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Abstract - This work is devoted to describe some results for 

a new approach intended to represent volume datasets in a 
concise way. The main idea is to specify voxelizations as 

orthogonal polytopes whose fourth dimension corresponds to 
color. Then, the 4D representation is expressed via the Extreme 

Vertices Model in the n-Dimensional Space (nD-EVM). There 
will be presented some examples that show how the proposed 

methodology leads to a representation whose storing 
requirements are lesser than those demanded by the original 

datasets. Moreover, it will be described the way the properties 
and algorithms behind the nD-EVM can be applied in order to 

interrogate the 4D-EVM associated to a dataset with the 
purpose of obtaining, in efficient way and working directly and 

only with the EVM, useful geometrical and topological 
information. Also, there will be described EVM-based 

algorithms for morphological erosion and dilation and the way 
they can be useful in aspects such as the removal of “Salt and 

Pepper” noise under the context of our 4D representation. 
 

Index Terms - Representation and Manipulation of Volume 

Datasets, Polytopes Representation Schemes, Geometrical and 

Topological Interrogations, Morphological Operations. 
 

I. INTRODUCTION 
 

The representation of a polytope through a scheme of 

Hyperspatial Occupancy Enumeration is essentially a list of 

identical hyperspatial cells occupied by the polytope. 

Specific types of cells, called hypervoxels [5] are  

hyper-boxes (hypercubes, for example) of a fixed size that 

lie in a fixed grid in the nD space. By instantiation, it is well 

known that a 2D hypervoxel is a pixel while a 3D 

hypervoxel is a voxel; the term rexel is suggested for 

referencing a 4D hypervoxel [5]. The collection of 

hyperboxes can be codified as an nD array 
nxxxC ,...,, 21
. The 

array represents the coloration of each hypervoxel. If 

0,...,, 21
=

nxxxC , the empty hypervoxel 
nxxxC ,...,, 21
 represents an 

unoccupied region from the n-Dimensional space. If 

1 2, ,..., 0
nx x x

C k= ≠ , where k is in a given color scale (black & 

white, grayscale, RGB, etc.), then the occupied hypervoxel 

nxxxC ,...,, 21
 represents an used region from the  

n-Dimensional space with intensity k. In fact, the set of 

occupied cells defines an orthogonal polytope p whose 

vertices coincide with some of the occupied cells’ vertices. 
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By using the representation through an array, the spatial 

complexity of a hypervoxelization is at least  

1

n

i

i

m
=

∏  

where mi, 1 ≤ i ≤ n, is the length of the grid along the  

Xi-axis. For example, a 3D grid with m1 = m2 = m3 = 1,000 

requires to store 1 billion (1×109) voxels. Moreover, 

according to the used color scale each voxel will have a 

storing requirement. For example, if the color space is RGB 

then each voxel will require three bytes (four, if the alpha 

channel is considered) for codifying its corresponding 

intensity. 

It is well known that some devices represent natively 

volume datasets through voxelizations. However, sometimes 

their storing requirements make difficult their manipulation 

and the extraction of information and knowledge. In this 

sense, several efforts have been made in order to reduce the 

spatial complexity of volume datasets always taking in 

account the information they contain, due to its importance 

and relevance, should be compromised as minimum as 

possible. For example, in [6] is presented an algorithm for 

compression of datasets by means of quadtrees in order to 

encoding slices of data. Such encodings are used for 

discovering similarities between consecutive slices. In [15], 

3D medical datasets are compressed via a method sustained 

in the use of octrees. Both works share us evidence of the 

spatial conciseness provided by considering the use of solid 

representation schemes. This work is devoted to present an 

alternative representation for volume datasets. In particular, 

datasets whose color scales are not binary are the dominion 

of the proposal (in [9] is presented a methodology designed 

specifically for 3D datasets with black & white color scale). 

The main idea is to specify datasets as 4D polytopes where 

the fourth dimension corresponds to color. Then, the 4D 

representation is concisely expressed and manipulated 

through a polytopes’ representation scheme: the Extreme 

Vertices Model.  

This work is organized as follows: The Section II will 

describe the fundamentals behind the Extreme Vertices 

Model in the n-Dimensional Space (nD-EVM). Section III 

discusses some algorithms for interrogate an nD-EVM in 

order to obtain some useful geometrical information about 

an orthogonal polytope represented via the model. Section 

IV describes Rodríguez & Ayala’s algorithms for 

performing morphological erosion and dilation over an  

nD-OPP expressed in the EVM. The proposed methodology 

for the conversion of a volume dataset to a 4D-EVM, the 

core contribution of this work, is described in the Section V. 

The Section VI presents some examples of datasets 

expressed under the EVM. By comparing the storing 
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requirements between the original and the 4D-EVM 

representations it is established the conciseness of our 

proposal. The Section VII describes the way the algorithms 

and properties behind the nD-EVM can be applied in order 

to interrogate the 4D-EVM associated to a dataset for 

obtaining useful information. There are described the 

benefits of the internal organization of the Extreme Vertices 

in an EVM. Specifically, it will be seen how such 

organization, together with our proposal, leads to a 

characterization of the elements in a dataset according to its 

color intensity. Finally, Section VIII shows the application 

of erosion and dilation’s EVM-based algorithms on the 

removal of “Salt and Pepper” noise in the context of a  

4D-OPP that models a 3D volume dataset and their impact 

in the spatial complexity of our proposed representation. 

 

II. THE EXTREME VERTICES MODEL  

IN THE  n-DIMENSIONAL SPACE (nD-EVM) 
 

This section and Section III compose a summary of 

results originally presented in [1, 8]. For the sake of brevity, 

some propositions are only enunciated. Their corresponding 

proofs can be found in [1, 8]. In Section II.A there will be 

introduced some conventions and preliminary background 

related directly with orthogonal polytopes. In Sections II.B 

to II.F the foundations of the nD-EVM will be established. 

The Section II.G presents some basic algorithms under  

the EVM.  
 

A. The n-Dimensional Orthogonal Pseudo-Polytopes  

(nD-OPPs) 
 

Definition 1 [16]: A Singular n-Dimensional Hyper-Box in 
nℝ  is given by the continuous function 

: [0,1] [0,1]

( )

n n n

n

I

x I x x

→

=∼
 

A General Singular k-Dimensional Hyper-Box in the closed 

set nA ⊂ ℝ  is the continuous function :[0,1]k
c A→  

Definition 2 [16]: For all i, 1 ≤ i ≤ n, the two singular  

(n-1)D hyper-boxes 
( ,0)

n

i
I  and 

( ,1)

n

i
I  are defined as follows:  

If 1[0,1]n
x

−∈  then 

( ,0) 1 1 1 1 1 1( ) ( ,..., , 0, ,..., ) ( ,..., ,0, ,..., )n n

i i i n i i n
I x I x x x x x x x x− − − −= =  

( ,1) 1 1 1 1 1 1( ) ( ,..., ,1, ,..., ) ( ,..., ,1, ,..., )n n

i i i n i i n
I x I x x x x x x x x− − − −= =  

Definition 3 [16]: In a general singular nD hyper-box c the 

(i,α)-cell is defined as 
( , ) ( , )

n

i ic c Iα α= � , while the orientation 

of an (n-1)D cell 
( , )

n

ic I α�  is given by ( 1) iα +− . An (n-1)D 

oriented cell is given by the scalar-function product 

( , )( 1)i n

ic I
α

α
+− ⋅ �  

Definition 4 [16]: A formal linear combination of singular 

general kD hyper-boxes, 1 ≤  k ≤  n, for a closed set A is 

called a k-chain. 

