
Towards a New Approach for Modeling Volume

Datasets Based on Orthogonal Polytopes

in Four-Dimensional Color Space

Ricardo Pérez-Aguila

Abstract - This work is devoted to describe some results for

a new approach intended to represent volume datasets in a
concise way. The main idea is to specify voxelizations as

orthogonal polytopes whose fourth dimension corresponds to
color. Then, the 4D representation is expressed via the Extreme

Vertices Model in the n-Dimensional Space (nD-EVM). There
will be presented some examples that show how the proposed

methodology leads to a representation whose storing
requirements are lesser than those demanded by the original

datasets. Moreover, it will be described the way the properties
and algorithms behind the nD-EVM can be applied in order to

interrogate the 4D-EVM associated to a dataset with the
purpose of obtaining, in efficient way and working directly and

only with the EVM, useful geometrical and topological
information. Also, there will be described EVM-based

algorithms for morphological erosion and dilation and the way
they can be useful in aspects such as the removal of “Salt and

Pepper” noise under the context of our 4D representation.

Index Terms - Representation and Manipulation of Volume

Datasets, Polytopes Representation Schemes, Geometrical and

Topological Interrogations, Morphological Operations.

I. INTRODUCTION

The representation of a polytope through a scheme of

Hyperspatial Occupancy Enumeration is essentially a list of

identical hyperspatial cells occupied by the polytope.

Specific types of cells, called hypervoxels [5] are

hyper-boxes (hypercubes, for example) of a fixed size that

lie in a fixed grid in the nD space. By instantiation, it is well

known that a 2D hypervoxel is a pixel while a 3D

hypervoxel is a voxel; the term rexel is suggested for

referencing a 4D hypervoxel [5]. The collection of

hyperboxes can be codified as an nD array
nxxxC ,...,, 21
. The

array represents the coloration of each hypervoxel. If

0,...,, 21
=

nxxxC , the empty hypervoxel
nxxxC ,...,, 21
 represents an

unoccupied region from the n-Dimensional space. If

1 2, ,..., 0
nx x x

C k= ≠ , where k is in a given color scale (black &

white, grayscale, RGB, etc.), then the occupied hypervoxel

nxxxC ,...,, 21
 represents an used region from the

n-Dimensional space with intensity k. In fact, the set of

occupied cells defines an orthogonal polytope p whose

vertices coincide with some of the occupied cells’ vertices.

Manuscript received March 19, 2010.

Ricardo Pérez-Aguila is with the Universidad Tecnológica de la Mixteca

(UTM), Carretera Huajuapan-Acatlima Km. 2.5, Huajuapan de León,

Oaxaca 69000, México (e-mail: ricardo.perez.aguila@gmail.com).

By using the representation through an array, the spatial

complexity of a hypervoxelization is at least

1

n

i

i

m
=

∏

where mi, 1 ≤ i ≤ n, is the length of the grid along the

Xi-axis. For example, a 3D grid with m1 = m2 = m3 = 1,000

requires to store 1 billion (1×109) voxels. Moreover,

according to the used color scale each voxel will have a

storing requirement. For example, if the color space is RGB

then each voxel will require three bytes (four, if the alpha

channel is considered) for codifying its corresponding

intensity.

It is well known that some devices represent natively

volume datasets through voxelizations. However, sometimes

their storing requirements make difficult their manipulation

and the extraction of information and knowledge. In this

sense, several efforts have been made in order to reduce the

spatial complexity of volume datasets always taking in

account the information they contain, due to its importance

and relevance, should be compromised as minimum as

possible. For example, in [6] is presented an algorithm for

compression of datasets by means of quadtrees in order to

encoding slices of data. Such encodings are used for

discovering similarities between consecutive slices. In [15],

3D medical datasets are compressed via a method sustained

in the use of octrees. Both works share us evidence of the

spatial conciseness provided by considering the use of solid

representation schemes. This work is devoted to present an

alternative representation for volume datasets. In particular,

datasets whose color scales are not binary are the dominion

of the proposal (in [9] is presented a methodology designed

specifically for 3D datasets with black & white color scale).

The main idea is to specify datasets as 4D polytopes where

the fourth dimension corresponds to color. Then, the 4D

representation is concisely expressed and manipulated

through a polytopes’ representation scheme: the Extreme

Vertices Model.

This work is organized as follows: The Section II will

describe the fundamentals behind the Extreme Vertices

Model in the n-Dimensional Space (nD-EVM). Section III

discusses some algorithms for interrogate an nD-EVM in

order to obtain some useful geometrical information about

an orthogonal polytope represented via the model. Section

IV describes Rodríguez & Ayala’s algorithms for

performing morphological erosion and dilation over an

nD-OPP expressed in the EVM. The proposed methodology

for the conversion of a volume dataset to a 4D-EVM, the

core contribution of this work, is described in the Section V.

The Section VI presents some examples of datasets

expressed under the EVM. By comparing the storing

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

requirements between the original and the 4D-EVM

representations it is established the conciseness of our

proposal. The Section VII describes the way the algorithms

and properties behind the nD-EVM can be applied in order

to interrogate the 4D-EVM associated to a dataset for

obtaining useful information. There are described the

benefits of the internal organization of the Extreme Vertices

in an EVM. Specifically, it will be seen how such

organization, together with our proposal, leads to a

characterization of the elements in a dataset according to its

color intensity. Finally, Section VIII shows the application

of erosion and dilation’s EVM-based algorithms on the

removal of “Salt and Pepper” noise in the context of a

4D-OPP that models a 3D volume dataset and their impact

in the spatial complexity of our proposed representation.

II. THE EXTREME VERTICES MODEL

IN THE n-DIMENSIONAL SPACE (nD-EVM)

This section and Section III compose a summary of

results originally presented in [1, 8]. For the sake of brevity,

some propositions are only enunciated. Their corresponding

proofs can be found in [1, 8]. In Section II.A there will be

introduced some conventions and preliminary background

related directly with orthogonal polytopes. In Sections II.B

to II.F the foundations of the nD-EVM will be established.

The Section II.G presents some basic algorithms under

the EVM.

A. The n-Dimensional Orthogonal Pseudo-Polytopes

(nD-OPPs)

Definition 1 [16]: A Singular n-Dimensional Hyper-Box in
nℝ is given by the continuous function

: [0,1] [0,1]

()

n n n

n

I

x I x x

→

=∼

A General Singular k-Dimensional Hyper-Box in the closed

set nA ⊂ ℝ is the continuous function :[0,1]k
c A→

Definition 2 [16]: For all i, 1 ≤ i ≤ n, the two singular

(n-1)D hyper-boxes
(,0)

n

i
I and

(,1)

n

i
I are defined as follows:

If 1[0,1]n
x

−∈ then

(,0) 1 1 1 1 1 1() (,..., , 0, ,...,) (,..., ,0, ,...,)n n

i i i n i i n
I x I x x x x x x x x− − − −= =

(,1) 1 1 1 1 1 1() (,..., ,1, ,...,) (,..., ,1, ,...,)n n

i i i n i i n
I x I x x x x x x x x− − − −= =

Definition 3 [16]: In a general singular nD hyper-box c the

(i,α)-cell is defined as
(,) (,)

n

i ic c Iα α= � , while the orientation

of an (n-1)D cell
(,)

n

ic I α� is given by (1) iα +− . An (n-1)D

oriented cell is given by the scalar-function product

(,)(1)i n

ic I
α

α
+− ⋅ �

Definition 4 [16]: A formal linear combination of singular

general kD hyper-boxes, 1 ≤ k ≤ n, for a closed set A is

called a k-chain.

