of adaptive imputation is espoused in Hui [7], whereby 
imputation is performed analytically in the E-step of the 
expectation (E)-maximisation (M) algorithm of a 
quadratically gated mixture of experts. Williams [12] 
integrates out the incomplete data by using an estimated 
conditional density function. 

The second category uses neural networks to account for 
the missing feature data. The neural network simply isolates 
the missing feature values from being processed or assigns a 
safe value to replace missing feature values. Muller [13] uses 
neuro-fuzzy coding in a multi-classifier design, in which the 
lack of a value is explicitly coded into the neurons by setting 
the corresponding activation level to zero. Morris [14]  
designed a hybrid multi-classifier in which a classifier is 
dedicated only to missing feature values. The dedicated 
classifier calculates the expected value of the missing feature 
values. 

The imputation source of the third type does not use the 
available data or the system that processes the data directly 
to account for missing feature values. Rather, an arbitrary 
safe value is simply imputed. Examples include most simple 
imputation methods. Mohammed [15] uses a "sentinel" value 
as a simple imputation method in multi-classifier designs. 

The grouping according to sources of generating 
imputation values is not mutually exclusive. The observation 
algorithm may show that this is the case. The observation 
algorithm reveals that when y is zero or a constant, the 
imputation is a simple imputation (example (a)). The 
situation in which y represents the system that processes the 
data is shown in examples (a) to (e). The observation 
algorithm can impute feature values from known data 
directly if the available data are statistically sufficient to infer 
a generator for the data. This often occurs in terms of 
probability distribution function (pdf). Examples of 
probability distribution functions are normal probability 
distribution function and Poisson probability distribution 
function. The normal probability distribution function can 
generate a RBF. The normal probability distribution 
function, when Bayes theory is applied, can yield the EM 
algorithm, which might in turn be used in multi-classifier 
designs. When a Gaussian distribution is used as y in the 
observation algorithm, it is able to estimate missing feature 
values directly from known available feature data with a 
certain minimum error (see section VI). 

C. Notable features of the Observation Algorithm 
1) Systems and devices can be modelled by one of the 

autoregressive methods to yield y (in equation (1) and 
(2)). It is also possible that f(y) = y in equations (1) and 
(2). The examples and the experiments in this paper 
should be regarded as specific illustrations of the 
proposed algorithm. 

2) Any error feedback is a property of the system that is 
being modelled and not directly that of the proposed 
algorithm; i.e., the algorithm is independent of error 
feedback. 

3) Some imputation methods rely on available data to 
estimate imputation values, while others insert arbitrary 
(safe) values. The proposed method is principled and uses 
available data or the system (model) that processes the 
data to impute values. 

 
 
 

Fig. 3: A plot of y (see Fig. 1) for fix-PCN for 
power of  x=4. 
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4) The possibility for imputation grows with increasing 

problem complexity. For 1-dimensional data, as in 
example (a) (there, y = 98.28), the algorithm behaves like 
a simple imputation. Most systems, however, depend on 
more than one independent variable; thus, the algorithm 
nearly always works in the multi-dimensional domain, 
which implies an imputation, as demonstrated in example 
(b) to (e). Expectation-Maximisation (EM) algorithms 
operate only on databases; they are statistical, and a 
database needs to be large enough to estimate a missing 
value accurately. Given that a large database has been 
modelled (y in equation (1) and (2)) in terms of 
probability distribution function or mixtures of 
probability distribution functions, the observation 
algorithm might behave similarly to EM algorithms and 
estimate missing values. It is noteworthy that the 
observation algorithm is not limited to databases or 
explicit statistical phenomena.  

 

III. MULTI-CLASSIFIER SYSTEMS 
A weightless multi-classifier uses weightless neural 

networks as component classifiers. The combination (fusion) 
of the component classifiers is achieved by a trained 
combiner. Component classifiers are derived from an 
Enhanced Probabilistic Convergent Network (EPCN). 
EPCNs are n-tuple classifiers whose architecture consists of 
a pre-group layer, a merge layer for the pre-group, a main-
group layer, and a merge layer for the main group, as shown 
in Fig. 4. Each layer consists of neurons, and each neuron 
(see Fig. 4) consists of RAM-locations. The learning process  
of an EPCN consists of deriving n digits from input data and 
forming d = 2n addresses.  
Depending on the actual values of d, the corresponding RAM 
location of the pre-group layers is addressed. The  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

recognition process also entails deriving d addresses from the 
input space and modifying the corresponding RAM memory 
in the layers of the main group. Learning is supervised, and 
the recognition results are summed independently per class 
to output.  