Definition 5 [16]: Given a singular nD hyper-box I
n
, the  

(n-1)-chain, called the boundary of In
, is defined as 

( , )

1 0,1

( ) ( 1)
n

n i n

i

i

I I
α

α
α

+

= =

 
∂ = − ⋅ 

 
∑ ∑  

Moreover, given a singular general nD hyper-box c we 

define the (n-1)-chain, called the boundary of c, by 

( , )

1 0,1

( ) ( 1)
n

i n

i

i

c c I
α

α
α

+

= =

 
∂ = − ⋅ 

 
∑ ∑ �  

Definition 6 [16]: The boundary of an n-chain 
ic∑ , where 

each ci is a singular general nD hyper-box, is given by 

( ) ( )i ic c∂ = ∂∑ ∑  

Definition 7: A collection c1, c2, …, ck, 1 ≤ k ≤ 2
n
, of general 

singular nD hyper-boxes is a combination of nD  

hyper-boxes if and only if 

�

( )( )
1

([0,1] ) (0,...,0)

, , , 1 , ([0,1] ) ([0,1] )

k
n

n

n n

i j

c

i j i j i j k c c

α
α =

 
= ∧ 

 

 ∀ ≠ ≤ ≤ ≠ 

∩  

In the above definition the first part of the conjunction 

establishes that the intersection between all the nD general 

singular hyper-boxes is the origin, while the second part 

establishes that there are not overlapping nD hyper-boxes.  

Definition 8: An n-Dimensional Orthogonal  

Pseudo-Polytope p, or just an nD-OPP p, will be an  

n-chain composed by nD hyper-boxes arranged in such way 

that by selecting a vertex, in any of these 

hyper-boxes, it describes a combination of nD hyper-boxes 

(Definition 7) composed up to 2
n
 hyper-boxes. 

 

B. nD-EVM’s Fundamentals 
 

Definition 9: Let c be a combination of hyper-boxes in the  

n-Dimensional space. An Odd Adjacency Edge of c, or just 

an Odd Edge, will be an edge with an odd number of 

incident hyper-boxes of c. Conversely, if an edge has an 

even number of incident hyper-boxes of c, it will be called 

Even Adjacency Edge, or just an Even Edge. 

Definition 10: A brink or extended edge is the maximal 

uninterrupted segment, built out of a sequence of collinear 

and contiguous odd edges of an nD-OPP. 

Property 1: Even edges of an nD-OPP do not belong to 

brinks. 

Property 2: Every odd edge belongs to brinks, whereas 

every brink consists of m edges, m ≥ 1, and contains m+1 

vertices. Two of these vertices are at either extreme of the 

brink and the remaining m-1 are interior vertices. 

Property 3: Any extreme vertex of an nD-OPP, n ≥ 1, when 

is locally described by a set of surrounding nD hyper-boxes, 

has exactly n incident linearly independent odd edges. 

Definition 11: The ending vertices of all the brinks in p will 

be called Extreme Vertices of an nD-OPP p. EV(p) will 

denote to the set of Extreme Vertices of p. 

The Fig. 1 shows an example of a 3D-OPP and its set of 

Extreme Vertices. Vertices v1, v2, and v3 are non-extreme 

vertices because, in the case of v3, it has six incident odd 

edges, while vertices v1 and v2 have each one four incident 

coplanar odd edges (see Property 3). In the figure can be 

also appreciated that exactly three linearly independent odd 

edges are incident to the remaining vertices, actually, the 

Extreme Vertices of p. 

The brinks in an nD-OPP p can be classified according 

to the main axis to which they are parallel. Since the extreme 

vertices mark the end of brinks in the n orthogonal 

directions, is that any of the n possible sets of brinks parallel 

to Xi-axis, 1 ≤ i ≤ n,  produces to the same set EV(p). As an 

example, the Figs. 2.a, 2.b, and 2.c, show brinks parallel to 

X1, X2, and X3-axes, respectively, for a 3D-OPP.   

Definition 12: Let p be an nD-OPP. The Extreme Vertices 

Model of p, denoted by EVMn(p), is defined as the model as 

only stores to all the extreme vertices of p. 
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Fig. 1. Example of a 3D-OPP and its set of Extreme Vertices.  

Vertices v1, v2, and v3 are non-extreme vertices. (Continuous lines indicate 

odd edges while the dotted line indicates an even edge). 

 

Theorem 1: Let p be an nD-OPP. Then  

Card(EV(p)) = Card(EVMn(p)) is an even number. 

Let Q be a finite set of points in 3ℝ . In [1] was defined 

the ABC-sorted set of Q as the set resulting from sorting Q 

according to coordinate A, then to coordinate B, and then to 

coordinate C. For instance, a set Q can be ABC-sorted in six 

different ways: X1X2X3, X1X3X2, X2X1X3, X2X3X1, X3X1X2 and 

X3X2X1. Now, let p be a 3D-OPP. According to [1] the 

Extreme Vertices Model of p, EVM3(p), denotes to the  

ABC-sorted set of the extreme vertices of p. Then  

EVM3(p) = EV(p) except by the fact that coordinates of 

points in EV(p) are not necessarily sorted. In general, it is 

always assumed that coordinates of extreme vertices in the 

Extreme Vertices Model of an nD-OPP p, EVMn(p), have a 

fixed coordinates ordering (for example, X1X2…Xi...Xn-1Xn 

such that i–1 < i, 1 < i ≤ n). Moreover, when an operation 

requires manipulating two EVMs, it is assumed both sets 

have the same coordinates ordering. 

Definition 13: The Projection Operator for (n-1)D cells, 

points, and set of points is respectively defined as follows: 

• Let 
( , ) 1( ( )) ( ,.., )n

i nc I x x xα =  be an (n-1)D cell embedded in 

the nD space. ( )( , )( ( ))n

j ic I xαπ  will denote the projection 

of the cell 
( , )( ( ))n

i
c I xα

 onto an (n-1)D space embedded in 

nD space whose supporting hyperplane is perpendicular 

to Xj-axis, i.e. ( )( , ) 1
ˆ( ( )) ( ,..., ,..., )n

j i j nc I x x x xαπ =  

• Let 
1( ,..., )nv x x=  a point in nℝ . The projection of that 

point in the (n-1)D space, denoted by ( )j vπ , is given by 

1
ˆ( ) ( ,..., ,..., )j j nv x x xπ =  

• Let Q be a set of points in nℝ . The projection of the points 

in Q, denoted by ( )j Qπ , is a set of points in 1n−ℝ  such 

that { }1( ) : ( ),n n

j jQ p p x x Qπ π−= ∈ = ∈ ⊂ℝ ℝ  

In all cases ˆ
jx  is the coordinate corresponding to Xj-axis to 

be suppressed. 

Definition 14: Let p be an nD-OPP. A kD extended 

hypervolume of p, 1 < k < n, denoted by φ(p), is the 

maximal set of kD cells of p that lies in a kD space, such that 

a kD cell e0 belongs to a kD extended hypervolume if and 

only if e0 belongs to an (n-1)D cell present in ∂(p), i.e. 

( )

( ) ( ) ( )( )
0

1

0

( )

, ( ) [0,1] [0,1]k n

e p

c c belongs to p e c

φ

−

∈ ⇔

∃ ∂ ⊆
 

Definition 15: Consider an nD-OPP p: 

• Let 
inp  be the number of distinct coordinates present in 

the vertices of p along Xi-axis, 1 ≤ i ≤ n. 

• Let ( )i

k pΦ  be the k-th (n-1)D extended hypervolume, or 

just a (n-1)D couplet, of p which is perpendicular to  

Xi-axis, 1 ≤ k ≤ npi. 

See in Figs. 2.d, 2.e, and 2.f, a 3D-OPP with its 

corresponding sets of 2D couplets perpendicular to X1, X2, 

and X3 axes, respectively. 

 
C. Sections and Slices of nD-OPPs 

 

Definition 16: A Slice is the region contained in an nD-OPP 

p between two consecutive couplets of p. ( )i

kSlice p  will 

denote to the k-th slice of p which is bounded by ( )i

k pΦ  and 

1( )i

k p+Φ , 1 ≤ k < npi. 

Definition 17: A Section is the (n-1)D-OPP, n > 1, resulting 

from the intersection between an nD-OPP p and a (n-1)D 

hyperplane perpendicular to the coordinate axis Xi,  

n ≥ i ≥ 1, which not coincide with any (n-1)D-couplet of p. A 

section will be called external or internal section of p if it is 

empty or not, respectively. ( )i

kS p  will refer to the k-th 

section of p between ( )i

k pΦ  and 
1( )i

k p+Φ , 1 ≤ k < npi. 