Definition 5 [16]: Given a singular nD hyper-box I
n
, the

(n-1)-chain, called the boundary of In
, is defined as

(,)

1 0,1

() (1)
n

n i n

i

i

I I
α

α
α

+

= =

∂ = − ⋅

∑ ∑

Moreover, given a singular general nD hyper-box c we

define the (n-1)-chain, called the boundary of c, by

(,)

1 0,1

() (1)
n

i n

i

i

c c I
α

α
α

+

= =

∂ = − ⋅

∑ ∑ �

Definition 6 [16]: The boundary of an n-chain
ic∑ , where

each ci is a singular general nD hyper-box, is given by

() ()i ic c∂ = ∂∑ ∑

Definition 7: A collection c1, c2, …, ck, 1 ≤ k ≤ 2
n
, of general

singular nD hyper-boxes is a combination of nD

hyper-boxes if and only if

�

()()
1

([0,1]) (0,...,0)

, , , 1 , ([0,1]) ([0,1])

k
n

n

n n

i j

c

i j i j i j k c c

α
α =

= ∧

 ∀ ≠ ≤ ≤ ≠

∩

In the above definition the first part of the conjunction

establishes that the intersection between all the nD general

singular hyper-boxes is the origin, while the second part

establishes that there are not overlapping nD hyper-boxes.

Definition 8: An n-Dimensional Orthogonal

Pseudo-Polytope p, or just an nD-OPP p, will be an

n-chain composed by nD hyper-boxes arranged in such way

that by selecting a vertex, in any of these

hyper-boxes, it describes a combination of nD hyper-boxes

(Definition 7) composed up to 2
n
 hyper-boxes.

B. nD-EVM’s Fundamentals

Definition 9: Let c be a combination of hyper-boxes in the

n-Dimensional space. An Odd Adjacency Edge of c, or just

an Odd Edge, will be an edge with an odd number of

incident hyper-boxes of c. Conversely, if an edge has an

even number of incident hyper-boxes of c, it will be called

Even Adjacency Edge, or just an Even Edge.

Definition 10: A brink or extended edge is the maximal

uninterrupted segment, built out of a sequence of collinear

and contiguous odd edges of an nD-OPP.

Property 1: Even edges of an nD-OPP do not belong to

brinks.

Property 2: Every odd edge belongs to brinks, whereas

every brink consists of m edges, m ≥ 1, and contains m+1

vertices. Two of these vertices are at either extreme of the

brink and the remaining m-1 are interior vertices.

Property 3: Any extreme vertex of an nD-OPP, n ≥ 1, when

is locally described by a set of surrounding nD hyper-boxes,

has exactly n incident linearly independent odd edges.

Definition 11: The ending vertices of all the brinks in p will

be called Extreme Vertices of an nD-OPP p. EV(p) will

denote to the set of Extreme Vertices of p.

The Fig. 1 shows an example of a 3D-OPP and its set of

Extreme Vertices. Vertices v1, v2, and v3 are non-extreme

vertices because, in the case of v3, it has six incident odd

edges, while vertices v1 and v2 have each one four incident

coplanar odd edges (see Property 3). In the figure can be

also appreciated that exactly three linearly independent odd

edges are incident to the remaining vertices, actually, the

Extreme Vertices of p.

The brinks in an nD-OPP p can be classified according

to the main axis to which they are parallel. Since the extreme

vertices mark the end of brinks in the n orthogonal

directions, is that any of the n possible sets of brinks parallel

to Xi-axis, 1 ≤ i ≤ n, produces to the same set EV(p). As an

example, the Figs. 2.a, 2.b, and 2.c, show brinks parallel to

X1, X2, and X3-axes, respectively, for a 3D-OPP.

Definition 12: Let p be an nD-OPP. The Extreme Vertices

Model of p, denoted by EVMn(p), is defined as the model as

only stores to all the extreme vertices of p.

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

Fig. 1. Example of a 3D-OPP and its set of Extreme Vertices.

Vertices v1, v2, and v3 are non-extreme vertices. (Continuous lines indicate

odd edges while the dotted line indicates an even edge).

Theorem 1: Let p be an nD-OPP. Then

Card(EV(p)) = Card(EVMn(p)) is an even number.

Let Q be a finite set of points in 3ℝ . In [1] was defined

the ABC-sorted set of Q as the set resulting from sorting Q

according to coordinate A, then to coordinate B, and then to

coordinate C. For instance, a set Q can be ABC-sorted in six

different ways: X1X2X3, X1X3X2, X2X1X3, X2X3X1, X3X1X2 and

X3X2X1. Now, let p be a 3D-OPP. According to [1] the

Extreme Vertices Model of p, EVM3(p), denotes to the

ABC-sorted set of the extreme vertices of p. Then

EVM3(p) = EV(p) except by the fact that coordinates of

points in EV(p) are not necessarily sorted. In general, it is

always assumed that coordinates of extreme vertices in the

Extreme Vertices Model of an nD-OPP p, EVMn(p), have a

fixed coordinates ordering (for example, X1X2…Xi...Xn-1Xn

such that i–1 < i, 1 < i ≤ n). Moreover, when an operation

requires manipulating two EVMs, it is assumed both sets

have the same coordinates ordering.

Definition 13: The Projection Operator for (n-1)D cells,

points, and set of points is respectively defined as follows:

• Let
(,) 1(()) (,..,)n

i nc I x x xα = be an (n-1)D cell embedded in

the nD space. ()(,)(())n

j ic I xαπ will denote the projection

of the cell
(,)(())n

i
c I xα

 onto an (n-1)D space embedded in

nD space whose supporting hyperplane is perpendicular

to Xj-axis, i.e. ()(,) 1
ˆ(()) (,..., ,...,)n

j i j nc I x x x xαπ =

• Let
1(,...,)nv x x= a point in nℝ . The projection of that

point in the (n-1)D space, denoted by ()j vπ , is given by

1
ˆ() (,..., ,...,)j j nv x x xπ =

• Let Q be a set of points in nℝ . The projection of the points

in Q, denoted by ()j Qπ , is a set of points in 1n−ℝ such

that { }1() : (),n n

j jQ p p x x Qπ π−= ∈ = ∈ ⊂ℝ ℝ

In all cases ˆ
jx is the coordinate corresponding to Xj-axis to

be suppressed.

Definition 14: Let p be an nD-OPP. A kD extended

hypervolume of p, 1 < k < n, denoted by φ(p), is the

maximal set of kD cells of p that lies in a kD space, such that

a kD cell e0 belongs to a kD extended hypervolume if and

only if e0 belongs to an (n-1)D cell present in ∂(p), i.e.

()

() () ()()
0

1

0

()

, () [0,1] [0,1]k n

e p

c c belongs to p e c

φ

−

∈ ⇔

∃ ∂ ⊆

Definition 15: Consider an nD-OPP p:

• Let
inp be the number of distinct coordinates present in

the vertices of p along Xi-axis, 1 ≤ i ≤ n.

• Let ()i

k pΦ be the k-th (n-1)D extended hypervolume, or

just a (n-1)D couplet, of p which is perpendicular to

Xi-axis, 1 ≤ k ≤ npi.

See in Figs. 2.d, 2.e, and 2.f, a 3D-OPP with its

corresponding sets of 2D couplets perpendicular to X1, X2,

and X3 axes, respectively.

C. Sections and Slices of nD-OPPs

Definition 16: A Slice is the region contained in an nD-OPP

p between two consecutive couplets of p. ()i

kSlice p will

denote to the k-th slice of p which is bounded by ()i

k pΦ and

1()i

k p+Φ , 1 ≤ k < npi.

Definition 17: A Section is the (n-1)D-OPP, n > 1, resulting

from the intersection between an nD-OPP p and a (n-1)D

hyperplane perpendicular to the coordinate axis Xi,

n ≥ i ≥ 1, which not coincide with any (n-1)D-couplet of p. A

section will be called external or internal section of p if it is

empty or not, respectively. ()i

kS p will refer to the k-th

section of p between ()i

k pΦ and
1()i

k p+Φ , 1 ≤ k < npi.

Moreover,
0 ()i

S p and ()
i

i

npS p will refer to the empty

sections of p before
1()i

pΦ and after of ()
i

i

np pΦ ,

respectively. Finally, nsi = npi + 1 refers to the number of

sections of the nD-OPP p.

See in Figs. 2.g, 2.h, and 2.i, a 3D-OPP with its

corresponding sets of internal sections perpendicular to X1,

X2, and X3 axes, respectively.