Two types of EPCNs are used in this work: fix-EPCN and 
rand-EPCN [10]. The EPCN is adaptive, and the system 
parameters of each component EPCN are randomly 
determined to increase the diversity among them. The 
weightless multi-classifier is made up of EPCNs in parallel 
(the [Pi, Mi] pair), as shown in Fig 5, and a probabilistic 
classifier a further EPCN (the [Pc, Mc] pair) with unique 
system parameters for the fusion of the component networks. 
In Figure 5, the gating function, f (.), is a function that not 
only produces a weighted sum of the component classifier 
but also encodes this sum to a form that is understandable to 
the EPCN combiner. 

A. Imbalance data distribution 
Databases with some missing features can also be 

imbalanced with respect to class distribution. A phase within 
the algorithms modifies the frequency of occurrence, in 
RAM locations, of each majority class to avoid undermining 
the presence of the minority classes. For N training patterns 
and x divisions, a frequency of occurrence value “a” that 
occurs in a memory location will be adjusted as: 

â ( );

ã (â); 
where ã=new vaue replacing a in that location

xa
N

round

=

= T

his step in the learning and recognition algorithm reduces 
the large probability of the majority classes to 
accommodate the minority classes. This process also 
removes rounding errors and truncation errors. A different 
approach is employed in Yen [8], wherein under-sampling 
of data in a clustering procedure mitigates the problem of 
imbalances in data distribution 

 

Fig. 4: Schematic of EPCN. It consists primarily of two groups 
of layers, the pre- and main group. These two groups are 
separated by a merge layer. 
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IV. EXPERIMENTS 
The experimentation in this section is designed to explore 

the behaviour of the observation algorithm when it is 
exposed to real-life data. All databases that have been 
completed by the observation algorithm are either the MCAR 
or MAR type. The first step in the exploration requires 
artificially and randomly deleting some data from the 
database, consequently omitting some feature values from 
the ionosphere database, in subsection IV (A). The deletion 
of feature values is done randomly well before separation 
into train and test sets, ensuring that both sets are affected, 
irrespective of database sub-setting. The observation 
algorithm and simple imputation were applied to the 
ionosphere database. The other databases (i.e., in subsections 
IV(B) and IV(C)) contain naturally occurring missing feature 
values, and only the observation algorithm is used. Ten 
benchmark databases are further processed, similar to 
sections IV(B) and IV(C), with naturally occurring missing 
feature values, using the observation algorithm for data 
imputation. 

The train set is randomly sampled without replacement 
from the databases. The bare multi-classifier (see section III) 
is designed to treat only complete databases. But, when 
databases with missing features are presented to the multi-
classifier, the observation algorithm calculates imputation 
values from the multi-classifier. The calculation of values 
from the multi-classifier by the observation algorithm 
(section II) is independent of the size of the databases but 
depends on the variable and parameters of the multi-
classifier. The observation algorithm is designed to give 
meaningful responses to databases with a small percentage of 
missing features.  

 

 

 

A. Ionosphere 
The source of databases for this experiment was: Space 

Physics Group, Applied Physics Laboratory, Johns Hopkins 
University, Johns Hopkins Road, Laurel, MD 20723, U.S.A. 
[16], [17] . The database has no missing feature values. All 
missing feature values are created during the experimental 
exploration. The experimental procedure is as follows: 
• Some missing feature value is artificially created in the 

database. 
• The database is divided into two sets: the training set and 

test set. Training set data are randomly sampled from the 
database without replacements; thus, the training and test 
sets form a disjoint set. This partitioning strategy is also 
shown in Table 1. 

• A multi-classifier is initialised, consisting of two EPCNs 
in parallel, as the component classifier. The component 
classifiers are fused by a trained combiner, which is an 
EPCN with unique system parameters. 

• The component classifiers are all trained and tested by 
both the train and test sets shown in Table 1. 
 

 
 
 
Class Training 

set 
Test set Total 

1 (b) 38 88 126 
2 (g) 68 157 225 

    

Fig. 5: This is a simplified diagram of the RAM-based multi-classifier. It consists of EPCNs as component classifier. 
 

Table 1: Partitioning of ionosphere database 
into train set and test set. 
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• This is a two-class classification task that involves the 
good (g in column 1, row 2 of Table 1) and bad (b in 
column 1, row 3 of Table 1) characteristics. 

• The amount by which missing values are created is 
expressed as the percentage (%) of the total amount of 
feature values. First, 0.4% of the total amount of feature 
values is deleted, and steps 1–5 above are carried out. 
Subsequent re-run of steps 1–5 above is performed on the 
database in which the missing feature value has 
increased. 