Moreover, 
0 ( )i

S p  and ( )
i

i

npS p  will refer to the empty 

sections of p before 
1( )i

pΦ  and after of ( )
i

i

np pΦ , 

respectively. Finally, nsi = npi + 1 refers to the number of 

sections of the nD-OPP p. 

See in Figs. 2.g, 2.h, and 2.i, a 3D-OPP with its 

corresponding sets of internal sections perpendicular to X1, 

X2, and X3 axes, respectively. 

 
D. Computing Couplets from Sections 

 

Theorem 2: The projection of the set of (n-1)D couplets, 

( )( )i

i k Pπ Φ , 1 ≤ i ≤ n, of an nD-OPP p, can be obtained by 

computing the regularized XOR (⊗*) between the 

projections of its previous ( )1( )i

i kS pπ −
 and next ( )( )i

i kS pπ  

sections, i.e., 

( ) ( ) ( )1( ) ( ) * ( ) , [1, ]i i i

i k i k i k ip S p S p k npπ π π−Φ = ⊗ ∀ ∈  

 
E. Computing Sections from Couplets 

 

Theorem 3: The projection of any section, ( )( )i

i kS pπ , of an 

nD-OPP p, can be obtained by computing the regularized 

XOR between the projection of its previous section, 

( )1( )i

i kS pπ −
, and the projection of its previous couplet 

( )( )i

i k pπ Φ . Or, equivalently, by computing the regularized 

XOR of the projections of all the previous couplets, i.e. 

( ) ( ) ( )
0

1

( )

( ) ( ) * ( ) , [1, ]

i

i i i

i k i k i k i

S p

S p S p p k npπ π π−

 = ∅


= ⊗ Φ ∀ ∈

 

that is ( ) ( )
1

( ) ( )*
k

i i

i k i j
j

S p pπ π
=

= Φ⊗  

 

 

1 X 

2 X 

3 X 

3  v 

1  v 

2  v 
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a)  

 

b)  

 

c)  
 

d)  

 

e)  

 

f)  
 

g)  

 

h)  

 

i)  

Fig. 2. Brinks (a, b, c), 2D couplets (d, e, f), and 2D sections (g, h, i) in a 3D-OPP (the OPP presented in Fig. 1). 

 

 

F. The Regularized XOR operation on the nD-EVM 
 

Theorem 4: Let p and q be two nD-OPPs having ( )nEVM p  

and ( )nEVM q  as their respective Extreme Vertices Models 

in nD space, then  

( * ) ( ) ( )n n nEVM p q EVM p EVM q⊗ = ⊗  

This result allows expressing a formula for computing 

nD-OPPs sections from couplets and vice-versa, by means 

of their corresponding Extreme Vertices Models. These 

formulae are obtained by combining Theorem 4 with 

Theorem 2; and Theorem 4 with Theorem 3, respectively: 

Corollary 1:  

( )

( ) ( )
1

1 1 1

( ( ))

( ( )) ( ( ))

i

n i k

i i

n i k n i k

EVM p

EVM S p EVM S p

π

π π

−

− − −

Φ =

⊗

 

Corollary 2:  

( )

( ) ( )
1

1 1 1

( ( ))

( ( )) ( ( ))

i

n i k

i i

n i k n i k

EVM S p

EVM S p EVM p

π

π π

−

− − −

=

⊗ Φ

 

 

G. Basic Algorithms for the nD-EVM 
 

It was stated in Section II.B that coordinates of vertices 

in the Extreme Vertices Model of an nD-OPP p, EVMn(p), 

have a fixed coordinates ordering. It was also commented 

when an operation requires manipulating two EVMs, it is 

assumed both sets have the same coordinates ordering. Now, 

we introduce XA-axis and XZ-axis as the nD space’s 

coordinate axes respectively associated to the first and last 

coordinates present in the vertices of EVMn(p). For example, 

given coordinates ordering X1X2X3X4, for a 4D-OPP, then  

XA = X1 and XZ = X4. 

The following primitive operations are in fact based in 

those originally presented in [1]: 

 

 
Output: An empty nD-EVM. 
Procedure InitEVM( ) 
{   Returns the empty set.                  } 

 

 
Input: An (n-1)D-EVM hvl embedded  
       in nD space. 
Input/Output: An nD-EVM p 
Procedure PutHvl(EVM hvl, EVM p) 
{   Appends an (n-1)D couplet hvl, which   
    is perpendicular to X

A
-axis, to p.     } 

 

 
Input:  An nD-EVM p 
Output: An (n-1)D-EVM embedded in  
        (n-1)D space. 
Procedure ReadHvl(EVM p) 
{   Extracts the next available (n-1)D  
    couplet perpendicular to X

A
-axis of p. } 

 

 

1 X 

2 X 

3 X 

1 X 

2 X 

3 X 

1 X 

2 X 

3 X 

1 X 

2 X 

3 X 

1 X 

2 X 

3 X 
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1 X 

2 X 

3 X 
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Input:  An nD-EVM p 
Output: A Boolean. 
Procedure EndEVM(EVM p) 
{   Returns true if the end of p along  
    X

A
-axis has been reached.       } 

 

 
Input/Output: An (n-1)D-EVM p embedded  
              in (n-1)D space. 
Input: A coordinate coord of type CoordType  
       (CoordType is the chosen type for  
       the vertex coordinates) 
Procedure SetCoord(EVM p, CoordType coord) 
{   Sets the X

A
-coordinate to coord on  

    every vertex of the (n-1)D couplet p.  
    For coord = 0, it performs the  

    projection ( )A pπ .           } 

 

 
Input:  An (n-1)D-EVM p embedded in nD space. 
Output: A CoordType  
Procedure GetCoord(EVM p) 
{   Gets the common X

A
 coordinate of  

    the (n-1)D couplet p.             } 

 

 
Input:  An nD-EVM p. 
Output: A CoordType  
Procedure GetCoordNextHvl(EVM p) 
{   Gets the common X

A
 coordinate of the 

    next available (n-1)D couplet of p.    } 

 

 
Input:  Two nD-EVMs p and q. 
Output: An nD-EVM 
Procedure MergeXor(EVM p, EVM q) 
{   Applies the Exclusive OR operation  
    to the vertices of p and q and returns 
    the resulting set.                  } 

 

 

Function MergeXor performs an XOR between two  

nD-EVMs, that is, it keeps all vertices belonging to either 

EVMn(p) or EVMn(q) and discards any vertex that belongs 

to both EVMn(p) and EVMn(q). Since the model is sorted, 

this function consists on a simple merging-like algorithm, 

and therefore, it runs on linear time [1]. Its complexity is 

given by O(Card(EVMn(p)) + Card(EVMn(q)) since each 

vertex from EVMn(p) and EVMn(q) needs to be processed 

just once. Moreover, according to Theorem 4, the resulting 

set corresponds to the regularized XOR operation between p 

and q since  

( * ) ( ) ( )n n nEVM p q EVM p EVM q⊗ = ⊗  

From the above primitive operations, the Algorithms 1 

and 2 may be easily derived [1, 8]. 

 
Algorithm 1. Computing ( )1 1( ( ))A

n kEVM S pπ−
 as 

( ) ( )1 1 1 1 1( ( )) ( ( ))A A

n k n kEVM S p EVM pπ π− − −⊗ Φ . 

Input: A section S encoded as a (n-1)D-EVM.  

       A couplet hvl encoded as a (n-1)D-EVM. 
Output: An (n-1)D-EVM. 

Procedure GetSection(EVM S, EVM hvl) 

  // Returns the projection of the  

  // next section of an nD-OPP whose  

  // previous section is S. 

  return MergeXor(S, hlv) 

end-of-procedure 
 

Algorithm 2. Computing ( )1 1( ( ))A

n kEVM pπ− Φ  as 

( ) ( )1 1 1 1 1( ( )) ( ( ))A A

n k n kEVM S p EVM S pπ π− − −⊗ . 

