
A New Way to Reduce Computing in Navigation
Algorithm

Weiya Yue, John Franco ∗

Abstract—For solving problems of robot navigation
over unknown and changing terrain, many algorithms
have been invented. For example, D* Lite, which is a
dynamic, incremental search algorithm, is one of the
most successful. The improved performance of the
D* Lite algorithm over other replanning algorithms is
largely due to updating terrain cost estimates rather
than recalculating them between robot movements.
However, the D* Lite algorithm performs some re-
calculation every time a change in terrain is discov-
ered. In this paper, it is shown that recalculation is
often not necessary, particularly when several opti-
mal solutions (shortest paths) exist, or only a partial
recalculation is needed and an efficient test for deter-
mining these is presented. These ideas are packaged
in a modified version of D* Lite which we call ID*
Lite for Improved D* Lite. We present experimental
results that show the speedups possible for a variety
of benchmarks. Besides, a novel realistic benchmark
is described.

Keywords: robot navigation, uncertainty, planning, in-

cremental

1 Introduction

Advances in robot replanning have made possible the
development of serious autonomous vehicles that may
be used to explore other planets, gather data in areas
considered too dangerous for humans, and even park
themselves without human involvement. Notable among
these advances is the marriage of incremental search al-
gorithms with sophisticated search heuristics that exploit
learned terrain information to narrow the search space
and thereby speed up the replanning process. The D*
Lite algorithm [3, 4] represents the state-of-the-art in such
replanning algorithm development. A descendant of the
A* and D* [1, 2] algorithms, D* Lite is easily imple-
mented and its “experimental properties show that D*
Lite is at least as efficient as D*.” It has been used suc-
cessfully in a variety of roles.

The terrain information that is used by D* Lite is repre-
sented abstractly as a directed graph G(V,E) with dis-
tinguished start vertex vs, goal vertex vg, and positive

∗Department of Computer Science, University of Cincin-
nati, Cincinnati OH, 45220. Email: weiyayue@hotmail.com,
franco@gauss.ececs.uc.edu

integer costs c : V × V 7→ Z+ on edges. A “robot” ini-
tially occupies vs and moves along edges to vg. On every
movement through a single edge, called a transition, edge
costs can change. The cost of a robot’s path from vs to vg
is the sum of the costs of the edges traversed when they
are traversed. D* Lite attempts to determine the lowest
cost sequence of transitions that will take a robot from vs
to vg. The problem is complicated by the fact that edge
cost changes are not predictable.

It is unlikely that any navigation algorithm such as D*
Lite will find the global lowest cost sequence of transi-
tions that advances the robot from vs to vg because it
never has complete information about edge cost changes.
Moreover, current edge costs are known only within the
robot’s view which consists of the edges out to vertices
that are within a fixed distance, called the sensor-radius,
from the current position of the robot, which we will al-
ways designate as vc below. But some algorithms such as
D* Lite assuming can always find the lowest cost sequence
from vc to vg based on the known edge costs within the
view assuming that current estimates of other edge costs
are their actual costs. We will use the term shortest path
to refer to such a sequence and we will use ce(w, u) to
represent the estimated cost of any edge ⟨w, u⟩: if ⟨w, u⟩
is in the view then ce(w, u) = c(w, u) in which c(w, u) is
the observed cost by robot in vc, otherwise ce(w, u) is as-
sumed and does not change from round to round. When
a shortest path is found, the algorithm moves the robot
along that path, one transition per round, until the edge
cost assumption is violated with observations within the
view of vc, i.e., some changes have been found. At that
point D* Lite recomputes a new shortest path from vc
to vg and repeats the above two steps until the robot
occupies vg.

D* Lite is assisted by two functions which take a vertex
v as input and returns the cost of the shortest path from
v to vg based on current edge costs and estimated costs.
One function, g(v), is identical to the function of the same
name that is used by the A* algorithm to estimate costs
from vs but in this role estimates the cost to vg. The
other, rhs(v), is a more informed, one-level-lookahead
function whose output is expressed as

rhs(v) = min
v′∈Succ(v)

g(v′) + ce(v, v
′)

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

if v ̸= vg and otherwise rhs(vg) = 0, where Succ(v) is the
set of all vertices, referred to as successors below, that
are reachable from v through a single edge. A vertex v
for which rhs(v) = g(v) is said to be locally consistent.
If g(v) > rhs(v) then v is locally overconsistent and if
g(v) < rhs(v) then v is underconsistent. Shortest path
costs from all vertices to vg are known precisely if and
only if all vertices are locally consistent. In that case,
shortest paths can be computed by following minimum
edge costs, ties being broken arbitrarily.

When a vertex becomes locally inconsistent due to edge
cost changes D* Lite attempts to eagerly update g(v)
values to make all vertices locally consistent. During the
update, the algorithm propagates changes in g(v) to all
neighbors of v until a new shortest path has been found;
it will not update a vertex if it remains consistent from
the previous round. In some variations, for example de-
layed D* [5], it will delay updating underconsistent ver-
tices since, intuitively, it is more likely that the shortest
path traverses overconsistent vertices.

The improvement to D* Lite that is proposed here is
motivated by the observation that in many replanning
problems there is typically more than one shortest path
from vc to vg. The improvement is to find one of the al-
ternative shortest paths that is not affected by the terrain
change which invoked the replanning step, if one exists.
If the cost of an alternative shortest path is no greater
that the current shortest path, a switch to the new path
may be made without recomputing any values of g. Also,
we will show that if the new path is shorter, only part
of the changes need to be propagated. This work was
partially published in [6], here is an extension of it.