D. Computing Couplets from Sections

Theorem 2: The projection of the set of (n-1)D couplets,

()()i

i k Pπ Φ , 1 ≤ i ≤ n, of an nD-OPP p, can be obtained by

computing the regularized XOR (⊗*) between the

projections of its previous ()1()i

i kS pπ −
 and next ()()i

i kS pπ

sections, i.e.,

() () ()1() () * () , [1,]i i i

i k i k i k ip S p S p k npπ π π−Φ = ⊗ ∀ ∈

E. Computing Sections from Couplets

Theorem 3: The projection of any section, ()()i

i kS pπ , of an

nD-OPP p, can be obtained by computing the regularized

XOR between the projection of its previous section,

()1()i

i kS pπ −
, and the projection of its previous couplet

()()i

i k pπ Φ . Or, equivalently, by computing the regularized

XOR of the projections of all the previous couplets, i.e.

() () ()
0

1

()

() () * () , [1,]

i

i i i

i k i k i k i

S p

S p S p p k npπ π π−

 = ∅

= ⊗ Φ ∀ ∈

that is () ()
1

() ()*
k

i i

i k i j
j

S p pπ π
=

= Φ⊗

1 X

2 X

3 X

3 v

1 v

2 v

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

a)

b)

c)

d)

e)

f)

g)

h)

i)

Fig. 2. Brinks (a, b, c), 2D couplets (d, e, f), and 2D sections (g, h, i) in a 3D-OPP (the OPP presented in Fig. 1).

F. The Regularized XOR operation on the nD-EVM

Theorem 4: Let p and q be two nD-OPPs having ()nEVM p

and ()nEVM q as their respective Extreme Vertices Models

in nD space, then

(*) () ()n n nEVM p q EVM p EVM q⊗ = ⊗

This result allows expressing a formula for computing

nD-OPPs sections from couplets and vice-versa, by means

of their corresponding Extreme Vertices Models. These

formulae are obtained by combining Theorem 4 with

Theorem 2; and Theorem 4 with Theorem 3, respectively:

Corollary 1:

()

() ()
1

1 1 1

(())

(()) (())

i

n i k

i i

n i k n i k

EVM p

EVM S p EVM S p

π

π π

−

− − −

Φ =

⊗

Corollary 2:

()

() ()
1

1 1 1

(())

(()) (())

i

n i k

i i

n i k n i k

EVM S p

EVM S p EVM p

π

π π

−

− − −

=

⊗ Φ

G. Basic Algorithms for the nD-EVM

It was stated in Section II.B that coordinates of vertices

in the Extreme Vertices Model of an nD-OPP p, EVMn(p),

have a fixed coordinates ordering. It was also commented

when an operation requires manipulating two EVMs, it is

assumed both sets have the same coordinates ordering. Now,

we introduce XA-axis and XZ-axis as the nD space’s

coordinate axes respectively associated to the first and last

coordinates present in the vertices of EVMn(p). For example,

given coordinates ordering X1X2X3X4, for a 4D-OPP, then

XA = X1 and XZ = X4.

The following primitive operations are in fact based in

those originally presented in [1]:

Output: An empty nD-EVM.
Procedure InitEVM()
{ Returns the empty set. }

Input: An (n-1)D-EVM hvl embedded
 in nD space.
Input/Output: An nD-EVM p
Procedure PutHvl(EVM hvl, EVM p)
{ Appends an (n-1)D couplet hvl, which
 is perpendicular to X

A
-axis, to p. }

Input: An nD-EVM p
Output: An (n-1)D-EVM embedded in
 (n-1)D space.
Procedure ReadHvl(EVM p)
{ Extracts the next available (n-1)D
 couplet perpendicular to X

A
-axis of p. }

1 X

2 X

3 X

1 X

2 X

3 X

1 X

2 X

3 X

1 X

2 X

3 X

1 X

2 X

3 X

1 X

2 X

3 X

1 X

2 X

3 X

1 X

2 X

3 X

1 X

2 X

3 X

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

Input: An nD-EVM p
Output: A Boolean.
Procedure EndEVM(EVM p)
{ Returns true if the end of p along
 X

A
-axis has been reached. }

Input/Output: An (n-1)D-EVM p embedded
 in (n-1)D space.
Input: A coordinate coord of type CoordType
 (CoordType is the chosen type for
 the vertex coordinates)
Procedure SetCoord(EVM p, CoordType coord)
{ Sets the X

A
-coordinate to coord on

 every vertex of the (n-1)D couplet p.
 For coord = 0, it performs the

 projection ()A pπ . }

Input: An (n-1)D-EVM p embedded in nD space.
Output: A CoordType
Procedure GetCoord(EVM p)
{ Gets the common X

A
 coordinate of

 the (n-1)D couplet p. }

Input: An nD-EVM p.
Output: A CoordType
Procedure GetCoordNextHvl(EVM p)
{ Gets the common X

A
 coordinate of the

 next available (n-1)D couplet of p. }

Input: Two nD-EVMs p and q.
Output: An nD-EVM
Procedure MergeXor(EVM p, EVM q)
{ Applies the Exclusive OR operation
 to the vertices of p and q and returns
 the resulting set. }

Function MergeXor performs an XOR between two

nD-EVMs, that is, it keeps all vertices belonging to either

EVMn(p) or EVMn(q) and discards any vertex that belongs

to both EVMn(p) and EVMn(q). Since the model is sorted,

this function consists on a simple merging-like algorithm,

and therefore, it runs on linear time [1]. Its complexity is

given by O(Card(EVMn(p)) + Card(EVMn(q)) since each

vertex from EVMn(p) and EVMn(q) needs to be processed

just once. Moreover, according to Theorem 4, the resulting

set corresponds to the regularized XOR operation between p

and q since

(*) () ()n n nEVM p q EVM p EVM q⊗ = ⊗

From the above primitive operations, the Algorithms 1

and 2 may be easily derived [1, 8].

Algorithm 1. Computing ()1 1(())A

n kEVM S pπ−
 as

() ()1 1 1 1 1(()) (())A A

n k n kEVM S p EVM pπ π− − −⊗ Φ .

Input: A section S encoded as a (n-1)D-EVM.

 A couplet hvl encoded as a (n-1)D-EVM.
Output: An (n-1)D-EVM.

Procedure GetSection(EVM S, EVM hvl)

 // Returns the projection of the

 // next section of an nD-OPP whose

 // previous section is S.

 return MergeXor(S, hlv)

end-of-procedure

Algorithm 2. Computing ()1 1(())A

n kEVM pπ− Φ as

() ()1 1 1 1 1(()) (())A A

n k n kEVM S p EVM S pπ π− − −⊗ .

Input: (n-1)D-EVM associated to section Si.

 (n-1)D-EVM associated to section Sj.

Output: An (n-1)D-EVM.

Procedure GetHvl(EVM Si, EVM Sj)

 // Returns the projection of the

 // couplet between consecutive

 // sections Si and Sj.

 return MergeXor(Si, Sj)

end-of-procedure

The Algorithm 3 computes the sequence of sections of

an nD-OPP p from its nD-EVM using the previous functions

[1, 8]. It sequentially reads the projections of the (n-1)D

couplets hvl of the polytope p. Then it computes the

sequence of sections using function GetSection. Each pair of

sections Si and Sj (the previous and next sections about the

current hvl) is processed by a generic processing procedure

(called Process), which performs the desired actions upon Si

and Sj (Note that some processes may only need one of such

sections).

Algorithm 3 Computing the sequence of sections

from an nD-OPP p represented through the nD-EVM.

Input: An nD-EVM p.

Procedure EVM_to_SectionSequence(EVM p)

 EVM hvl // Current couplet.