Input: (n-1)D-EVM associated to section Si.  

       (n-1)D-EVM associated to section Sj. 

Output: An (n-1)D-EVM. 

Procedure GetHvl(EVM Si, EVM Sj) 

    // Returns the projection of the 

    // couplet between consecutive  

    // sections Si and Sj.  

    return MergeXor(Si, Sj) 

end-of-procedure 
 

The Algorithm 3 computes the sequence of sections of 

an nD-OPP p from its nD-EVM using the previous functions  

[1, 8]. It sequentially reads the projections of the (n-1)D 

couplets hvl of the polytope p. Then it computes the 

sequence of sections using function GetSection. Each pair of 

sections Si and Sj (the previous and next sections about the 

current hvl) is processed by a generic processing procedure 

(called Process), which performs the desired actions upon Si 

and Sj (Note that some processes may only need one of such 

sections). 

 
Algorithm 3   Computing the sequence of sections  

from an nD-OPP p represented through the nD-EVM. 

Input: An nD-EVM p. 

Procedure EVM_to_SectionSequence(EVM p) 

   EVM hvl    // Current couplet. 

   EVM Si, Sj  // Previous and next  

              // sections about hvl. 

   hvl = InitEVM( ) 

   Si = InitEVM( ) 

   Sj = InitEVM( )  

   hvl = ReadHvl(p) 

   while(Not(EndEVM(p))) 

Sj = GetSection(Si, hvl) 

Process(Si, Sj) 

 Si = Sj 

 hvl = ReadHvl(p) // Read next couplet. 

   end-of-while 

end-of-procedure 

 

III. INTERROGATIONS ON nD-OPPS  

REPRESENTED VIA THE nD-EVM 
 

The following two sections present a pair of algorithms 

that show the applicability of the nD-EVM. In particular, the 

algorithms have the objective of determining two 

geometrical properties of nD-OPPs expressed in the EVM: 

computation of the content enclosed by an nD-OPP (Section 

III.A), and computation of the (n-1)D content of a nD-OPP’s 

boundary (Section III.B).    

 

A. Computing the Content of an nD-OPP 
 

The 1D content of a segment is its perimeter; the 2D 

content of a polygon is its area; the 3D content of a 

polyhedron is its volume, and so on. In this section, it is 

described a procedure for computing the nD content 

enclosed by an nD-OPP. In this case we will consider the 

partition induced by its Slices (Definition 16). A Slice can 

be seen as a set of one or more disjoint nD hyperprisms 

whose (n-1)D base is the slice’ section. As pointed out in [1] 

the volume of a 3D-OPP p can be computed as the sum of 

the volumes of its 3D slices, where the volume of a 

( )i

kSlice p  is given by the product between the area of its 

respective section ( )i

kS p  (the 2D base of ( )i

kSlice p ) and the 
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distance between ( )i

k pΦ  and 
1( )i

k p+Φ  (the height of the 3D 

prism ( )i

kSlice p ). Now let q = ( )i

kS p . The area of the  

2D-OPP q (see Fig. 3 for an example) can be computed as 

the sum of the areas of its 2D slices, where the area of a 

( )i

kSlice q  is given by the product between the length of its 

respective section ( )i

kS q  (the 1D base of ( )i

kSlice q ) and the 

distance between ( )i

k qΦ  and 
1( )i

k q+Φ  (the height of the “2D 

prism” ( )i

kSlice p ). Finally let r = ( )i

kS q . In the base case the 

length of the 1D-OPP r is computed as the sum of the 

lengths of its brinks. 

Let p be an nD-OPP. The nD space enclosed by p, 

denoted by Content(n)(p), can be computed as the sum of the 

contents of its nD slices [8]: 

( ) ( )

( )

1

1
( 1)

1

( )

( ) 1

( ) ( ), ( ) 1
i

n

np
i i i

k k k
n

k

Content p

Length p n

Content S p dist p p n
−

+−
=

=


= 
⋅ Φ Φ >


∑

 

Where npi is the number of couplets of p perpendicular to  

Xi-axis; ( )i

kS p  is the k-th section of the nD-OPP p which is 

perpendicular to Xi-axis and it is between couplets ( )i

k pΦ  

and 
1( )i

k p+Φ . Algorithm 4 implements the above recursive 

function in order to compute the content of nD space 

enclosed by an nD-OPP p expressed in the EVM [1, 8]. 
 

Algorithm 4. Computing the content of nD space enclosed  

by an nD-OPP expressed in the nD-EVM. 

Input:  An nD-EVM p. 
        The number n of dimensions. 
Output: Content of nD space enclosed by p. 
Procedure Content(EVM p, int n) 
   real cont=0.0   // nD space enclosed by p. 
   EVM hvl1, hvl2  // Couplets between  
                   // a slice of p. 
   EVM s       // Current section of p. 
   if(n = 1) then 

// Base case: p is a 1D-OPP. 
 return Length(p) 
   else 
 hvl1 = InitEVM( )  
 hvl2 = InitEVM( ) 
 s = InitEVM( ) 

hvl1 = ReadHvl(p) 
 while(Not(EndEVM(p))) 
    hvl2 = ReadHvl(p) 
    s = GetSection(s, hvl1) 
    // Recursive Call. 
    cont = cont +  

      Content(s,n-1) * dist(hvl1,hvl2)  
    hvl1 = hvl2    
 end-of-while 
    return cont 
   end-of-else 
end-of-procedure 
 

B. Computing the Content of the Boundary of an nD-OPP 
 

In [1] is pointed out that the surface of a 3D-OPP p (see 

Fig. 4 for an example) can be computed as the sum of the 

areas of its 2D couplets perpendicular to Xi-axis, where the 

area of a ( )i

k pΦ  is given by ( )2 ( )i

kContent pΦ  (see 

previous section). To this sum must be added the sum of the 

areas of the faces between ( )i

k pΦ  and 
1( )i

k p+Φ . These areas 

are found by the product between the perimeter of the 

section ( )i

kS p  and the distance between ( )i

k pΦ  and 

1( )i

k p+Φ  (the height of the 3D prism ( )i

kSlice p ). Now let  

q = ( )i

kS p , we have reached the base case. The perimeter of 

the 2D-OPP q can be computed as [1]: 

1 2( ) ( ) ( )Perimeter q x Sum q x Sum q= +  

where 
1 ( )x Sum q  and 

2 ( )x Sum q  denote the sum of the 

lengths of all brinks parallel to X1-axis and X2-axis, 

respectively. 

 

 
Fig. 3. A 2D-OPP q whose area is being computed:  

The total area of q is the sum of the areas of its slices.  

 

 

 
Fig. 4. Computing the content of the boundary in a 3D prism. 

 

Let p be an nD-OPP. The (n-1)D space enclosed by p’s 

boundary, denoted by BoundaryContent(n)(p), can be 

computed as follows [8]: 

( )

( )

( )

( )

1 2

( 1)
1

1
( 1)

1
1

( )

( ) ( ) 2

( ) 2

( )

( ), ( )

i

i

n

np
i

k
n

k

i
np

k
n

i i
k

k k

BoundaryContent p

x Sum p x Sum p n

Content p n

BoundaryContent S p

dist p p

−
=

−
−

=
+

+ =




Φ + >
= 


 
 
  Φ Φ 

∑

∑
i

 

X 
2 

X 
1 

X 3 

1

1( )pΦ

1

1 ( )S p

1

2( )pΦ

X 2 

X 
1 

1

1( )qΦ 1

2 ( )qΦ

1

3( )qΦ

1

4 ( )qΦ 1

5 ( )qΦ

1

1 ( )S q

1

2 ( )S q

1

3 ( )S q

1

4 ( )S q

( )1 1

2 3( ), ( )dist q qΦ Φ

( )1 1

4 5( ), ( )dist q qΦ Φ

( )1 1

3 4( ), ( )dist q qΦ Φ( )1 1

1 2( ), ( )dist q qΦ Φ

( )1 1

1 2( ), ( )dist p pΦ Φ

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



Algorithm 5 implements the above recursive expression 

in order to compute the content of (n-1)D space enclosed by 

the boundary of p expressed through the nD-EVM [1, 8]. 
 