In Section 2 an overview of the proposed modification to
D* Lite will be introduced and pseudo code presented.
In Section 3 an example will be discussed. In Section 4
the results of some experiments on random benchmarks
will be shown. Section 5 contains an analysis and some
theoretical results.

2 Improved D* Lite

This section contains the motivation for and description
of an algorithm we call ID* Lite which is short for Im-
proved D* Lite. ID* Lite follows as D* and D* Lite in
searching from goal to start and in selecting the next edge
to traverse. ID* Lite also uses rhs, and g as D* Lite does
and it maintains a priority queue as D* Lite does. As in
the case of D* Lite, ID* Lite traverses a current shortest
path to vg until an inconsistency is detected. However, in
computing a new shortest path, ID* Lite may only calcu-
late part of the changes or even skip all the recalculation.
The conditions that allow recalculations to be skipped
will be given later along with a proof that they do not
prevent ID* Lite from finding a shortest path to vg in
every round. Upon completion of the algorithm it may

be the case that at least some skipped g(v) were never
recomputed. Because of this, ID* Lite can potentially
outperform D* Lite, especially if there are many shortest
paths to vg, or the new path will not be longer.

Some definitions are needed prior to discussing ID* Lite.
When changes are found, D* Lite will need to recompute,
this will be called “one round”. Although in ID* Lite
recomputing may be skipped, it will still be called “one
round”. In Succ(v), all the vertices v′ whose g(v′) +
c(v, v′) = rhs(v) are called children of v, and v will be
called v′’s parent: i.e., on vertex v, robot can choose
an arbitrary vertex from children for next move. The
vertices in children are siblings of each other. A type in
the form of a number will be assigned to every vertex
during execution of ID* Lite as follows:

−3: The vertex is temporarily unavailable because it is
not locally consistent due to the changes. This is
also called inconsistent source.

−2: The vertex is temporarily unavailable, due to incon-
sistent source: because the shortest path between it
and vg must cross a type −3 vertex.

−1: The vertex has never been searched: i.e., has not
appeared previously in the priority queue.

0: The vertex has been visited but is not in the current
shortest path.

≥ 1: The vertex has been visited, is in the current short-
est path, and the type number is the number of its
children whose type value is not -3 or -2.

The length of a path is the number of edges it contains.
The distance between two vertices is the minimum length
of paths connecting those two vertices. All vertices that
are no further than distance sensor-radius away from vc
are said to be in the view of vc and those that are exactly
distance sensor-radius away from vc are said to be fringe
vertices. Complete path information is always known
within the view of vc.

For convenience, from now on, e will be used to repre-
sent one edge and also its weight. No explanation will
be commented unless there is a confusion. w, u are used
for vertices and e = (w, u) means the edge from w to
u. Sometimes, ce(w, u) or c(w, u) will be used to repre-
sent the weight of e = (w, u). c′e(w, u) or c

′(w, u) means
the same thing but just after updating: i.e, the symbol
attached with ′ represents that it shows the newest infor-
mation. Use the same format on a path p, then p′ means
the same route with p but after propagating changes in
the current round. Also, Ω will be used for the value
of one optimal solution before some changes have been
found. Ω′ will be used for the optimal-solution-value in
the current round. Similarly, if e has been changed, then
e′ will be used for the new edge.

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

The explanation below is in order to give a rough idea of
ID* Lite . The goal of ID* Lite, when an inconsistency
is discovered at a vertex w, is to consider replacing the
current shortest path with an new shortest path from vc
to vg which passes through some vertex u on the path
from vc to w with priority in increasing order of distance
from u to w.

If there exists such a path with cost less than Ω, the
first one found will replace the current shortest path. In
this case only those changes which have potentialities to
cause such a path will be propagated. “Potentiality of
a change” here means that it is possible to generate one
shortest path passing through this “change”. Otherwise,
if the current shortest path or one of its alternatives is
unaffected by the inconsistency, it will remain the short-
est path into the next round. If neither of the above
applies a new shortest path will have to be computed in
the same manner that a new shortest path is computed
by D* Lite. In other words, there are two cases where a
new shortest path is partially and fully recomputed and
vertex information is recomputed to be made consistent
respectively: 1) when a path to vg that is shorter that
the current shortest path is found; and 2) when all old
shortest paths from vc to vg are affected by the inconsis-
tency.

Reduced processing time for ID* Lite depends on the
ability to find the shorter path and unaffected alterna-
tive shortest paths; one of the new shortest paths will be
found if there are more than one. The shorter path can
be found by partially computing where only the poten-
tial vertices which may lead to a better solution will be
processed. Alternative paths can be located with a sim-
ple and efficient test and, if determined to exist, they can
be efficiently computed by traversing a chain of vertices
according to vertex type, possibly changing the type of
some vertices during the traversal. The test is merely to
determine whether ce(w, u) has changed for some w and
u vertices in the view. There may be several such changes
on a round and all may be taken into account when look-
ing for a shortest path to vg. This is different than for D*
Lite and its variants: they will always eagerly recompute
g and rhs to remove inconsistencies and then compute a
new shortest path based on the new values. If ID* Lite
is not forced to recompute g and rhs values it will not do
so; that presents the opportunity to seek and investigate
alternative shortest paths. If recomputation cannot be
avoided, similar to delayed D* Lite [5], ID* Lite will try
to only update part of the changes. But unlike delayed
D* Lite, the need to test whether to recompute more than
once in every round to guarantee optimality is avoided by
ID* Lite.