 EVM Si, Sj // Previous and next

 // sections about hvl.

 hvl = InitEVM()

 Si = InitEVM()

 Sj = InitEVM()

 hvl = ReadHvl(p)

 while(Not(EndEVM(p)))

Sj = GetSection(Si, hvl)

Process(Si, Sj)

 Si = Sj

 hvl = ReadHvl(p) // Read next couplet.

 end-of-while

end-of-procedure

III. INTERROGATIONS ON nD-OPPS

REPRESENTED VIA THE nD-EVM

The following two sections present a pair of algorithms

that show the applicability of the nD-EVM. In particular, the

algorithms have the objective of determining two

geometrical properties of nD-OPPs expressed in the EVM:

computation of the content enclosed by an nD-OPP (Section

III.A), and computation of the (n-1)D content of a nD-OPP’s

boundary (Section III.B).

A. Computing the Content of an nD-OPP

The 1D content of a segment is its perimeter; the 2D

content of a polygon is its area; the 3D content of a

polyhedron is its volume, and so on. In this section, it is

described a procedure for computing the nD content

enclosed by an nD-OPP. In this case we will consider the

partition induced by its Slices (Definition 16). A Slice can

be seen as a set of one or more disjoint nD hyperprisms

whose (n-1)D base is the slice’ section. As pointed out in [1]

the volume of a 3D-OPP p can be computed as the sum of

the volumes of its 3D slices, where the volume of a

()i

kSlice p is given by the product between the area of its

respective section ()i

kS p (the 2D base of ()i

kSlice p) and the

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

distance between ()i

k pΦ and
1()i

k p+Φ (the height of the 3D

prism ()i

kSlice p). Now let q = ()i

kS p . The area of the

2D-OPP q (see Fig. 3 for an example) can be computed as

the sum of the areas of its 2D slices, where the area of a

()i

kSlice q is given by the product between the length of its

respective section ()i

kS q (the 1D base of ()i

kSlice q) and the

distance between ()i

k qΦ and
1()i

k q+Φ (the height of the “2D

prism” ()i

kSlice p). Finally let r = ()i

kS q . In the base case the

length of the 1D-OPP r is computed as the sum of the

lengths of its brinks.

Let p be an nD-OPP. The nD space enclosed by p,

denoted by Content(n)(p), can be computed as the sum of the

contents of its nD slices [8]:

() ()

()

1

1
(1)

1

()

() 1

() (), () 1
i

n

np
i i i

k k k
n

k

Content p

Length p n

Content S p dist p p n
−

+−
=

=

=
⋅ Φ Φ >

∑

Where npi is the number of couplets of p perpendicular to

Xi-axis; ()i

kS p is the k-th section of the nD-OPP p which is

perpendicular to Xi-axis and it is between couplets ()i

k pΦ

and
1()i

k p+Φ . Algorithm 4 implements the above recursive

function in order to compute the content of nD space

enclosed by an nD-OPP p expressed in the EVM [1, 8].

Algorithm 4. Computing the content of nD space enclosed

by an nD-OPP expressed in the nD-EVM.

Input: An nD-EVM p.
 The number n of dimensions.
Output: Content of nD space enclosed by p.
Procedure Content(EVM p, int n)
 real cont=0.0 // nD space enclosed by p.
 EVM hvl1, hvl2 // Couplets between
 // a slice of p.
 EVM s // Current section of p.
 if(n = 1) then

// Base case: p is a 1D-OPP.
 return Length(p)
 else
 hvl1 = InitEVM()
 hvl2 = InitEVM()
 s = InitEVM()

hvl1 = ReadHvl(p)
 while(Not(EndEVM(p)))
 hvl2 = ReadHvl(p)
 s = GetSection(s, hvl1)
 // Recursive Call.
 cont = cont +

 Content(s,n-1) * dist(hvl1,hvl2)
 hvl1 = hvl2
 end-of-while
 return cont
 end-of-else
end-of-procedure

B. Computing the Content of the Boundary of an nD-OPP

In [1] is pointed out that the surface of a 3D-OPP p (see

Fig. 4 for an example) can be computed as the sum of the

areas of its 2D couplets perpendicular to Xi-axis, where the

area of a ()i

k pΦ is given by ()2 ()i

kContent pΦ (see

previous section). To this sum must be added the sum of the

areas of the faces between ()i

k pΦ and
1()i

k p+Φ . These areas

are found by the product between the perimeter of the

section ()i

kS p and the distance between ()i

k pΦ and

1()i

k p+Φ (the height of the 3D prism ()i

kSlice p). Now let

q = ()i

kS p , we have reached the base case. The perimeter of

the 2D-OPP q can be computed as [1]:

1 2() () ()Perimeter q x Sum q x Sum q= +

where
1 ()x Sum q and

2 ()x Sum q denote the sum of the

lengths of all brinks parallel to X1-axis and X2-axis,

respectively.

Fig. 3. A 2D-OPP q whose area is being computed:

The total area of q is the sum of the areas of its slices.

Fig. 4. Computing the content of the boundary in a 3D prism.

Let p be an nD-OPP. The (n-1)D space enclosed by p’s

boundary, denoted by BoundaryContent(n)(p), can be

computed as follows [8]:

()

()

()

()

1 2

(1)
1

1
(1)

1
1

()

() () 2

() 2

()

(), ()

i

i

n

np
i

k
n

k

i
np

k
n

i i
k

k k

BoundaryContent p

x Sum p x Sum p n

Content p n

BoundaryContent S p

dist p p

−
=

−
−

=
+

+ =

Φ + >
=

 Φ Φ

∑

∑
i

X
2

X
1

X 3

1

1()pΦ

1

1 ()S p

1

2()pΦ

X 2

X
1

1

1()qΦ 1

2 ()qΦ

1

3()qΦ

1

4 ()qΦ 1

5 ()qΦ

1

1 ()S q

1

2 ()S q

1

3 ()S q

1

4 ()S q

()1 1

2 3(), ()dist q qΦ Φ

()1 1

4 5(), ()dist q qΦ Φ

()1 1

3 4(), ()dist q qΦ Φ()1 1

1 2(), ()dist q qΦ Φ

()1 1

1 2(), ()dist p pΦ Φ

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

Algorithm 5 implements the above recursive expression

in order to compute the content of (n-1)D space enclosed by

the boundary of p expressed through the nD-EVM [1, 8].

Algorithm 5. Computing the content of (n-1)D space enclosed

by the boundary of a nD-OPP expressed in the nD-EVM.

Input: An nD-EVM p.
 The number n of dimensions.
Output: The content of (n-1)D space enclosed
 by the boundary of p.
Procedure BoundaryContent(EVM p, int n)

// The content of (n-1)D space enclosed
// by p’s boundary.
real cont = 0.0
// Couplets between a slice of p.
EVM hvl1, hvl2
EVM s // Current section of p.
hvl1 = InitEVM()
hvl2 = InitEVM()
s = InitEVM()
if(n = 2) then

// Base case: p is a 2D-OPP, its
// perimeter is computed.
return x

1
Sum(p) + x

2
Sum(p)

else
 hvl1 = ReadHvl(p)
 while(Not(EndEVM(p)))

hvl2 = ReadHvl(p)
s = GetSection(s, hvl1)
// Call to algorithm Content and
// recursive call.
cont = cont + Content(hvl1,n-1) +
 BoundaryContent(s, n-1) *
 dist(hvl1,hvl2)
hvl1 = hvl2

 end-of-while
 // hvl1 contains p’s last couplet.

cont = cont + Content(hvl1,n-1)
 return cont
end-of-else

end-of-procedure

IV. BASIC MORPHOLOGICAL OPERATIONS IN THE nD-EVM

Let
nxxxC ,...,, 21
 be a hypervoxelization (not necessarily

binary) with length along the Xi-axis mi, i = 1, 2, …, n. Let S

be a subset of nℤ . S is called the structuring element. The

dilation of hypervoxelization
nxxxC ,...,, 21
 by S, denoted by

C S⊕ , is another hypervoxelization defined as:

()

()

1 2

1 1 2 2

, ,...,

, ,...,

1 2

:
sup

, ,..., , 1 , 1, 2,...,

n

n n

x x x

x x x x x x

n i i i

C S

C

x x x S x x m i n

− − −

⊕

=

∈ ≤ − ≤ =

In a similar fashion, the erosion of hypervoxelization

nxxxC ,...,, 21
 by S, C S○ , is given by:

()

()

1 2

1 1 2 2

, ,...,

, ,...,

1 2

:
inf

, ,..., , 1 , 1, 2,...,

n

n n

x x x

x x x x x x

n i i i

C S

C

x x x S x x m i n

− − −
=

∈ ≤ − ≤ =

○

The well known morphological erosion and dilation

constitute the fundamentals behind other useful operators.