Algorithm 5. Computing the content of (n-1)D space enclosed  

by the boundary of a nD-OPP expressed in the nD-EVM. 

Input: An nD-EVM p. 
       The number n of dimensions. 
Output: The content of (n-1)D space enclosed 
        by the boundary of p. 
Procedure BoundaryContent(EVM p, int n) 

// The content of (n-1)D space enclosed 
// by p’s boundary. 
real cont = 0.0     
// Couplets between a slice of p. 
EVM hvl1, hvl2  
EVM s // Current section of p.      
hvl1 = InitEVM( )  
hvl2 = InitEVM( ) 
s = InitEVM( )  
if(n = 2) then 

// Base case: p is a 2D-OPP, its  
// perimeter is computed. 
return x

1
Sum(p) + x

2
Sum(p)  

else 
 hvl1 = ReadHvl(p) 
 while(Not(EndEVM(p))) 

hvl2 = ReadHvl(p) 
s = GetSection(s, hvl1) 
// Call to algorithm Content and 
// recursive call. 
cont = cont + Content(hvl1,n-1) + 
        BoundaryContent(s, n-1) *  
        dist(hvl1,hvl2) 
hvl1 = hvl2    

 end-of-while 
 // hvl1 contains p’s last couplet. 

cont = cont + Content(hvl1,n-1)  
 return cont 
end-of-else 

end-of-procedure 

 

IV. BASIC MORPHOLOGICAL OPERATIONS IN THE nD-EVM 
 

Let 
nxxxC ,...,, 21
 be a hypervoxelization (not necessarily 

binary) with length along the Xi-axis mi, i = 1, 2, …, n. Let S 

be a subset of nℤ . S is called the structuring element. The 

dilation of hypervoxelization 
nxxxC ,...,, 21
 by S, denoted by 

C S⊕ , is another hypervoxelization defined as: 

( )

( )

1 2

1 1 2 2

, ,...,

, ,...,

1 2

:
sup

, ,..., , 1 , 1, 2,...,

n

n n

x x x

x x x x x x

n i i i

C S

C

x x x S x x m i n

− − −

⊕

  
=  

∈ ≤ − ≤ =  

 

In a similar fashion, the erosion of hypervoxelization 

nxxxC ,...,, 21
 by S, C S○ , is given by: 

( )

( )

1 2

1 1 2 2

, ,...,

, ,...,

1 2

:
inf

, ,..., , 1 , 1, 2,...,

n

n n

x x x

x x x x x x

n i i i

C S

C

x x x S x x m i n

− − −  
=  

∈ ≤ − ≤ =  

○

 

The well known morphological erosion and dilation 

constitute the fundamentals behind other useful operators. 

Burgeth et al [2] list some of them: 

• Opening: ( )C S C S S= ⊕� ○   

• Closing: ( )C S C S S• = ⊕ ○  

• White top-hat: ( ) \ ( )WTH C C C S= �  

• Black top-hat: ( ) ( ) \BTH C C S C= •  

• Beucher gradient: ( ) ( )( ) \
S

C C S C S∇ = ⊕ ○  

• Internal gradient: ( )( ) \
S

C C C S
−∇ = ○  

• External gradient: ( )( ) \
S

C C S C
+∇ = ⊕  

Rodríguez & Ayala [11] point out that dilation and 

erosion over binary hypervoxelizations can be understood as 

operations that only add or remove black hypervoxels in 

terms of the size and shape of the structuring element. 

Furthermore, they comment that erosion and dilation can be 

seen as processes where the object’s interior is shrunk or 

elongated respect to the size of the structuring element. This 

reasoning constitutes the basis of their proposed algorithms 

for performing erosion and dilation over an nD-OPP 

expressed in the nD-EVM. Their idea is in fact very  

simple [11]: 

• Given an input nD-OPP p, its (n-1)D sections, 

perpendicular to XA-axis are obtained. 

• Current section Sj is an (n-1)D-OPP that describes the 

interior of the current nD Slice of p. Sj is sent as input to  

the algorithm via a recursive call. 

• The output of the recursive call is a (n-1)D-OPP, actually 

a new section, that corresponds to the erosion (dilation) of 

section Sj. The eroded (dilated) section is used for 

determine the new (n-1)D couplet before it.  

• The obtained couplets define a new nD-OPP which 

corresponds to the erosion (dilation) of the input  

nD-OPP p. 

As specified before, the procedure descends recursively over 

the number of dimensions. The base case is reached when  

n = 1. In this situation, it is obtained a set of segments 

embedded in XZ-axis. In this phase, the algorithm directly 

shrinks (elongates) those segments according to an erosion 

(dilation) ratio. Hence, a box-shaped structuring element is 

used [11]. It is possible some segments can be merged or 

disappear depending which operation is applied. Algorithm 

6 implements the procedure, originally presented in [11], for 

computing the erosion of an nD-OPP expressed in the EVM. 

Implementing dilation operation is made in similar way and 

taking in account the corresponding base case.  

It is convenient to comment a property. An EVM is a set 

of points with a fixed coordinates ordering. Algorithm 6, in 

the main call, computes (n-1)D sections perpendicular to  

XA-axis, then, recursively, computes (n-2)D sections 

perpendicular to the axis following XA, and so on, until the 

base case is reached and the segments in the input 1D-OPP 

are embedded in XZ-axis. As previously stated, is at this 

point were the erosion (dilation) takes place, defining new 

segments and for instance defining new lower dimensional 

sections until there are obtained the final (n-1)D sections 

corresponding to the erosion (dilation) of the input nD-OPP. 

This implies Algorithm 6 erodes (dilates) the input OPP only 

respect to XZ-axis [11]. For full erosion, along all the n main 

axes of the nD space, it is required to sort n times the 

coordinates in the input EVM in such way each time one 

different axis appears in the last place [11]. The Algorithm 7 

computes the full erosion of an nD-OPP p. It receives as 

input an EVM, the number n of dimensions, and an array 

that contains the erosion ratios to be applied respect to each 

coordinates axis. It is assumed the i-th position in the array 

indicates the erosion ratio to apply along the Xi-axis. When 

such erosion is going to be performed, via Algorithm 6,  

then we have such coordinate must appear in the last 

position of the current coordinates ordering, i.e., XZ = Xi.  
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The coordinates sorting is performed by calling a procedure 

SortEVM. Given a permutation 
1 2 nα α α

X X X⋯ , the function 

sorts the extreme vertices of p first according to coordinate 

1α
X , after according to coordinate 

2α
X , and so on until p is 

sorted according to coordinate 
nα

X . An algorithm for full 

dilation is implemented in a similar fashion. 

 
Algorithm 6. Eroding, in direction of XZ-axis, an nD-OPP  

expressed in the nD-EVM.  

Input:  An nD-EVM p. 
        The number n of dimensions. 
        The erosion ratio.   
Output: An nD-EVM corresponding to the  
        erosion of p along X

Z
-axis. 