An outline of the action of ID* Lite is displayed in Fig-
ure 1. ID* Lite uses the variables and functions of D* Lite
but some have been modified slightly to support vertex
types. For example, every time a vertex is added into

01) bool get-alternative(vertex p)
02) vertex r = p.
03) while(̸= vg)
04) update r’s type value.
05) if(type(r) > 0) r = one child y of r
06) else if(type(r) = 0)
07) type(r) = -2.
08) if(r = vc) return FALSE.
09) r = parent(r).
10) return TRUE.

11) bool mini-compute()
12) while (U.TopKey() < key(vc))
13) u = U.Top(), kold=U.TopKey(), knew=CalculateKey(u).
14) if(kold < knew) U.Update(u,knew).
15) else if(g(u) > rhs(u))
16) g(u) = rhs(u).
17) U.Remove(u).
18) for all s ∈ Pred(u)
19) if(s ̸= vg) rhs(s) = min(rhs(s), c(s,u)+g(u)).
20) if(s ∈ catch) catch.Remove(s).
21) UpdateVertex(s).
22) else U.Remove(u).

23) getbackvertex(vertex p)
24) if(p ̸= NULL and type(p) < 0)
25) if(rhs(p) ̸= g(p))
26) return;
27) type(p) = 0;
28) p=parent(p);
29) getbackvertex(p);

30) process-changes()
31) boolean better=FALSE, recompute = FALSE.
32) For every observed edge ⟨u, v⟩ where
33) ce(u, v) has changed since the previous round:
34) Update u’s rhs value.
35) if(type(u) = −3) getbackvertex(u).
36) if(rhs(u) = g(u)) type(u)=0.
37) else
38) If h(vc, u) + rhs(u) < Ω,
39) better = TRUE, UpdateVertex(u).
40) else catch.add(u), type(u)=-3.
41) if (better = TRUE) mini-compute().
42) recompute=!get-alternative(vc).
43) if recompute = TRUE
44) move type ̸= 0 vertices in catch to U
45) set all ̸= 0,−1 type value to be 0.
46) compute shortest path as in D* Lite.

47) move()
48) Set Array catch=∅, and all type values to be −1;
49) Initialize and compute as D* Lite does at beginning.
50) while vc ̸= vg

51) if (EdgesCostChanged()) process-changes().
52) type(vc) = 0, vc = one type > 0 child of vc.

Figure 1: Main functions of ID* Lite

the priority queue (U), its type value will be set as 0,
the other modifications of type value have been shown in
outline. The reader is referred to [4] for a description of
those functions.

The function that determines what happens on a round
is process-changes. For every changed edge e =< u, v >,
rhs value of vertex u will be updated. In line 35, if a
vertex had been changed before, function getbackvertex
will be called. We will explain this function later. In
line 38, if a change may cause a shorter path, line 39 will
be executed, otherwise this change will be temporarily
stored in catch. Lines 41 and 42 will find a path if the
length of the new shortest path is less than or equal to
the length of the old one. If it fails to find such a path in
previous lines, the last three lines of process-changes are

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

invoked to perform a D* Lite style recomputation. From
here, we can see that function process-changes works like
a distributor to drive other functions to work. Function
getbackvertex is used to get back the vertices which are
abandoned by previous changes. Notice that one edge
may be changed more than one time among rounds. In
D* Lite, once one edge has been changed the first time, it
will be reinserted into priority-queue for updating to be
consistent, but in ID* Lite, one change on an edge may
be skipped and marked by type = −3. When that edge
is changed one more time, it is possible that that edge
can be used again. But when it becomes unavailable,
it may cause many other vertices to become unavailable
and marked by type = −2 in function get-alternative.
Such vertices will not be involved further in the recom-
putation of a round but when necessary a call to getback-
vertex after the round is over may make them all avail-
able once again. mini-compute will only propagate the
vertices for which rhs < g (overconsistent) and satisfy
the condition in line 12, so only better solutions can be
found in function mini-compute; if there is vertex with
rhs > g (underconsistent), it must be catched, so we can
delete it directly, the reason to do this and its benefits
will be discussed in Section 5. Here notice that only
part of rhs < g (overconsistent) vertices will be prop-
agated. The condition in line 12 is very important. It
makes sure that this function will be terminated when it
is impossible to get a better solution than the old one.
In delayed D* [5], there is a function computeShortest-
PathDelayed where all rhs < g (overconsistent) vertices
are propagated at first. Its looping condition is also dif-
ferent from ours by appending with “or g(vc) ̸= rhs(vc)”.
This can cause a problem in some seldom occurring con-
dition in delayed D*. Now assuming rhs(vc) > g(vc)
due to an increased change around vc, then that looping
condition surely is satisfied. If that change can be up-
dated, it will make vc to be consistent to get out of the
loop. But remember that delayed D* will try to propa-
gate rhs < g (overconsistent) vertices first, that means
the increased change can not get processed when func-
tion computeShortestPathDelayed is called the first time
so this function can not terminate until the priority queue
is empty. This problem can be solved by inserting such
kind of increased changes which can affect vc’s values di-
rectly into the priority queue as decreased changes when
function computeShortestPathDelayed is called first time.

get-alternative will find a path from p to vg if and only
if there exists one. The rough idea is: all the solutions
construct a tree rooted at vc, so from vc a depth-first
search can find one solution if and only if there exists
one. It is straightforward to see the complexity of this
method is linear in the number of all vertices on shortest
paths. In line 04, it is asked to update a vertex r′s type
value, this will be done according to the definition at the
beginning of Section 2. So if one vertex can be counted
into a positive number for type(r), more than consistence

is required. The main function is move which is invoked
one time, at startup. Its operation is similar to that of
the move function of D* Lite except that on every round
it calls process-changes to try to avoid recomputation of
g and rhs values.