Burgeth et al [2] list some of them:

• Opening: ()C S C S S= ⊕� ○

• Closing: ()C S C S S• = ⊕ ○

• White top-hat: () \ ()WTH C C C S= �

• Black top-hat: () () \BTH C C S C= •

• Beucher gradient: () ()() \
S

C C S C S∇ = ⊕ ○

• Internal gradient: ()() \
S

C C C S
−∇ = ○

• External gradient: ()() \
S

C C S C
+∇ = ⊕

Rodríguez & Ayala [11] point out that dilation and

erosion over binary hypervoxelizations can be understood as

operations that only add or remove black hypervoxels in

terms of the size and shape of the structuring element.

Furthermore, they comment that erosion and dilation can be

seen as processes where the object’s interior is shrunk or

elongated respect to the size of the structuring element. This

reasoning constitutes the basis of their proposed algorithms

for performing erosion and dilation over an nD-OPP

expressed in the nD-EVM. Their idea is in fact very

simple [11]:

• Given an input nD-OPP p, its (n-1)D sections,

perpendicular to XA-axis are obtained.

• Current section Sj is an (n-1)D-OPP that describes the

interior of the current nD Slice of p. Sj is sent as input to

the algorithm via a recursive call.

• The output of the recursive call is a (n-1)D-OPP, actually

a new section, that corresponds to the erosion (dilation) of

section Sj. The eroded (dilated) section is used for

determine the new (n-1)D couplet before it.

• The obtained couplets define a new nD-OPP which

corresponds to the erosion (dilation) of the input

nD-OPP p.

As specified before, the procedure descends recursively over

the number of dimensions. The base case is reached when

n = 1. In this situation, it is obtained a set of segments

embedded in XZ-axis. In this phase, the algorithm directly

shrinks (elongates) those segments according to an erosion

(dilation) ratio. Hence, a box-shaped structuring element is

used [11]. It is possible some segments can be merged or

disappear depending which operation is applied. Algorithm

6 implements the procedure, originally presented in [11], for

computing the erosion of an nD-OPP expressed in the EVM.

Implementing dilation operation is made in similar way and

taking in account the corresponding base case.

It is convenient to comment a property. An EVM is a set

of points with a fixed coordinates ordering. Algorithm 6, in

the main call, computes (n-1)D sections perpendicular to

XA-axis, then, recursively, computes (n-2)D sections

perpendicular to the axis following XA, and so on, until the

base case is reached and the segments in the input 1D-OPP

are embedded in XZ-axis. As previously stated, is at this

point were the erosion (dilation) takes place, defining new

segments and for instance defining new lower dimensional

sections until there are obtained the final (n-1)D sections

corresponding to the erosion (dilation) of the input nD-OPP.

This implies Algorithm 6 erodes (dilates) the input OPP only

respect to XZ-axis [11]. For full erosion, along all the n main

axes of the nD space, it is required to sort n times the

coordinates in the input EVM in such way each time one

different axis appears in the last place [11]. The Algorithm 7

computes the full erosion of an nD-OPP p. It receives as

input an EVM, the number n of dimensions, and an array

that contains the erosion ratios to be applied respect to each

coordinates axis. It is assumed the i-th position in the array

indicates the erosion ratio to apply along the Xi-axis. When

such erosion is going to be performed, via Algorithm 6,

then we have such coordinate must appear in the last

position of the current coordinates ordering, i.e., XZ = Xi.

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

The coordinates sorting is performed by calling a procedure

SortEVM. Given a permutation
1 2 nα α α

X X X⋯ , the function

sorts the extreme vertices of p first according to coordinate

1α
X , after according to coordinate

2α
X , and so on until p is

sorted according to coordinate
nα

X . An algorithm for full

dilation is implemented in a similar fashion.

Algorithm 6. Eroding, in direction of XZ-axis, an nD-OPP

expressed in the nD-EVM.

Input: An nD-EVM p.
 The number n of dimensions.
 The erosion ratio.
Output: An nD-EVM corresponding to the
 erosion of p along X

Z
-axis.

Procedure Erosion
 (EVM p, int n, CoordType ratio)
 if(n = 1) then
 // Base case: p is a 1D-OPP.
 return Erosion1D(p, ratio)
 else
 EVM hvl // Current couplet of p.
 EVM Si // Previous section to hvl.
 EVM Sj // Next section to hvl.
 EVM erodedP // p’s erosion.
 EVM erodedHvl // Couplet to append to
 // p’s erosion.
 EVM erodedSi // Previous section to
 // erodedHvl.
 EVM erodedSj // Next section to
 // erodedHvl.
 CoordType coord // Common X

A
-coordinate

 // of couplet hvl.
 erodedP = InitEVM()
 Si = InitEVM()
 erodedSi = InitEVM()
 while(Not(EndEVM(p)))
 coord = GetCoordNextHvl(p)

 hvl = ReadHvl(p)
 Sj = GetSection(Si, hvl)
 // Recursive Call.
 erodedSj = Erosion(Sj, n-1, ratio)
 erodedHvl =
 GetHvl(erodedSi, erodedSj)
 SetCoord(erodedHvl, coord)
 PutHvl(erodedP, erodedHvl)
 Si = Sj
 erodedSi = erodedSj
 end-of-while
 return erodedP
 end-of-else
end-of-procedure

Algorithm 7. Full erosion of an nD-OPP expressed in the nD-EVM.
Input: An nD-EVM p.
 The number n of dimensions.
 An array with erosion ratios.
Output: An nD-EVM corresponding to the
 full erosion of p.
Procedure FullErosion
 (EVM p, int n, CoordType ratios[1, …, n])
 EVM erosionP = p
 int i = 0
 for each sorting in
 {X

1
X

2
…X

n-1
X

n
, X

n
X
1
…X

n-2
X
n-1
, X

n-1
X
n
X
1
…X

n-3
X
n-2
,

 …, X
2
X

3
X

4
…X

n
X

1
}

 SortEVM(erosionP, n, sorting)
 // Erosion along X

Z
-axis

 erosionP=Erosion(erosionP,n,ratios[n-i])
 i = i + 1
 end-of-for
 return erosionP
end-of-procedure

Given algorithms for full erosion and full dilation

under the nD-EVM, it is possible to implement, in straight

way, morphological operators such as Opening (�) or

Closing (•). See Algorithms 8 and 9.

Algorithm 8. Computing the morphological opening of an nD-OPP.

Input: An nD-EVM p.
 The number n of dimensions.
 An array with erosion ratios.
 An array with dilation ratios.
Output: An nD-EVM corresponding to the full
 dilation of the full erosion of p.
Procedure Opening
(EVM p, int n,
 CoordType erosionRatios[1,…,n],
 CoordType dilationRatios[1,…,n])
 EVM openingP = p
 openingP =
 fullErosion(openingP,n,erosionRatios)
 openingP =
 fullDilation(openingP,n,dilationRatios)
 return openingP
end-of-procedure

Algorithm 9. Computing the morphological closure of an nD-OPP.

Input: An nD-EVM p.
 The number n of dimensions.
 An array with erosion ratios.
 An array with dilation ratios.
Output: An nD-EVM corresponding to the full
 erosion of the full dilation of p.
Procedure Closure
(EVM p, int n,
 CoordType erosionRatios[1,…,n],
 CoordType dilationRatios[1,…,n])
 EVM closureP = p
 closureP =
 fullDilation(closureP,n,dilationRatios)
 closureP =
 fullErosion(closureP,n,erosionRatios)
 return closureP
end-of-procedure

V. REPRESENTING VOLUME DATASETS THROUGH

4D ORTHOGONAL POLYTOPES

Now, we have the elements to proceed to present the

contribution of this work. The conversion of a voxelization

to a 4D polytope, and therefore to a 4D-EVM, is in fact a

straight procedure. As commented in Section I, the proposal

is oriented to color spaces with three or more values. If it is

the case the datasets have binary intensity values then refer

to [9] where a more appropriate representation is described.