Procedure Erosion 
              (EVM p, int n, CoordType ratio) 
  if(n = 1) then 
     // Base case: p is a 1D-OPP. 
     return Erosion1D(p, ratio) 
  else 
     EVM hvl   // Current couplet of p. 
     EVM Si    // Previous section to hvl. 
     EVM Sj    // Next section to hvl. 
     EVM erodedP     // p’s erosion. 
     EVM erodedHvl   // Couplet to append to 
                     // p’s erosion. 
     EVM erodedSi    // Previous section to 
                     // erodedHvl. 
     EVM erodedSj    // Next section to 
                     // erodedHvl. 
     CoordType coord // Common X

A
-coordinate 

                     // of couplet hvl. 
     erodedP = InitEVM( ) 
     Si = InitEVM( ) 
     erodedSi = InitEVM( ) 
     while(Not(EndEVM(p))) 
  coord = GetCoordNextHvl(p) 

 hvl = ReadHvl(p) 
  Sj = GetSection(Si, hvl) 
  // Recursive Call. 
  erodedSj = Erosion(Sj, n-1, ratio) 
  erodedHvl =  
              GetHvl(erodedSi, erodedSj) 
  SetCoord(erodedHvl, coord) 
  PutHvl(erodedP, erodedHvl) 
  Si = Sj 
  erodedSi = erodedSj 
     end-of-while 
     return erodedP 
  end-of-else 
end-of-procedure 

 

Algorithm 7. Full erosion of an nD-OPP expressed in the nD-EVM. 
Input:  An nD-EVM p. 
        The number n of dimensions. 
        An array with erosion ratios.  
Output: An nD-EVM corresponding to the 
        full erosion of p. 
Procedure FullErosion 
    (EVM p, int n, CoordType ratios[1, …, n]) 
  EVM erosionP = p 
  int i = 0 
  for each sorting in  
   {X

1
X

2
…X

n-1
X

n
, X

n
X
1
…X

n-2
X
n-1
, X

n-1
X
n
X
1
…X

n-3
X
n-2
,  

    …, X
2
X

3
X

4
…X

n
X

1
} 

     SortEVM(erosionP, n, sorting) 
     // Erosion along X

Z
-axis 

     erosionP=Erosion(erosionP,n,ratios[n-i]) 
     i = i + 1 
  end-of-for 
  return erosionP 
end-of-procedure 
 

Given algorithms for full erosion and full dilation  

under the nD-EVM, it is possible to implement, in straight 

way, morphological operators such as Opening (� ) or 

Closing ( • ). See Algorithms 8 and 9. 

Algorithm 8. Computing the morphological opening of an nD-OPP.  

Input:  An nD-EVM p. 
        The number n of dimensions. 
        An array with erosion ratios. 
        An array with dilation ratios.  
Output: An nD-EVM corresponding to the full 
        dilation of the full erosion of p. 
Procedure Opening 
(EVM p, int n,  
     CoordType erosionRatios[1,…,n],  
     CoordType dilationRatios[1,…,n]) 
  EVM openingP = p 
  openingP =  
      fullErosion(openingP,n,erosionRatios) 
  openingP = 
      fullDilation(openingP,n,dilationRatios) 
  return openingP 
end-of-procedure 

 
Algorithm 9. Computing the morphological closure of an nD-OPP.  

Input:  An nD-EVM p. 
        The number n of dimensions. 
        An array with erosion ratios. 
        An array with dilation ratios.  
Output: An nD-EVM corresponding to the full 
        erosion of the full dilation of p. 
Procedure Closure 
(EVM p, int n,  
     CoordType erosionRatios[1,…,n], 
     CoordType dilationRatios[1,…,n]) 
  EVM closureP = p 
  closureP =  
      fullDilation(closureP,n,dilationRatios) 
  closureP = 
      fullErosion(closureP,n,erosionRatios) 
  return closureP 
end-of-procedure 

 

V. REPRESENTING VOLUME DATASETS THROUGH  

4D ORTHOGONAL POLYTOPES 
 

Now, we have the elements to proceed to present the 

contribution of this work. The conversion of a voxelization 

to a 4D polytope, and therefore to a 4D-EVM, is in fact a 

straight procedure. As commented in Section I, the proposal 

is oriented to color spaces with three or more values. If it is 

the case the datasets have binary intensity values then refer 

to [9] where a more appropriate representation is described.   

It is assumed the intensities of each voxel are expressed as a 

single number. Consider the following 

Corollary 3 [1]: Let p and q be two disjoint or quasi disjoint 

nD-OPPs having EVMn(p) and EVMn(q) as their respective 

Extreme Vertices Models, then  

( ) ( ) ( )n n nEVM p q EVM p EVM q∪ = ⊗  

An nD hyperprism is a polytope generated by the 

parallel motion of an (n-1)D polytope; it is bounded by the 

(n-1)D polytope in its initial and final positions and by 

several (n-1)D hyperprisms [3, 14]. In this sense, each voxel 

in a 3D dataset is extruded towards the fourth dimension, 

that is, it is converted in a 4D hyperprism whose bases are 

precisely the original voxel and its height is given by its 

corresponding intensity-plus-one value in the dataset. The 

vertices’ coordinates X1, X2, and X3 in the hyperprism’s 

bases correspond to the original voxel's coordinates. The 

inferior base’s points have their X4 coordinate equal to zero, 

while in the remaining vertices the X4 coordinate is equal to 

the intensity-plus-one value (see Fig. 5). Let us call xf to the 

set composed by the 4D hyperprisms (the extruded voxels) 

of the extruded 3D dataset. 

Let pri be a 4D hyperprism in xf and npr the number of 

prisms in that set (this number is in fact equal to the number 
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of voxels in the original dataset). Since all the hyperprisms 

in xf are quasi disjoint 4D-OPPs, the extreme vertices, of the 

whole 4D extruded dataset, can be easily obtained by 

computing the regularized union of all the hyperprisms in xf. 

Hence, Corollary 3 can be applied in the following way: 

4 4

1

( ) ( )
npr

i

i

EVM F EVM pr xf
=

= ∈⊗  

Where F is the 4D-OPP that represents the union of all 

the hyperprisms in xf. By this way, it is obtained a 

representation for a 3D Dataset through a 4D-OPP and  

the EVM. 

 

 
Fig. 5. Extruding a voxel towards the fourth dimension. The result is a 4D 

hyperprism whose height is determined by the voxel’s intensity color. 

 

VI. MODELING VOLUME DATASETS WITH 4D-OPPS  

AND THE EVM: CONCISENESS 
 

In this section there are described some results related to 

the conversion from voxelizations to the proposed 

representation. Such datasets were taken from The Volume 

Library [12], and the University of Iowa’s Department of 

Radiology [4] (datasets’ visualizations shown in Table I and 

Fig. 6 were obtained via a volume rendering software 

available at [17]). Prior to the conversion, a multilevel 

thresholding was applied to the original datasets in order to 

reduce noise. The Table I shows the measures obtained 

when the considered voxelizations were converted to  

4D-OPPs and the EVM. 

Now, let p be a dataset expressed under a voxelization 

with size (x1Size × x2Size × x3Size) and with EVM4(p) as its 

corresponding EVM. Consider the ratio 

1 2 3

4( ( ))

x Size x Size x Size

Card EVM p

⋅ ⋅  

For example, consider the model CT-Hand (Table I). Its 

source voxelization has size (492 × 240 × 155) which 

implies that it is required to store 18,302,400 voxels. The 

4D-EVM associated to CT-Hand has 7,191,726 extreme 

vertices. Hence, the proposed ratio gives the value 2.54 

which implies that the number of stored voxels that belong 

to the original representation of the object is precisely  

2.54 times greater than the number of obtained  

extreme vertices. The Table II shows the ratio  

Number-of-voxels/Number-of-Extreme-Vertices for the 

models described in Table I. The value shared by the ratio 

depends on the topology and geometry of the objects being 

modeled, but it shows the conciseness, related to storing 

requirements, when they are represented through the EVM. 
 

VII. QUERYING VOLUME DATASETS  

EXPRESSED IN THE 4D-EVM 
 

The importance behind a volume dataset is the 

information can be obtained about it. If the datasets are 

represented through the 4D-EVM then the extraction of its 

couplets will provide a classification of the elements in the 

original model according to their intensities. Given a dataset 

based on a scale of K intensities, then it is possible to obtain 

at most, from its corresponding 4D-OPP, 1+K 3D couplets 

perpendicular to the axis associated to color. The “extra” 

couplet, in fact the first couplet, is the result of the union of 

all the inferior bases of the 4D hyperprisms in xf (the set 

composed by the dataset’s extruded voxels): the points in 

such bases have value zero for the coordinate associated to 

color (see Fig. 5). 