• All steps above are repeated for the normal state-of-the-
art simple imputation. 

B. Post-Operative 
Certain places within a medical centre are designated as I, 

S, and A, where I = intensive care unit; S = go home, and A 
= general hospital floor (outpatient room). These designated 
areas are where the patients should go after their operation if 
they are advised to do so. The classification task of the 
database that is used is to specify where patients in a 
recovery area should be advised to go after an operation. The 
source of the database is: Sharon Summers, Source of Post-
operative Database: School of Nursing, University of 
Nursing, University of Kansas Medical Centre, Kansas City, 
KS 66160 U.S.A. [18], [19]. This database has less than 
0.5% of attributes missing. It also demonstrates the presence 
of a minority class. The experimental procedures are as 
follows: 
• The database is partitioned into a training set and test set, 

as summarised in Table 2. The training set is randomly 
selected from the total data.  
 

 
 
 

Class Train Test Total 
1 (I) 1 1 2 
2 (S) 8 16 24 
3 (A) 20 44 64 

 
• A multi-classifier is initialised and consists of two 

EPCNs in parallel and a trained combiner for fusion. The 
component classifiers of the multi-classifiers are all 
trained and tested by the datasets of the training and test 
sets, as shown in Table 2. 

C. Lung Cancer 
The lung cancer data are found at: 

http://archive.ics.uci.edu/ml/datasets.html [20]. 
• The database is divided into a training set and test set. 

The training set is made up of a random selection of the 
database without replacements. Table 3 summarises the 
distribution of data among the train and test sets. 

 
 
 
 
 
 
 
 
 

 
 
 
 

Class Train Test Total 
1 3 6 9 
2 4 9 13 
3 3 7 10 

 
• A multi-classifier is initialised, consisting of two EPCNs 

as base classifiers. Each EPCN is independently and 
dynamically configured with a randomisation strategy 
that is aimed at increasing diversity. The fusion of the 
component classifier is also accomplished by a trained 
combiner. 

• Both the train and test sets are used equally on each 
component classifier of the multi-classifier during 
learning and subsequent testing. 

Experiments that are similar to IV(B) and IV(C) are also 
performed on other benchmark databases, most with 
naturally occurring feature values (either MCAR or MAR 
type) from the UCI [20] repository.  
 

V. EVALUATION OF THE PROPOSED SYSTEM ON A MULT-
CLASSIFIER 

The results in this section are summaries of results from 
the experiments of section IV. 

A. The ionosphere database 
Fig. 6 shows a plot of the performance for a state-of-the-

art simple imputation method and an observation algorithm 
on the ionosphere database. In addition, the results 
demonstrate that the observation algorithm gives a 
reasonable result from databases with missing feature values. 
However, performance declines as the number of missing 
feature values increases. The ionosphere database consists of 
34 features per instance and a total of 11,934 feature values. 
As an illustration, 0.5% of ionosphere database is 
approximately 60 feature values. The rapid decline in 
performance is due to the use of very few component 
classifiers (in the multi-classifier). This decline demonstrates 
the relationship between missing feature values and the 
tested observation algorithm clearly. If more than 15% of the 
feature values are missing in the data and a high recognition 
rate is obtained, such results might be biased. Because there 
are few component classifiers (2 bc in Fig. 6), each of them 
sees imputed feature values in place of missing feature 
values more often, as opposed to when five-base (5 bc in Fig 
6) classifiers are initialised. Performance then decreases 
rapidly, in Fig. 6, when the number of the missing feature 
values increases. 

The aims and objectives of the exploration are not only to 
achieve a high-level of accuracy but also to demonstrate and 
compare the effects of the observation algorithm if the 
number of missing feature values increases. Using the same 
ionosphere data, the features and their numerical values, both 
in [15], were systematically removed to investigate the effect 
of missing feature values on performance.  
 

Table 2: Partitioning of Post-operative database 
into train-set, and test-set 
 

Table 3: Partitioning of the lung cancer 
database into train set and test set 
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In that report (i.e., in Mohammed [15] ), a performance of 
90.7% was recorded at 2.5% missing feature values. This 
result corresponds loosely to the case in which all features 
are maintained and a performance of approximately 92% was 
recorded, in Figure 6, at 2.5% missing feature values. The 
same rate was obtained by Sigillito [17], using a “non-linear” 
perceptron with no missing feature values. Fig. 6 also shows 
that at up to 3.0% of missing feature values, reasonable 
information in the database is obtainable. 