As a note, in line 05, when a child of r is chosen, it is
better to get the one with type > 0 if possible. This
way, if the old shortest path can be still used, it will
be found with first priority, i.e. the old shortest path
is searched firstly than the others. Upon termination
of process-changes, only some of vertices in catch need
to be transferred to U with the order of increasing key
value. More vertices in catch will be moved into U if and
only if no shortest path has been found. It follows that
the information in catch and U should be synchronized.
However, for simplicity we chose not to do this in running
our experiments but to transfer all of them one time.
Currently we are looking for a method to skip memorizing
vertices as is done in catch. For space limit, this won’t
be discussed here.

3 An example

Figure 2 presents a simple example of grid-world that
shows how ID* Lite works. It is a 3× 5 grid-world where
shaded squares are impassable obstacles. A vertex is a
square and is identified by its row and column position;
the vertex associated with the ith row and jth column
is referred to as vi,j . It is 4-directional. The cost of
each edge connecting two unshaded squares is 1. The
start vertex is v1,0 and vg is v1,4. The sensor-radius is
1. Squares may become shaded or unshaded at any time
during movement. The heuristic function is h(w, u) = 0.
The diagram on the left shows (g, rhs) values calculated
as in D* Lite, a ‘-’ symbol denotes ∞; there are several
shortest path choices with cost Ω = 5, consider that we
use the one marked by the dotted line. Then the type
values in ID* Lite are shown as the right of Figure 2.

Figure 2: 3× 5 4-directional Grid World

Figure 3: Example of ID* Lite Execution

Suppose the robot moves from (1, 0) to (1, 1), and (0, 2) is
found to be blocked as shown in Figure 3(a). After updat-
ing rhs of those vertices, h((1, 1), (0, 2)) + rhs((0, 2)) =

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

0 + ∞ > Ω, so mini-compute is not needed. In get-
alternative, going from (1, 1) to (0, 1), because of the
blockage of (0, 2), (0, 1)’s type value is 0, its type value is
updated to be −2 and the algorithm backtracks to (1, 1).
Then (1, 1)’s type value is updated to be 1, and the only
child is (2, 1). The new shortest path is shown by the
dotted line in Figure 3(a). Figure 3(c) is the type graph
corresponding to Figure 3(a). In D* Lite, recomputation
is needed: both (0, 2), (0, 1) will be inserted into the pri-
ority queue to propagate the change. Here, if the robot
is still on (1, 1) and finds (0, 2) is unblocked, getbackver-
tex will be used and vertices (0, 1) and (0, 2) will be set
available again.

Now, consider the robot is on vertex (2, 3). Two changes
are observed: (1, 3) is unblocked and (2, 4) is blocked as
shown in Figure 3(b) with the old path weight Ω = 2. Af-
ter updating rhs, because h((2, 3), (1, 3)) + rhs((1, 3)) =
0 + 1 < Ω, vertex (1, 3) will be inserted into the prior-
ity queue and mini-compute is triggered. Similarly, as
(0, 2) in Figure 3(a), it is not necessary to insert (2, 4)
into the priority queue. After execution of mini-compute,
the (g, rhs) value will be as in Figure 3(b). Then get-
alternative is called. The corresponding type value is
shown in Figure 3(d), and the new shortest path is shown
as the dotted line in Figure 3(b). In D* Lite, it is nec-
essary for both changed vertices to be inserted into the
priority queue to propagate.

D* Lite would have found all the changes to rhs val-
ues that ID* Lite did. Then it would have begun a new
search, updating all g and rhs values as usual. Algorithm
delayed D* would have operated as D* Lite except that it
would propagate decreased changes first. But after that
it needs to make an extra check to make sure it has the
shortest path: i.e., there are no inconsistent vertices on
its current path. This step is necessary to be sure the
path found by delayed D* is shortest. For details please
refer to [5].

4 Experiments

In this section, the performance of ID* Lite is compared
experimentally to the D* Lite and delayed D* algorithms
on random grid-world terrains. In each experiment the
initial terrain is a blank square 8-direction grid-world
of size2 vertices, where vs and vg are chosen randomly.
Several other parameters are used: 1. percent is used
for exactly percent% ∗ size2 of the vertices are selected
randomly and blocked; 2. sensor-radius is used as the
maximum distance to a node that is observable from the
current robot position. First, results of random rock-and-
garden benchmarks is given: i.e., a blockage is found it
will not move or disappear later. Then, experiments are
run on a collection of benchmarks that model robot navi-
gation through changing terrain. The results are average
of more than 100 independent runs of each algorithm.