It is common that intensities correspond to physical 

properties. For example, in a medical dataset intensities 

could refer to certain tissues. Hence, by extracting 3D 

couplets perpendicular to color axis we obtain, for a given 

couplet, only those parts of the dataset with the same type of 

tissue. The Table III shows some 3D couplets obtained from 

the dataset CT-Hand (3D-EVM visualizations from Tables 

III, V, and VI were achieved by means of software 

developed in [13]). In Table III, it can be observed that the 

first three couplets describe parts of the dataset whose voxels 

correspond to soft tissue like skin, cartilage, and muscles. 

The remaining couplets, also shown in the same table, show 

different types of bone tissue present in the voxelization. As 

commented previously, the type of material is, in this case, 

assumed to be defined by the color intensity of the voxels in 

the original dataset. 

The projection of each couplet, perpendicular to the axis 

associated to color, in a 4D-EVM, is in fact a 3D-EVM 

which in time corresponds to a binary dataset because it only 

contains material of the same type. Hence, it is possible to 

apply Algorithm 3 to one of these 3D couplets in order to 

obtain their associated 2D sections. These sections will share 

a description of the interior of the homogeneous object with 

the objective of performing the appropriate analyses 

according to the application. The Table IV shows some 2D 

sections corresponding to one of the 3D couplets from the 

model Vismale (see Table I). There are shown 25 of these 

2D sections which allow understand the internal 

organization of the selected 3D couplet. It is possible to 

visualize some internal organs. 

The Algorithms 4 and 5 (Sections III.A and III.B, 

respectively) can be used for interrogate a nD-EVM in order 

to determine, for its corresponding nD-OPP, its nD content 

and the (n-1)D content of its boundary.  These algorithms 

X 
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can be applied to the 4D-EVM associated to a dataset; in this 

sense its corresponding 4D content and the 3D content of its 

boundary are obtained. Furthermore, it is clear that the 

projection of each couplet perpendicular to color axis is a  

3D-OPP which contains only elements of the same type of 

material. Hence, it is possible to apply Algorithms 4 and 5 in 

order to determine its volume and its boundary’s area. By 

this way, it is obtained measure information about specific 

parts of the original dataset.  

For example, Table V shows 3 couplets taken from the 

dataset CT-Chest. In 3D couplet 4 it is possible to observe 

soft tissue and the lungs. The 3D couplets 32 and 50 

correspond to bone tissue where some ribs and the vertebral 

column can be observed (the scapulae can be visualized in 

3D couplet 32; they are not present in couplet 50). Table V 

also presents the volume and the boundary’s area of these 

3D couplets. 

 
 

 

TABLE I 

VOLUME DATASETS USED FOR CONVERSION TO 4D-OPPS AND FINALLY EXPRESSED THROUGH THE 4D-EVM. 
 

 
 

Blunt Fin 
Description: Airflow over a flat plate with a blunt fin rising 

from the plate. 

Voxelization size: (256 × 128 × 64) ≡ 2,097,152 

4D-EVM Size: 347,956  

 
CT-Chest 
Description: Computed Tomography of a normal chest. 

Voxelization size: (384 × 384 × 240) ≡ 35,389,440 

4D-EVM Size: 19,674,862  

 
CT-Hand 

Description: Computed Tomography of a normal hand. 

Voxelization size: (492 × 240 × 155) ≡ 18,302,400 

4D-EVM Size: 7,191,726 
 

 

 
CT-Knee 
Description: Computed Tomography of knee, anterior tibial 

osteotomy. 

Voxelization size: (379 × 229 × 305) ≡ 26,471,255 

4D-EVM Size: 17,938,182 
 

 

 
Baby 
Description: baby head. 

Voxelization size: (256 × 256 × 98) ≡ 6,422,528 

4D-EVM Size: 2,975,618  

 
Vismale 
Description: Visible male (head). 

Voxelization size: (128 × 256 × 256) ≡ 8,388,608 

4D-EVM Size: 6,300,952  
 

 

TABLE II 

THE RATIO NUMBER-OF-VOXELS/NUMBER-OF-EXTREME-VERTICES FOR DATASETS SHOWN IN TABLE I. 

Object p 
Voxelization Size  

(Number of voxels) 

Card(EVM4(p)) 

(Number of extreme vertices) 

1 2 3

4( ( ))

x Size x Size x Size

Card EVM p

⋅ ⋅  

Blunt Fin 2,097,152 347,956 6.02 

CT-Hand 18,302,400 7,191,726 2.54 

Baby 6,422,528 2,975,618 2.15 

CT-Chest 35,389,440 19,674,862 1.79 

CT-Knee 26,471,255 17,938,182 1.47 

Vismale 8,388,608 6,300,952 1.33 
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TABLE III 

SOME 3D COUPLETS, PERPENDICULAR TO COLOR AXIS, EXTRACTED FROM THE 4D-EVM ASSOCIATED TO CT-HAND. 

  
3D Couplet 6 3D Couplet 20 

  
3D Couplet 25 3D Couplet 30 

  
3D Couplet 36 3D Couplet 50 

 

 

VIII. STORAGE AND NOISE REDUCTION VIA  

4D MORPHOLOGICAL EROSION AND DILATION 
 

It is well know the “Salt and Pepper” noise in a binary 

dataset refers to the random presence, due to the acquisition 

process, of white (the salt) or black (the pepper) components 

[7]. The literature mentions some methodologies for 

reduction of this type of noise such as Median Filtering, 

Chain Code Processing, Instantiation to the Shortest Path 

Problem, etc. 

In particular, we will concentrate now in the reduction 

of “Salt and Pepper” noise via morphological erosion and 

dilation. Section IV dealt with Rodríguez & Ayala’s  

EVM-based algorithms for performing erosion and dilation 

over an nD-OPP. As commented in past sections, each 3D 

couplet perpendicular to color axis, in our generated  

4D-OPPs, contains material of the same type because our 

procedure groups the elements of a dataset relating them by 

their color intensity. In this sense, we said each 3D couplet 

corresponds to a binary voxelization. We can establish then 

our 4D-OPPs can be seen as a “binary expression” of 3D 

volume datasets because they partition the 4D space in two 

sets: the black (occupied) regions and the white (empty) 

regions.  

The algorithms presented in Section IV were designed 

specifically under the context of eroding (dilating) binary 

images: the black regions defined the OPP to erode (dilate) 

[11]. According to our previous discussion, our generated  

4D-OPPs can be used as input for purposes of erosion 

(dilation). The idea is the reduction of “Salt and Pepper” 

noise of the corresponding volume dataset via a 4D context 

obtaining as benefit the deletion of undesired black 

components, the filling of undesired white components, and 

contour smoothing. We will see how the application of such 

operators has repercussions over geometry and topology of 

the elements that compose a represented volume dataset. 

Moreover, another important benefit that can be obtained via 

the application of erosion (dilation) is the reduction of the 

4D representation’s spatial complexity, i.e. the EVM’s size. 

Consider the dataset CT-Pelvi [4] (Fig. 6). It 

corresponds to a computed tomography of a human’s pelvis. 

The dataset has size (358 × 358 × 151) ≡ 20,812,330 voxels. 

Its representation via 4D-EVM required 17,985,162 extreme 

vertices hence its ratio Number-of-voxels/Number-of-

Extreme-Vertices is 1.15. 

 
Fig. 6. Dataset CT-Pelvi (see text for details). 
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TABLE IV 

VISUALIZING SOME 2D SECTIONS PERPENDICULAR TO X1-AXIS WHICH WERE PROCESSED FROM ONE 3D COUPLET  

OF THE 4D-OPP ASSOCIATED TO THE DATASET VISMALE. 