It is assumed the intensities of each voxel are expressed as a

single number. Consider the following

Corollary 3 [1]: Let p and q be two disjoint or quasi disjoint

nD-OPPs having EVMn(p) and EVMn(q) as their respective

Extreme Vertices Models, then

() () ()n n nEVM p q EVM p EVM q∪ = ⊗

An nD hyperprism is a polytope generated by the

parallel motion of an (n-1)D polytope; it is bounded by the

(n-1)D polytope in its initial and final positions and by

several (n-1)D hyperprisms [3, 14]. In this sense, each voxel

in a 3D dataset is extruded towards the fourth dimension,

that is, it is converted in a 4D hyperprism whose bases are

precisely the original voxel and its height is given by its

corresponding intensity-plus-one value in the dataset. The

vertices’ coordinates X1, X2, and X3 in the hyperprism’s

bases correspond to the original voxel's coordinates. The

inferior base’s points have their X4 coordinate equal to zero,

while in the remaining vertices the X4 coordinate is equal to

the intensity-plus-one value (see Fig. 5). Let us call xf to the

set composed by the 4D hyperprisms (the extruded voxels)

of the extruded 3D dataset.

Let pri be a 4D hyperprism in xf and npr the number of

prisms in that set (this number is in fact equal to the number

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

of voxels in the original dataset). Since all the hyperprisms

in xf are quasi disjoint 4D-OPPs, the extreme vertices, of the

whole 4D extruded dataset, can be easily obtained by

computing the regularized union of all the hyperprisms in xf.

Hence, Corollary 3 can be applied in the following way:

4 4

1

() ()
npr

i

i

EVM F EVM pr xf
=

= ∈⊗

Where F is the 4D-OPP that represents the union of all

the hyperprisms in xf. By this way, it is obtained a

representation for a 3D Dataset through a 4D-OPP and

the EVM.

Fig. 5. Extruding a voxel towards the fourth dimension. The result is a 4D

hyperprism whose height is determined by the voxel’s intensity color.

VI. MODELING VOLUME DATASETS WITH 4D-OPPS

AND THE EVM: CONCISENESS

In this section there are described some results related to

the conversion from voxelizations to the proposed

representation. Such datasets were taken from The Volume

Library [12], and the University of Iowa’s Department of

Radiology [4] (datasets’ visualizations shown in Table I and

Fig. 6 were obtained via a volume rendering software

available at [17]). Prior to the conversion, a multilevel

thresholding was applied to the original datasets in order to

reduce noise. The Table I shows the measures obtained

when the considered voxelizations were converted to

4D-OPPs and the EVM.

Now, let p be a dataset expressed under a voxelization

with size (x1Size × x2Size × x3Size) and with EVM4(p) as its

corresponding EVM. Consider the ratio

1 2 3

4(())

x Size x Size x Size

Card EVM p

⋅ ⋅

For example, consider the model CT-Hand (Table I). Its

source voxelization has size (492 × 240 × 155) which

implies that it is required to store 18,302,400 voxels. The

4D-EVM associated to CT-Hand has 7,191,726 extreme

vertices. Hence, the proposed ratio gives the value 2.54

which implies that the number of stored voxels that belong

to the original representation of the object is precisely

2.54 times greater than the number of obtained

extreme vertices. The Table II shows the ratio

Number-of-voxels/Number-of-Extreme-Vertices for the

models described in Table I. The value shared by the ratio

depends on the topology and geometry of the objects being

modeled, but it shows the conciseness, related to storing

requirements, when they are represented through the EVM.

VII. QUERYING VOLUME DATASETS

EXPRESSED IN THE 4D-EVM

The importance behind a volume dataset is the

information can be obtained about it. If the datasets are

represented through the 4D-EVM then the extraction of its

couplets will provide a classification of the elements in the

original model according to their intensities. Given a dataset

based on a scale of K intensities, then it is possible to obtain

at most, from its corresponding 4D-OPP, 1+K 3D couplets

perpendicular to the axis associated to color. The “extra”

couplet, in fact the first couplet, is the result of the union of

all the inferior bases of the 4D hyperprisms in xf (the set

composed by the dataset’s extruded voxels): the points in

such bases have value zero for the coordinate associated to

color (see Fig. 5).

It is common that intensities correspond to physical

properties. For example, in a medical dataset intensities

could refer to certain tissues. Hence, by extracting 3D

couplets perpendicular to color axis we obtain, for a given

couplet, only those parts of the dataset with the same type of

tissue. The Table III shows some 3D couplets obtained from

the dataset CT-Hand (3D-EVM visualizations from Tables

III, V, and VI were achieved by means of software

developed in [13]). In Table III, it can be observed that the

first three couplets describe parts of the dataset whose voxels

correspond to soft tissue like skin, cartilage, and muscles.

The remaining couplets, also shown in the same table, show

different types of bone tissue present in the voxelization. As

commented previously, the type of material is, in this case,

assumed to be defined by the color intensity of the voxels in

the original dataset.

The projection of each couplet, perpendicular to the axis

associated to color, in a 4D-EVM, is in fact a 3D-EVM

which in time corresponds to a binary dataset because it only

contains material of the same type. Hence, it is possible to

apply Algorithm 3 to one of these 3D couplets in order to

obtain their associated 2D sections. These sections will share

a description of the interior of the homogeneous object with

the objective of performing the appropriate analyses

according to the application. The Table IV shows some 2D

sections corresponding to one of the 3D couplets from the

model Vismale (see Table I). There are shown 25 of these

2D sections which allow understand the internal

organization of the selected 3D couplet. It is possible to

visualize some internal organs.

The Algorithms 4 and 5 (Sections III.A and III.B,

respectively) can be used for interrogate a nD-EVM in order

to determine, for its corresponding nD-OPP, its nD content

and the (n-1)D content of its boundary. These algorithms

X
1

X
2

X
3 X

4

(X , X , X , 0) 1 2 3

(X , X , X , color+1) 1 2 3

X
1

X
2

X
3

(X , X , X) 1 2 3

color

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

can be applied to the 4D-EVM associated to a dataset; in this

sense its corresponding 4D content and the 3D content of its

boundary are obtained. Furthermore, it is clear that the

projection of each couplet perpendicular to color axis is a

3D-OPP which contains only elements of the same type of

material. Hence, it is possible to apply Algorithms 4 and 5 in

order to determine its volume and its boundary’s area. By

this way, it is obtained measure information about specific

parts of the original dataset.

For example, Table V shows 3 couplets taken from the

dataset CT-Chest. In 3D couplet 4 it is possible to observe

soft tissue and the lungs. The 3D couplets 32 and 50

correspond to bone tissue where some ribs and the vertebral

column can be observed (the scapulae can be visualized in

3D couplet 32; they are not present in couplet 50). Table V

also presents the volume and the boundary’s area of these

3D couplets.

TABLE I

VOLUME DATASETS USED FOR CONVERSION TO 4D-OPPS AND FINALLY EXPRESSED THROUGH THE 4D-EVM.

Blunt Fin
Description: Airflow over a flat plate with a blunt fin rising

from the plate.

Voxelization size: (256 × 128 × 64) ≡ 2,097,152

4D-EVM Size: 347,956

CT-Chest
Description: Computed Tomography of a normal chest.

Voxelization size: (384 × 384 × 240) ≡ 35,389,440

4D-EVM Size: 19,674,862

CT-Hand

Description: Computed Tomography of a normal hand.

Voxelization size: (492 × 240 × 155) ≡ 18,302,400

4D-EVM Size: 7,191,726

CT-Knee
Description: Computed Tomography of knee, anterior tibial

osteotomy.