In Figure 4 and Figure 5, the results in rock-and-garden
benchmarks are shown. In Figure 4, the graph on the
left shows the relation between number of heap operations
and sensor-radius given the other parameters. Heap op-
erations make the most significant contribution to time
complexity in such algorithms and the plots show only
the heap operations in recomputation: i.e., they do not
count the number of operations used when initializing a
shortest path from vs to vg, because all of the family of
algorithms discussed here do the same as the A* algo-
rithm in this phase. On the right side of the figure is
a graph showing the ratio of the number of recomputa-
tions to the number of changes observed. The D* Lite,
curve is flat at 1 because every time an inconsistency is
observed, exactly one recomputation must be performed.
The delayed D* curve is always above 1 because at least
one recomputation must be performed for every round in
order to guarantee local optimality, but because delayed
D* may finish one round with less time that it can still
perform better than D* Lite in many conditions [5]. The
curve for ID* Lite stays much below 1 since recomputa-
tions are skipped when alternatives are found. We note
that the numbers plotted in the figure include calls to
mini-compute. In Figure 5, the graphs show the same
meanings as corresponding graphs in Figure 4 but with
sensor-radius fixed and different blockage percent.

1.00^{3}

2.50^{3}

4.00^{3}

5.50^{3}

7.00^{3}

2 5 10 15 20

H
ea

p
P

er
co

la
tio

ns

sensor-radius

D* lite
delayed D*

ID* lite

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 5 10 15 20#
re

co
m

pu
te

s
pe

r
in

co
ns

is
te

nc
y

di
sc

ov
er

y

sensor-radius

D* lite
delayed D*

ID* lite

Figure 4: size = 200 and percent = 30

To some extent, the graph explains why ID* Lite can
outperform the other algorithms. The right graph of Fig-
ure 4 and Figure 5 show that ID* Lite can save almost
90% of the recomputations that would be done by D*
Lite. However, this does not mean that a correspond-
ing savings applies for heap operations since changes are
transferred from catch to the priority queue every time

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

0.0^0

2.4^3

4.8^3

7.2^3

9.6^3

1.2^4

10 20 30 40

H
ea

p
P

er
co

la
tio

ns

percent

D* lite
delayed D*

ID* lite

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

10 20 30 40#
re

co
m

pu
te

s
pe

r
in

co
ns

is
te

nc
y

di
sc

ov
er

y

percent

D* lite
delayed D*

ID* lite

Figure 5: size = 200 and radius = 20

a full recomputation occurs. To reduce the transferring
will be our next step to improve ID* Lite in the future.
Since there are less recomputations, more changes are
processed in each recomputation and many changes with
big key values are not propagated. The more vertices
affected by such changes, the more heap operations can
be saved. Generally speaking, decreasing changes can
affect more vertices than increasing changes. In rock-
and-garden benchmarks there are only increasing changes
and in the benchmarks below there are many decreasing
changes.

In [5] significant delayed D* performance advantages are
reported. From the strategy used by delayed D*, it
performs good when there are not too many increased
changes. In particular, delayed D* can perform quite well
when there are only a few decreasing changes that cause
overconsistent vertices. In rock-and-garden benchmarks,
there are no decreasing changes so the performance of
delayed D* is not as good as the other algorithms. From
Figure 5, we can see that, when there are not too many
increased changes, delayed D* performs better than D*
Lite. This gives us a hint in what kind of environment de-
layed D* can be better than D* Lite. But when the block-
age percent increases which means there will be more in-
creased changes, delayed D* performs worse. Delayed D*
performance also suffers in the terrain changing bench-
marks, that will be introduced below, since half of the
inconsistent vertices are overconsistent. This is especially
true when robot movement is blocked. Since showing the
performance results of delay D* would force a change of
scale of the plots, we do not show them.

The second set of benchmarks is intended to model robot

navigating in terrain changes, for example if a robot is
moving in a parking lot along other vehicles. In these
benchmarks a fixed percentage of vertices are initially
blocked and, on succeeding rounds, each of the blocked
vertices moves to some adjacent vertex with probability
0.5, the particular target vertex being chosen randomly
from all available adjacent vertices. The experiments are
done in the same way as the rock-and-garden experiments
except we also plot, in Figure 8, the effect of changing the
percentage of blocked vertices for fixed sensor-radius.

Figures 6 to 7, left, show that ID* Lite uses fewer heap
operations to compute a path from vs to vg. In the right
plot of Figure 7 the ratio of the number of recalculations
to the number of changes tends to 1 as sensor-radius is
increased. But we note that significantly many recompu-
tations are calls to mini-compute which complete faster
than a full recomputation. From Figure 8, we can see
that the number of recomputations done in ID* Lite re-
mains below that of D* Lite for a wide range of blocking
percentages. We conclude that for these benchmarks ID*
Lite has a better ability to handle intensely changing en-
vironments. Because ID* Lite can skip recomputations
and then update all the changes at one time, it is more
efficient to update changes per round.

In the case of the terrain changing benchmarks, although
all three algorithms find and traverse optimal cost paths
in every round, they can find different final paths if they
use different ways to break ties when there is more than
one child to consider. Because ID* Lite exploits alter-
native shortest paths which try to avoid the area with
more intense changes, ID* Lite has a better ability to
avoid crashes with sliding obstacles. This is deserved to
be searched more to combine domain knowledge to get a
better global path.