B. Post-Operative 
The confusion matrix in Table 4 is obtained when the 

observation algorithm is tested on post-operative databases. 
The results, as shown in Table 4, suggest that the proposed 
algorithm compensates for the effect of missing feature 
values. With regard to determining a minority class, if a 
pattern class has less than 10% of data (or patterns) 
compared with other classes, then that class is in the 
minority. For example, class I in Table 4 is 8.33% of class S 
and 3.13% of class A and, thus, is in the minority. The 
minority class consists of only two instances. 

 
 
 
 
 
 

 I S A Unclassified 
I 1 0 0 0 
S 0 16 0 0 
A 0 0 44 0 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The percentage of missing feature values in the database was 
0.42%, which is less than 0.6%. The type of results in Table 
4 is not unexpected. The results also demonstrate the ability 
of the component classifiers to compensate for the effect of 
imbalances in data distribution.  The post-operative database 
is characterised by both imbalances in data distribution and 
missing features; a single classifier yields very low 
performance e.g., Woolery [21] and Budihardjo [22] 
recorded a performance rate of approximately 48%. 

C. The Lung-Cancer database 
The lung cancer database has 5 missing feature values. 

Missing features are made up of approximately 0.28% of the 
total attribute values. When the algorithm is tested on the 
lung cancer database, the confusion matrix in Table 5 is 
obtained.  
A performance of 90.91% (Table 5) suggests that the 
database is useful and should not be discarded. Although the 
database is small in size, the detection of pathological lung 
cancer in a database of this type requires high-level 
classification accuracy. One reason for this requirement is 
that this area involves saving human lives. For example, 
Hong, applying the K-nearest neighbour (K-NN), achieved a 
77% accuracy rate [23]. Use of the optimal discriminant 
plane effects a 59.4% accuracy rate [23]. 
 
 
 
 
 
 

 1 2 3 Unclassified 
1 5 0 1 0 
2 0 8 0 1 
3 0 0 7 0 

Fig. 6: The percentage of data correctly classified (vertical axis) when attribute values (horizontal axis) are 
systematically deleted from the ionosphere database. "bc" refers to the base classifiers used. (2 bc) = two-
base classifiers and (5 bc) = five-base classifiers. 
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Imputation by Observation (5 bc)

Table 4: Confusion matrix from the RAM-based 
multi-classifier when the Post-operative database is 
used. The columns represent the classes (I,S,A) 
while the row represent instances. 

Table 5: Confusion matrix from the RAM-based multi-
classifier when the lung cancer database is used. The 
column represents the classes (named 1, 2, and 3) and the 
rows are instances. The last column represents 
unclassified patterns. 
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D. Other Databases 
The results of 10 benchmark databases with naturally 

occurring missing feature values from the UCI repository 
[20] are summarised in Table 6. Imputation values for the 
missing feature values are derived from the multi-classifier; 
thus, the size of the databases did not affect the results. But, 
the number of base classifiers (2, in this case) did affect the 
results, as explained in subsection V(a). Databases without 
comments in the comment column had less than (but greater 
than zero) 5.6% of feature values missing. 

 

VI. EVALUATION OF THE PROPOSED SYSTEM ON DATA 

Evaluation of the observation algorithm is better achieved 
by performance, because it might form a component of a 
system and might not be the speed-determining step of the 
system. Analytical evaluation of the observation algorithm 
might become overtly mathematical and might fail to 
demonstrate its usefulness in any specific application. Thus, 
in this paper, evaluation of the observation algorithm's 
performance by experimentation is the optimal choice. 

The observation algorithm can derive imputation values 
from the system or from data. The derivation of imputation 
values from the system that processes the data is the subject 
of section II. In this section, the observation algorithm will 
be evaluated, based on the derivation of imputation values 
from existing known data. If, in (1) 
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and the corresponding state is defined as 
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State (6) can be referred to as Boltzmann's distribution 
function. τi is referred to as the temperature parameter or 
annealing schedule. When the observation algorithm is 
modified in this manner, it is able to sample from available 
data directly. But, to achieve this sampling, (6) must be 
modified slightly to yield the conditional probability with 
which the data are sampled. Following a method that is 
similar to Gibb's sampling algorithm [24],  (6) becomes 
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where ni = y, wherein yi is omitted. All other variables have 
their usual definitions. Because imputation values should not 
bias the data that are processed, the following constraint is 
essential: 
 
 
 
 
 
 
 
 

 
 

 
• The available known data should be statistically 

sufficient. 
Sampling from previously sampled data is typical during 
multiple imputations. The imputed value is derived by 
multiplying a constant or the previous value by the 
conditional probability (7). Those data that have been 
sampled by multi-imputation are processed by the multi-
classifier. The example in section II illustrates this model 
when y is set to a Gaussian distribution function. In general, 
any distribution is adequate if the distribution is an adequate 
model of the data that are processed. 