Voxelization size: (379 × 229 × 305) ≡ 26,471,255

4D-EVM Size: 17,938,182

Baby
Description: baby head.

Voxelization size: (256 × 256 × 98) ≡ 6,422,528

4D-EVM Size: 2,975,618

Vismale
Description: Visible male (head).

Voxelization size: (128 × 256 × 256) ≡ 8,388,608

4D-EVM Size: 6,300,952

TABLE II

THE RATIO NUMBER-OF-VOXELS/NUMBER-OF-EXTREME-VERTICES FOR DATASETS SHOWN IN TABLE I.

Object p
Voxelization Size

(Number of voxels)

Card(EVM4(p))

(Number of extreme vertices)

1 2 3

4(())

x Size x Size x Size

Card EVM p

⋅ ⋅

Blunt Fin 2,097,152 347,956 6.02

CT-Hand 18,302,400 7,191,726 2.54

Baby 6,422,528 2,975,618 2.15

CT-Chest 35,389,440 19,674,862 1.79

CT-Knee 26,471,255 17,938,182 1.47

Vismale 8,388,608 6,300,952 1.33

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

TABLE III

SOME 3D COUPLETS, PERPENDICULAR TO COLOR AXIS, EXTRACTED FROM THE 4D-EVM ASSOCIATED TO CT-HAND.

3D Couplet 6 3D Couplet 20

3D Couplet 25 3D Couplet 30

3D Couplet 36 3D Couplet 50

VIII. STORAGE AND NOISE REDUCTION VIA

4D MORPHOLOGICAL EROSION AND DILATION

It is well know the “Salt and Pepper” noise in a binary

dataset refers to the random presence, due to the acquisition

process, of white (the salt) or black (the pepper) components

[7]. The literature mentions some methodologies for

reduction of this type of noise such as Median Filtering,

Chain Code Processing, Instantiation to the Shortest Path

Problem, etc.

In particular, we will concentrate now in the reduction

of “Salt and Pepper” noise via morphological erosion and

dilation. Section IV dealt with Rodríguez & Ayala’s

EVM-based algorithms for performing erosion and dilation

over an nD-OPP. As commented in past sections, each 3D

couplet perpendicular to color axis, in our generated

4D-OPPs, contains material of the same type because our

procedure groups the elements of a dataset relating them by

their color intensity. In this sense, we said each 3D couplet

corresponds to a binary voxelization. We can establish then

our 4D-OPPs can be seen as a “binary expression” of 3D

volume datasets because they partition the 4D space in two

sets: the black (occupied) regions and the white (empty)

regions.

The algorithms presented in Section IV were designed

specifically under the context of eroding (dilating) binary

images: the black regions defined the OPP to erode (dilate)

[11]. According to our previous discussion, our generated

4D-OPPs can be used as input for purposes of erosion

(dilation). The idea is the reduction of “Salt and Pepper”

noise of the corresponding volume dataset via a 4D context

obtaining as benefit the deletion of undesired black

components, the filling of undesired white components, and

contour smoothing. We will see how the application of such

operators has repercussions over geometry and topology of

the elements that compose a represented volume dataset.

Moreover, another important benefit that can be obtained via

the application of erosion (dilation) is the reduction of the

4D representation’s spatial complexity, i.e. the EVM’s size.

Consider the dataset CT-Pelvi [4] (Fig. 6). It

corresponds to a computed tomography of a human’s pelvis.

The dataset has size (358 × 358 × 151) ≡ 20,812,330 voxels.

Its representation via 4D-EVM required 17,985,162 extreme

vertices hence its ratio Number-of-voxels/Number-of-

Extreme-Vertices is 1.15.

Fig. 6. Dataset CT-Pelvi (see text for details).

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

TABLE IV

VISUALIZING SOME 2D SECTIONS PERPENDICULAR TO X1-AXIS WHICH WERE PROCESSED FROM ONE 3D COUPLET

OF THE 4D-OPP ASSOCIATED TO THE DATASET VISMALE.

2D Section 1 2D Section 6 2D Section 11

3D Couplet 18 2D Section 16 2D Section 21 2D Section 26

2D Section 31 2D Section 36 2D Section 41 2D Section 46 2D Section 51

2D Section 56 2D Section 61 2D Section 66 2D Section 71 2D Section 76

2D Section 81 2D Section 86 2D Section 91 2D Section 96 2D Section 101

2D Section 106 2D Section 111 2D Section 116 2D Section 121 2D Section 124

Erosion and dilation were applied separately to

CT-Pelvi’s 4D-EVM representation. In both cases were used

the ratios [1.0, 1.0, 1.0, 0.0]. This implies erosion/dilation

were applied by shorting/elongating a unit in all directions,

except the one related to color axis because these operations

could modify the values of such coordinate and therefore the

correspondence with the original color scale could be

altered. In the erosion’s case it was obtained a new 4D

representation that required 7,531,384 extreme vertices. The

dilation’s 4D representation required 9,355,148 extreme

vertices. The new ratios Number-of-voxels/Number-of-

Extreme-Vertices were 2.76 and 1.92, respectively.

The Table VI shows some 3D couplets extracted from

the 4D-EVMs modeling the erosion and dilation of the

original 4D representation of CT-Pelvi dataset.

Corresponding 3D couplets from the original 4D-OPP are

also included in the table for visual comparison. Couplet 7

shows some parts of skin tissue while couplet 17 shares the

visualization of soft tissue and some internal organs. In both

cases, erosion and dilation produced couplets that required a

number of extreme vertices minor than the size of the

couplet associated to the original 4D representation.

Couplets 24 and 34 correspond to bone tissue: there can be

appreciated the coccyx, sacrum, iliac crest, femurs, and hip

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

bones, among others. The erosion of couplet 24 has more

extreme vertices than its dilation. However, both sizes are

minor than the 184,354 extreme vertices in the original

couplet. Because no erosion/dilation was applied respect to

color axis then each couplet, in the new representations,

contains material of a type described appropriately by the

original color scale.

The observations related to the obtained 3D couplets are

sustained in the fact erosion/dilation act, from the

EVM-based algorithms’ point of view, by modifying the

interior of their corresponding 4D-OPPs, specifically

operating over their 3D sections. The Rodríguez & Ayala

algorithms, once the sections have been modified, compute

new 3D couplets which by instance contain changes in their

topology and geometry. The presented example leads us to

establish the way erosion/dilation operations can be useful

tools, applied in a 4D context, on one hand, for reducing

noise present in the original dataset, while on the other hand,

it is possible to reduce the spatial complexity of the

representation.

IX. CONCLUDING REMARKS AND FUTURE WORK

The Extreme Vertices Model (3D-EVM) was originally

presented, and widely described, in [1] for representing

Orthogonal Pseudo-Polyhedra (3D-OPPs). The model has

enabled the development of simple and robust algorithms for

performing the most usual and demanding tasks on solid

modeling, such as closed and regularized Boolean

operations, solid splitting, set membership classification

operations, and measure operations on 3D-OPPs. In [8] was

formally proved that the EVM in fact is a complete scheme

for the representation of n-Dimensional Orthogonal

Pseudo-Polytopes (nD-OPPs). The meaning of complete

scheme was based in Requicha's set of formal criterions that

every scheme must have rigorously defined: Domain,

Completeness, Uniqueness and Validity. Although the EVM

of an nD-OPP has been defined as a subset of the nD-OPPs

vertices, which in principle defines the model’s conciseness,

there is much more information about the polytope hidden

within this subset of vertices. Moreover, several operations

can be performed efficiently and working directly and only

with the EVM representation. In Section II.G was presented

a specific algorithm for computing XOR in linear time: the

MergeXor algorithm. The algorithm’s linear complexity is a

valuable property when it is observed the nD-EVM’s

intensive use of Regularized XOR in several fundamental

operations such as the computation of sections of an

nD-OPP.