5 Analysis and theoretical results

In this section it is shown that on every round, given a
current shortest path from vc to vg, ID* Lite computes a
new shortest path, if one exists: that is, a path whose cost
is the minimum over all paths P from vc to vg of the sum
of costs ce of edges in P . In D* or D* Lite, changes are
all considered again and so lead to updating of values of
affected vertices. In delayed D* [5], some kind of changes
will be updated first then others. This is more like a kind
of heuristic strategy. In this section, we will show how it is
possible to get deterministic improvement with ID* Lite.
It is assumed that the cost of any edge with at most one
endpoint in the view has values which are still consistent.
Finally, it is assumed that the heuristic function h(w, u)
is the same as that of D* Lite and is therefore always a
lower bound on the minimum cost path from w to u using
ce costs and is such that the triangle inequality holds.

e = ⟨w, u⟩ is used to denote an edge in process-changes
of ID* Lite that is in the view, whose cost ce(w, u) has

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

1.00^{3}
5.00^{3}

2.00^{4}

4.00^{4}

6.00^{4}

2 5 10 15 20

H
ea

p
P

er
co

la
tio

ns

sensor-radius

D* lite
ID* lite

0.00

0.20

0.40

0.60

0.80

1.00

1.20

2 5 10 15 20#
re

co
m

pu
te

s
pe

r
in

co
ns

is
te

nc
y

di
sc

ov
er

y

sensor-radius

D* lite
ID* lite

Figure 6: size = 200 and percent vertices blocked = 30

0.00^{0}

3.50^{4}

7.00^{4}

1.05^{5}

1.40^{5}

1.75^{5}

2 5 10 20 30

H
ea

p
P

er
co

la
tio

ns

sensor-radius

D* lite
ID* lite

0.00

0.20

0.40

0.60

0.80

1.00

1.20

2 5 10 20 30#
re

co
m

pu
te

s
pe

r
in

co
ns

is
te

nc
y

di
sc

ov
er

y

sensor-radius

D* lite
ID* lite

Figure 7: size = 300 and percent vertices blocked = 30

changed to be c′e(w, u) since the previous round. For
convenience, from now on, e will be used to represent one
edge and also its weight. w, u are used for vertices and
e = (w, u) means one directed edge from w to u as noted
by e = ⟨w, u⟩. Sometimes, ce(w, u) or c(w, u) will be used
to represent the weight of e = (w, u). c′e(w, u) or c

′(w, u)
means the same thing but just after changing. Use the
same format on a path p, p′ means the same route but
in the current round. Also, Ω will be used for the value
of one optimal solution before some changes have been
found. Ω′ will be used the the optimal-solution-value in
the current round. If e has been changed, then e′ will

0.0^0

1.5^4

3.0^4

4.5^4

6.0^4

7.5^4

10 20 30 40

H
ea

p
P

er
co

la
tio

ns

percent

D* lite
ID* lite

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10 20 30 40#
re

co
m

pu
te

s
pe

r
in

co
ns

is
te

nc
y

di
sc

ov
er

y

percent

D* lite
ID* lite

Figure 8: size = 200 and sensor-radius = 20

be used for the new edge or its weight: i.e., ′ represents
newer information. Given a change of an edge-weight in
the graph, it can be an increased change or a decreased
change, i.e. e′ > e or e′ < e respectively.

Observation 5.1 If one change is an increased change,
i.e. e′ > e, then any path passing through e′ without
decreased edges has a cost that is greater than Ω, the cost
of previous round shortest path.

proof 1 Assume there is a path p′ of cost less than or
equal to Ω and passing through e′ without a decreased
edge. It is straightforward to see that the cost of p in the
previous round is less than Ω. This contradicts the hy-
pothesis that Ω is the shortest path of the previous round.

Although Observation 5.1 is obvious, it shows that we
can divide changes by how they can infect solutions.
By comparing with the previous round, there are three
kinds of solutions: better(Ω′ < Ω), equal(Ω′ = Ω) and
worse(Ω′ > Ω). From the statements above, it may
be guessed that the increased changes will cause worse
results and decreased changes will cause better results.
Then the new way to divide changes will be the same as
the method by change of weight-value. The observation
below will show that this is not the exact situation.

Observation 5.2 e = ⟨w, u⟩’s cost has been decreased.
If after updating rhs of w, u, h(vc, w)+ rhs(w) is no less
than Ω of previous round, then any path passing through
e′, without other decreased edges after e′ along the path,
has a cost that is not less than Ω.

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

proof 2 Suppose an arbitrary path p passing through e,
then the cost of p, ′η′, has the property: η ≥ h(vc, w) +
c′e(w, u) + g(u). By definition of rhs, we have η ≥
h(vc, w) + rhs(w). Surely, the later is bigger than Ω.
I.e., η ≥ h(vc, w) + rhs(w) ≥ Ω.

In Observation 5.2, functions h and rhs have the same
meaning as in D* Lite. This observation shows that some
kind of decreased changes can not take a better solution
and can be determined before recomputing. Until now,
we may notice that all the statements above require that
“without other decreased edges...”. But with the results
below, we can see that such conditions can be skipped
safely.

Lemma 5.1 In the current round, after propagating
changes(i.e. recomputing), if there are two changed edges
e′(w, u) and z′(v, r) on path p′ which is the shortest path
passing through e′ and z′, and z′ is after e′ along path p′,
then (h(vc, w) + rhs(w)) ≥ (h(vc, v) + rhs(v)).

proof 3 If p′ is the shortest path passing through e′ and
z′ and z′ is after e′ along path p′, then (h(vc, w) +
rhs(w)) ≥ (h(vc, w) + h(w, v) + rhs(v)) ≥ (h(vc, v) +
rhs(v)) by property of consistent heuristic function.