The experiment uses waveform data from the UCI 
repository [20]. From waveform data, features are removed 
prior to separation into the train and test sets. Experiments 
that are similar to those with the ionosphere database (section 
IV) are performed on the waveform data to compare the 
observation algorithm and similar algorithms— specifically, 
the infinite imputation. 

In infinite imputation [25], the distribution that governs 
the available data is a free parameter, like the observation 
algorithm. The observation algorithm and infinite imputation 
use the same database and the same model and treat data 
models as a free parameter. Uwe [25] uses the waveform 
database, a Gaussian distribution with no restriction as a 
model of data, and a Gaussian mixture model (GMM) with 
10 centres. Similarly, the observation algorithm uses a 
Gaussian distribution as a model of waveform data, without 
any restrictions.  

A. Comparison of performance of imputation methods 
Five-base classifiers constitute the multi-classifier that is 

used and generates a graph that is similar to Fig. 6, obtained 
from the waveform [20] database. Research on imputation 
methods is an emerging field, as evidenced by the lack of a 
ground truth. For this reason, performance is compared with 
Weighted Infinite Imputation (WII) in Table 7. The 
observation algorithm is similar to WII when it processes 
data for imputation values, because both methods treat data 
models as a free parameter. The observation algorithm and 
WII both achieve 100% accuracy for very low missing 
features. For missing feature values greater than 3%, the 
observation algorithm outperforms WII, as shown in Table 7.    
 
 
 

Table 6: Summary of results from 10 benchmark 
databases when the observation algorithm is used (% = 
percentage). 
 

DATABASES RECOGNITION 
RATE/% COMMENTS

Autos-import 98
Autos-mpg 97.6
Breast-Cancer 99.2
Bridges 92
Echocardiogram 94.7
Heart-diseases 99.4
Hepatitis 95.3
Horse colic 87.6
Mushroom 98.1
Solar-flare 99.4 none missing

-

-
-
-

-
-
-

30% missing

5.6% missing
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Comparisons are also made between the observation 
algorithm and other less similar imputation methods in Table 
8, based on the ionosphere database. A comparison of the 
observation algorithm with the state-of-the-art EM method is 
presented in the table below. The imputation method in [15] 
is a simple imputation that uses a certain “sentinel” value. In 
[15], multi-layered perceptron (MLP) was used as a 
component classifier in a multi-classifier framework and 
experimented on a benchmark ionosphere database. The 
results are compared in Table 8. 
The MLP-based multi-classifier consists of an ensemble of 
approximately 1000 classifiers [15], and the observation 
algorithm uses a weightless multi-classifier that consists of 
two classifiers as component classifiers on the ionosphere 
data. The EM algorithm in [26] makes a multiple imputation 
for missing features. Also, in [26], variants of the EM 
algorithm for imputation are compared. 
 

VII. CONCLUSION 
An observation algorithm has been introduced, which, 

when used with a multi-classifier, generates high 
classification accuracy of incomplete databases. The 
experimental results that demonstrate high-level accuracy in 
processing missing feature values indicate that the proposed 
imputation method is suitable for situations for which 
multiple imputations are required. The presented observation 
algorithm is thus suitable for databases with missing features, 
provided the number of missing feature values is low. 
Generally, the accuracy depreciates rapidly as the number of 
missing feature values increases. The results show that the 
rapid decline in performance as the number of missing 
feature values increases can be mitigated by increasing the 
number of component classifiers as demonstrated.  
The proposed multi-classifier also demonstrates a solution 
within its learning/recognition algorithm to the problem of 
imbalances in data distribution 
 
 
 

Methods % Missing Performance/% 
Simple 
Imputation [15]  

2.5 90.7 

Observation 
Algorithm 

2.5 92.5 

Expectation– 
Maximisation 
algorithm [26]  

25.0 85 
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Table 7: Performance of the observation algorithm and 
WII imputation methods using Gaussian distribution as the 
data model. 
 

Table 8: The observation algorithm compared with 
EM and other imputation methods 

Imputation 
methods % missing

Data 
model

% 
perfomance

Observation 
algorithm 30

Gaussian 
pdf 91.5

WII [25] 30
Gaussian 

pdf 86.12
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