TABLE V

SOME 3D COUPLETS EXTRACTED FROM THE 4D-EVM ASSOCIATED TO DATASET CT-CHEST

AND INTERROGATIONS ABOUT THEIR MEASURES: VOLUME AND BOUNDARY’S AREA.

3D Couplet 4

3D Content (Volume): 264,101 u3

Boundary’s Area: 1,111,298 u2

3D Couplet 32

3D Content (Volume): 156,630 u3

Boundary’s Area: 578,954 u2

3D Couplet 50

3D Content (Volume): 14,904 u3

Boundary’s Area: 79,736 u2

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

TABLE VI

SOME 3D COUPLETS EXTRACTED FROM THE 4D-EVMS ASSOCIATED TO EROSION AND DILATION OF THE 4D REPRESENTATION OF DATASET CT-PELVI

3D Couplet Erosion Original Dilation

7

54,826 Extreme Vertices

73,768 Extreme Vertices

64,368 Extreme Vertices

17

631,242 Extreme Vertices

1,759,508 Extreme Vertices

675,054 Extreme Vertices

24

125,906 Extreme Vertices

184,354 Extreme Vertices

124,252 Extreme Vertices

34

21,754 Extreme Vertices

94,042 Extreme Vertices

88,858 Extreme Vertices

In this work we have focused about a proposal for the

representation of volume datasets through four-dimensional

orthogonal polytopes which in time are expressed in the

EVM. The evaluations presented in Section VI lead to

establish that an important level of conciseness is obtained

when such voxelizations are modeled according to our

four-dimensional context. Moreover, in Sections VII and

VIII we have described how the basic procedures under the

Extreme Vertices Model share the extraction of useful

information related to the original datasets: 1) the

classification of their elements according to intensities via

3D couplets perpendicular to color axis; 2) analysis of the

geometry and topology of those parts of a dataset which are

composed by the same type of material via the computation

of 2D sections; 3) measure interrogations in order to know

volumes or boundaries’ areas; and, 4) direct manipulation of

the 4D representation for reducing noise and spatial

complexity. It is possible to compute other geometrical and

topological interrogations over an EVM. By this way it

could be obtained much more information and properties

about the datasets. Furthermore, there are well specified

procedures under the nD-EVM which allow performing

Regularized Boolean Operations, Polytopes Splitting,

Discrete Compactness Computation, among others. In

[1, 8, 10, 11] there are described with enough detail

algorithms based in the nD-EVM, besides the ones described

in this work, which are useful and efficient for performing

these interrogations and/or manipulations.

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

According to Section VII, if the volume datasets are

represented through the 4D-EVM then the extraction of its

couplets will provide a classification of the elements in the

original model according to their intensities. The projection

of each couplet, perpendicular to the axis associated to color

is in fact a 3D-EVM which in time corresponds to a binary

dataset because it only contains material of the same type.

This observation opens a new line of future research because

the next logical step is given by the consideration of

additional approaches in such way the points in a volume

dataset could be characterized by taking in account not only

their color. Due to the presence of scanning noise and

artifacts, a classification based only in intensities is

sometimes not enough because points that should belong to

the same class could be characterized as distinct points and

therefore assigned to distinct classes (hence, our 4D

representation will integrate each one in distinct 3D

couplets). An intelligent approach, such as an Artificial

Neural Network, could automatically identify the classes of

points present in a volume dataset by taking in account their

geometry, topology, neighborhood, etc. Once the

classification is achieved, then the corresponding conversion

to our proposed four-dimensional representation could be

performed. It could be possible to assign to each class a

coordinate in the 4D space in such way 3D couplets

perpendicular to the fourth axis will correspond to sets of

points, in the original dataset, that belong to the same class.

By observing the results from Table II it is clear expressing

volume datasets via the 4D-EVM has advantages in terms of

storing requirements. It is expected, that by considering

more appropriate points classification, a much better

conciseness should be obtained.

REFERENCES

[1] A. Aguilera, Orthogonal Polyhedra: Study and Application, PhD

Thesis, Universitat Politècnica de Catalunya, 1998.

[2] B. Burgeth, N. Papenberg, A. Bruhn, M. Welk, C. Feddern, J.

Weickert, J. “Morphology for Higher-Dimensional Tensor Data via

Loewner Ordering”, Computational Image and Vision, 30:407-418,

2004.

[3] H.S.M. Coxeter, Regular Polytopes, Dover Publications, Inc., New

York, 1963.

[4] Department of Radiology, University of Iowa. Web Site (visited in

September, 2009): http://radiology.uiowa.edu/downloads/

[5] A. Jonas, N. Kiryati, “Digital Representation Schemes for

3-D Curves”, Technical Report CC PUB #114, The

Technion - Israel Institute of Technology, Haifa, Israel, 1995.

[6] G. Klajnsek, B. Rupnik, D. Spelic, “An Improved Quadtree-based

Algorithm for Lossless Compression of Volumetric Datasets”, 6th

WSEAS Int. Conference on Computational Intelligence, Man-Machine

Systems and Cybernetics, 1:264-270, Spain, December 2007.

[7] S. Marchand-Maillet, Y.M. Sharaiha, Binary Digital Image

Processing: A Discrete Approach, Academic Press, 1999.

[8] R. Pérez-Aguila, Orthogonal Polytopes: Study and Application, PhD

Thesis, Universidad de las Américas - Puebla (UDLAP), 2006.

Available at:

http://catarina.udlap.mx/u_dl_a/tales/documentos/dsc/perez_a_r/

[9] R. Pérez-Aguila, “Modeling and Manipulating 3D Datasets through

the Extreme Vertices Model in the n-Dimensional Space

(nD-EVM)”, Research in Computer Science, Special Issue: Industrial

Informatics, México, 31:15-24, 2007.

[10] R. Pérez-Aguila, “Computing the Discrete Compactness of

Orthogonal Pseudo-Polytopes via Their nD-EVM Representation,”

Mathematical Problems in Engineering, vol. 2010, Article ID 598910,

28 pages, 2010. doi:10.1155/2010/598910

[11] J. Rodríguez, D. Ayala, “Erosion and Dilation on 2D and 3D Digital

Images: A new size-independent approach”, Vision Modeling and

Visualization 2001, Germany, 1:143–150, 2001.

[12] S. Roettger, The Volume Library. Web Site (visited in September,

2009): http://www9.informatik.uni-erlangen.de/External/vollib/

[13] R. Ruiz-Rodríguez, Implementación del EVM (Extreme Vertices

Model) en Java, M.Sc Thesis, Universidad de las Américas – Puebla

(UDLAP), 2002. Available at:

http://catarina.udlap.mx/u_dl_a/tales/documentos/msp/ruiz_r_r/

[14] D.M.Y. Sommerville, An Introduction to the Geometry of N

Dimensions, Dover Publications Inc., 1958.

[15] W. Song, S. Hua, Z. ou, H. An, K. Song, “Octree Based

Representation and Volume Rendering of Three-Dimensional Medical

Data Sets”, International Conference on BioMedical Engineering and

Informatics 2008, 1:316-320, 2008.

[16] M. Spivak, Calculus on Manifolds: A Modern Approach to Classical

Theorems of Advanced Calculus, HarperCollins Publishers, 1965.

[17] University of Tübingen. The Official Volren and Volvis Homepage.

Web Site (visited in September, 2009):

http://www.gris.uni-tuebingen.de/edu/areas/scivis/volren/software/

software.html

Ricardo Pérez-Aguila received his BSc (2001), MSc (2003) and PhD

(2006) degrees in Computer Science from the Universidad de las

Américas-Puebla (UDLAP). In 2003-2006 he worked in the Actuarial

Sciences, Physics and Mathematics Department at the same institution. In

2007 he incorporated as a full time faculty member at the Universidad

Tecnológica de la Mixteca (UTM). He is Candidate to National Researcher

of México’s Researchers National System (SNI-Conacyt). His interests

consider the study of n-Dimensional Polytopes by analyzing their

Visualization, Geometry, Topology, Representation, and Applications. In

the Neural Networks field he has been particularly interested in the Neural

Network Architectures based in Non-Supervised Training.

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

__