Lemma 5.2 In the current round, if there is a path
which is the shortest one passing through a set of changes
and e′(w, u) is the last one along the path before propa-
gating changes, h(vc, w)+rhs(w) is correct, i.e. the same
as after propagating changes.

proof 4 If the value of h(vc, w) + rhs(w) is not correct,
that means rhs(w) will be affected by some changes z′,
then the shortest path passing through this set of changes
must include z′ too and z′ will be after e′ along the path.
This is a contradiction.

corollary 1 Suppose, after propagating changes, there is
a path p′ passing through a set of changes with the last
change at edge e′(w, u) along p′. Then, the cost value of
path p′ is < Ω if and only if before propagating changes
(h(vc, w) + rhs(w)) < Ω.

proof 5 This comes straightforwardly from Observa-
tion 5.2, Lemma 5.1 and Lemma 5.2.

Lemma 5.3 In the current round, if after propagating
changes, there is one path p′ passing through a set of
changes and the last change is e′(w, u) along p′, then be-
fore propagating changes, only e′ needs to be reinserted
for propagation in order to get path p′.

proof 6 Without losing generality, assume that z′(v, r)
is the change along p′ before e′, then if e′ is reinserted
and propagated, rhs(v) must be affected by e′. I.e., z′

will be reinserted and propagated too. Similarly, all the
changes on path p′ will be processed. Straightforwardly,
path p′ can be generated.

corollary 2 In the current round, if there will be one
better path p′ than the old one, then it can be obtained by
propagating the change e′(w, u) which is the last change
along a path p′. The cost of the path satisfies (h(vc, w) +
rhs(w)) < Ω.

proof 7 This comes straightforwardly from Corollary 1
and Lemma 5.3.

The conclusion of Corollary 2 looks good but can not be
executed conveniently, because it is hard to say whether
one change is the last one along a path. So for implemen-
tation, such conditions need to be broadened as below.

Proposition 5.4 If there are paths which are better than
the old one, they can be computed by propagating the
changes such as e′(w, u) with (h(vc, w) + rhs(w)) < Ω.

proof 8 This comes straightforwardly from Corollary 2.

Proposition 5.4 differs from Corollary 2 in two ways: 1)
“last change” is not required anymore; 2) this one is
not obvious: in Lemma 5.2, the equation in it will be
correct when the change is the last one. But if not,
the correctness can not be guaranteed anymore. That
means the change z′(v, r) whose correct value (h(vc, w)+
rhs(w)) ≥ Ω may be reinserted and propagated by a
wrong (h(vc, w)+rhs(w)) value. I.e., the vertices consid-
ered are a super-set of the vertices in Corollary 1. This
is expected to be improved to find a stricter condition in
the future. Proposition 5.4 also solved the question about
existence of condition “without other decreased edges...”,
because it does not use any assumption about it at all.

Until now, the statements above are concerned with get-
ting the optimal solution if the new solution is better than
that of the previous round. But it is also possible that the
new optimal solution is no better than the old one. Now
we will discuss what can happen if the new solution is
as good as(equal) old one. Here “equal” does not means
exactly the same but equivalently good by comparison
with some rules. For example, the values of weight are
equivalent. So we can also get another conclusion: the
old one may be not available anymore. Then in current
round, the optimal solutions come in two different ways.
1) the ones in the previous round and have not been af-
fected by changes; 2) the ones which are newly generated

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

in current round caused by changes, i.e., containing one
or more changes. For the first kind, because they are not
affected by changes, the values on them are still correct,
i.e. they can be found directly. For the second kind, we
can get them through a small change of previous results
as below. Notice that in Corollary 1 ≥ Ω can replace > Ω
without loss. To change Corollary 2 and Proposition 5.4
similarly, we can get:

corollary 3 In the current round, if there will be a path
no worse path p′ than the old one, then it can be ob-
tained by propagating the change e′(w, u) which is the
last change along a path p′ and also satisfy (h(vc, w) +
rhs(w)) ≤ Ω.

proof 9 proof is similar to that for Corollary 2.

Proposition 5.5 If there are paths which are no worse
than the old one, they can be obtained by propagating
changes such as e′(w, u) with (h(vc, w) + rhs(w)) ≤ Ω.

proof 10 proof is similar to that for Proposition 5.4.

In Figure 1, we can do this by replacing ≤ with = in line
38. This performs better when there are many solutions
of the second kind. Our experiments show that the differ-
ence is not too big. Both methods are optimal. Because
if no better or equal solution is found, a whole recom-
putation will be ran as D* Lite. The difference is that
in current code, not all the equal solution can be found.
But both of them act the same on better solutions.

One might suppose that if the new solution is equal to the
old one the round might be terminated successfully. But
this is not the case. The conclusions above are correct
and have been proved, but there may be some “fake”
paths which can not be used anymore. All these “fake”
paths are caused by the fact that many changes have not
been propagated. For example, path p′ including one un-
propagated change e′(w, u) can be considered to be one
optimal solution. Here the change e′ must be an increased
change, or it will satisfy the formula in Proposition 5.5
and has been propagated. Then we can see that if e′ is
propagated, p′ must have a bigger weight, i.e., it is not
a real optimal solution. This requires us to have a way
to find one correct optimal solution quickly. This seems
similar to delayed D*, but there is a major difference.
In delayed D*, the processing is an iteration of finding
rising vertices and updating changes: once rising vertices
have been found, they will be propagated then repeat
checking rasing vertices again. This processing is used
to guarantee the optimality of found solution. For more
details refer to [5]. But here no updating will be taken
until one solution has been found or no such solution can
be found. That is because all the optimal solutions (if

they are no worse than old one) are calculated already:
then if one of them can be located, we are done. Now,
recall that there are three kinds of solutions comparing
with previous round: better, equal and worse. The only
one which has not been discussed is “worse”. If we find
the current condition is ”worse”, then we have to update
all the changes as D* Lite.