   
2D Section 1 2D Section 6 2D Section 11 

    

3D Couplet 18 2D Section 16 2D Section 21 2D Section 26 

     
2D Section 31 2D Section 36 2D Section 41 2D Section 46 2D Section 51 

     
2D Section 56 2D Section 61 2D Section 66 2D Section 71 2D Section 76 

     
2D Section 81 2D Section 86 2D Section 91 2D Section 96 2D Section 101 

     
2D Section 106 2D Section 111 2D Section 116 2D Section 121 2D Section 124 

 

 

Erosion and dilation were applied separately to  

CT-Pelvi’s 4D-EVM representation. In both cases were used 

the ratios [1.0, 1.0, 1.0, 0.0]. This implies erosion/dilation 

were applied by shorting/elongating a unit in all directions, 

except the one related to color axis because these operations 

could modify the values of such coordinate and therefore the 

correspondence with the original color scale could be 

altered. In the erosion’s case it was obtained a new 4D 

representation that required 7,531,384 extreme vertices. The 

dilation’s 4D representation required 9,355,148 extreme 

vertices. The new ratios Number-of-voxels/Number-of-

Extreme-Vertices were 2.76 and 1.92, respectively.  

The Table VI shows some 3D couplets extracted from 

the 4D-EVMs modeling the erosion and dilation of the 

original 4D representation of CT-Pelvi dataset. 

Corresponding 3D couplets from the original 4D-OPP are 

also included in the table for visual comparison. Couplet 7 

shows some parts of skin tissue while couplet 17 shares the 

visualization of soft tissue and some internal organs. In both 

cases, erosion and dilation produced couplets that required a 

number of extreme vertices minor than the size of the 

couplet associated to the original 4D representation. 

Couplets 24 and 34 correspond to bone tissue: there can be 

appreciated the coccyx, sacrum, iliac crest, femurs, and hip 
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bones, among others. The erosion of couplet 24 has more 

extreme vertices than its dilation. However, both sizes are 

minor than the 184,354 extreme vertices in the original 

couplet. Because no erosion/dilation was applied respect to 

color axis then each couplet, in the new representations, 

contains material of a type described appropriately by the 

original color scale.  

The observations related to the obtained 3D couplets are 

sustained in the fact erosion/dilation act, from the  

EVM-based algorithms’ point of view, by modifying the 

interior of their corresponding 4D-OPPs, specifically 

operating over their 3D sections. The Rodríguez & Ayala 

algorithms, once the sections have been modified, compute 

new 3D couplets which by instance contain changes in their 

topology and geometry. The presented example leads us to 

establish the way erosion/dilation operations can be useful 

tools, applied in a 4D context, on one hand, for reducing 

noise present in the original dataset, while on the other hand, 

it is possible to reduce the spatial complexity of the 

representation. 

 

IX. CONCLUDING REMARKS AND FUTURE WORK 
 

The Extreme Vertices Model (3D-EVM) was originally 

presented, and widely described, in [1] for representing 

Orthogonal Pseudo-Polyhedra (3D-OPPs). The model has 

enabled the development of simple and robust algorithms for 

performing the most usual and demanding tasks on solid 

modeling, such as closed and regularized Boolean 

operations, solid splitting, set membership classification 

operations, and measure operations on 3D-OPPs. In [8] was 

formally proved that the EVM in fact is a complete scheme 

for the representation of n-Dimensional Orthogonal  

Pseudo-Polytopes (nD-OPPs). The meaning of complete 

scheme was based in Requicha's set of formal criterions that 

every scheme must have rigorously defined: Domain, 

Completeness, Uniqueness and Validity. Although the EVM 

of an nD-OPP has been defined as a subset of the nD-OPPs 

vertices, which in principle defines the model’s conciseness, 

there is much more information about the polytope hidden 

within this subset of vertices. Moreover, several operations 

can be performed efficiently and working directly and only 

with the EVM representation. In Section II.G was presented 

a specific algorithm for computing XOR in linear time: the 

MergeXor algorithm. The algorithm’s linear complexity is a 

valuable property when it is observed the nD-EVM’s 

intensive use of Regularized XOR in several fundamental 

operations such as the computation of sections of an  

nD-OPP. 

 
 
 

 
TABLE V 

SOME 3D COUPLETS EXTRACTED FROM THE 4D-EVM ASSOCIATED TO DATASET CT-CHEST  

AND INTERROGATIONS ABOUT THEIR MEASURES: VOLUME AND BOUNDARY’S AREA. 

  
3D Couplet 4 

3D Content (Volume): 264,101 u3 

Boundary’s Area: 1,111,298 u2 

3D Couplet 32 

3D Content (Volume): 156,630 u3 

Boundary’s Area: 578,954 u2 

 
3D Couplet 50 

3D Content (Volume): 14,904 u3 

Boundary’s Area: 79,736 u2 
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TABLE VI 

SOME 3D COUPLETS EXTRACTED FROM THE 4D-EVMS ASSOCIATED TO EROSION AND DILATION OF THE 4D REPRESENTATION OF DATASET CT-PELVI 

3D Couplet Erosion Original Dilation 

7 

 
54,826 Extreme Vertices 

 
73,768 Extreme Vertices 

 
64,368 Extreme Vertices 

17 

 
631,242 Extreme Vertices 

 
1,759,508 Extreme Vertices 

 
675,054 Extreme Vertices 

24 

 
125,906 Extreme Vertices 

 
184,354 Extreme Vertices 

 
124,252 Extreme Vertices 

34 

 
21,754 Extreme Vertices 

 
94,042 Extreme Vertices 

 
88,858 Extreme Vertices 

 

In this work we have focused about a proposal for the 

representation of volume datasets through four-dimensional 

orthogonal polytopes which in time are expressed in the 

EVM. The evaluations presented in Section VI lead to 

establish that an important level of conciseness is obtained 

when such voxelizations are modeled according to our  

four-dimensional context. Moreover, in Sections VII and 

VIII we have described how the basic procedures under the 

Extreme Vertices Model share the extraction of useful 

information related to the original datasets: 1) the 

classification of their elements according to intensities via 

3D couplets perpendicular to color axis; 2) analysis of the 

geometry and topology of those parts of a dataset which are 

composed by the same type of material via the computation 

of 2D sections; 3) measure interrogations in order to know 

volumes or boundaries’ areas; and, 4) direct manipulation of 

the 4D representation for reducing noise and spatial 

complexity. It is possible to compute other geometrical and 

topological interrogations over an EVM. By this way it 

could be obtained much more information and properties 

about the datasets. Furthermore, there are well specified 

procedures under the nD-EVM which allow performing 

Regularized Boolean Operations, Polytopes Splitting, 

Discrete Compactness Computation, among others. In  

[1, 8, 10, 11] there are described with enough detail 

algorithms based in the nD-EVM, besides the ones described 

in this work, which are useful and efficient for performing 

these interrogations and/or manipulations. 

Engineering Letters, 18:4, EL_18_4_02

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



According to Section VII, if the volume datasets are 

represented through the 4D-EVM then the extraction of its 

couplets will provide a classification of the elements in the 

original model according to their intensities. The projection 

of each couplet, perpendicular to the axis associated to color 

is in fact a 3D-EVM which in time corresponds to a binary 

dataset because it only contains material of the same type. 

This observation opens a new line of future research because 

the next logical step is given by the consideration of 

additional approaches in such way the points in a volume 

dataset could be characterized by taking in account not only 

their color. Due to the presence of scanning noise and 

artifacts, a classification based only in intensities is 

sometimes not enough because points that should belong to 

the same class could be characterized as distinct points and 

therefore assigned to distinct classes (hence, our 4D 

representation will integrate each one in distinct 3D 

couplets). An intelligent approach, such as an Artificial 

Neural Network, could automatically identify the classes of 

points present in a volume dataset by taking in account their 

geometry, topology, neighborhood, etc. Once the 

classification is achieved, then the corresponding conversion 

to our proposed four-dimensional representation could be 

performed. It could be possible to assign to each class a 

coordinate in the 4D space in such way 3D couplets 

perpendicular to the fourth axis will correspond to sets of 

points, in the original dataset, that belong to the same class. 

By observing the results from Table II it is clear expressing 

volume datasets via the 4D-EVM has advantages in terms of 

storing requirements. It is expected, that by considering 

more appropriate points classification, a much better 

conciseness should be obtained.     
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