From now on, we will prove some properties of the pseudo
code of ID* Lite in Figure 1. With all the results above,
it will be relatively straightforward.

Lemma 5.6 Assuming values are correct, Function get-
alternative returns TRUE if and only if a shortest con-
sistent path from vc to vg is found.

proof 11 Function get-alternative returns TRUE if and
only if a path from vc to vg has been found. By the way
the next step is chosen, no abandoned (i.e., inconsistent)
vertices will be chosen, so the path must be one of the
shortest consistent paths.

In Function get-alternative, the rough idea is: all the so-
lutions construct a flow with source at vc and destination
at vg, so from vc a depth-first style searching can find one
solution if and only if there exists one. It is straightfor-
ward to see this method is very efficient.

Lemma 5.7 Function mini-compute can only generate
a path whose weight is better than Ω.

proof 12 By the condition in line 12, if one vertex’s key
value is bigger than Ω, then it will not be processed and
the function terminates. So if one path is generated, then
it must have a weight value better than Ω.

It is necessary to notice that: if there is a vertex with
rhs > g (underconsistent), it will be deleted from prior-
ity queue. It must be catched, then we can still get it
back if we need it later. From this, we can see that what
Function mini-compute does is different from Proposi-
tion 5.4. In mini-compute, it is possible that some short-
est path can not be found. For example, there is one
shortest path p′ passing through one decreased change
e′ = (w, u) and one increased change z′ = (v, r) along
the path. Then when z′ is propagated, it may be deleted
because of underconsistency, or cause termination of this
function. Then, path p′ can not be generated. This is
the only possibility that a shortest path can not be found
by mini-compute. But the last result will be correct be-
cause without propagation of z′, rhs(w) is less than its
actual value, so the value of path p′ generated by mini-
compute is less than its actual value too. That means, in
function get-alternative, this path will be considered un-
available and a whole recomputing will be called to get
the correct results. The direct reason why to do so is

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

for efficiency. As we found that such kind of conditions
seldom appear, i.e., an increased change normally causes
a worse path. Only in some special conditions, where
the increased value will be canceled out by a decreased
change, it can appear on a shorter path. But in such a
condition, probably a path passing through e′ and then
switching to another route around z′ exists and is better
than p′.

Theorem 5.8 Function process-changes will find the
shortest path in every round if and only if there exists
one.

proof 13 By Proposition 5.4, Lemma 5.6 and
Lemma 5.9, if in line 43, the recompute = false, a
correct shortest path must have been found. Or, the last
three line in Figure 1 will be executed like D* Lite, so
the correctness of the new shortest path follows from the
correctness of D* Lite.

Lemma 5.9 The changes which have been skipped in a
round when the shortest path’s cost is Ω, will not affect
the result anymore unless the new shortest path is greater
than Ω.

proof 14 For a change of e = ⟨w, u⟩, if it was skipped,
then the low bound η of any path passing through it has
η ≥ Ω. If the new shortest path’s length Ω′ is not greater
than Ω, then we have η ≥ Ω′. So it will not affect the
new shortest path.

And if the new shortest path is greater than Ω, a full
recomputation as D* Lite must have been executed, that
means all the catched vertices will be transferred into the
priority queue.

Theorem 5.10 In every round, ID* Lite will return a
shortest path from vc to vg if and only if at least one
shortest path exists.

proof 15 Follows directly from theorem 5.8 and
Lemma 5.9.

The following theorem explains, in part, the relative effi-
ciency of searching for alternative shortest paths.

Proposition 5.11 After a full recomputation, all the
new shortest paths will be found.

proof 16 Since ID* Lite uses the same data structures
as D* Lite, if one child of a vertex has been updated to be
consistent, then all the children of it will be updated to be
consistent. So if one shortest has been found, supposing
an arbitrary path p from vc to vg is also shortest, then the
child of vc on p must be updated and consistent too. Iter-
atively, all the vertices on p are updated and consistent.
I.e., it has been found.

6 Conclusion and Next Step of Work

A modification to the D* Lite algorithm for planning has
been introduced and packaged as an algorithm called ID*
Lite. The modification is to update vertices as little as
possible and to seek alternative shortest paths when in-
consistencies are discovered, rather than recompute to
remove all inconsistencies before finding a new shortest
path. It is shown that the modification results in far
better performance on random grid problems. The mod-
ifications proposed for D* Lite can coexist with other D*
Lite variants such as delayed D* Lite easily.

All the observations in this paper are not related closely
with any domain-knowledge in navigation, that means
it is possible these observations can be generalized into
incremental algorithm. We will formalize a general frame
to do so and probably one or two applications of this
frame to different areas will be tested.

References

[1] Anthony Stentz,“Optimal and Efficient Path Plan-
ning for Partially-Known Environments,” IEEE In-
ternational Conference on Robotics and Automation,
San Diego,CA, pp. 3310–3317, 5/94.

[2] Anthony Stentz, “The Focussed D* Algorithm for
Real-Time Replanning,” Proceedings of the Inter-
national Joint Conference on Artificial Intelligence,
Montral, Qubec, Canada, pp. 1652–1659, 8/95.

[3] Sven Koenig, Maxim Likhachev, “Improved Fast Re-
planning for Robot Navigation in Unknown Ter-
rain,” IEEE International Conference on Robotics
and Automation, Washington DC, pp. 968–975,
8/02.

[4] Sven Koenig, Maxim Likhachev, “D* Lite,” Eigh-
teenth national conference on Artificial intelli-
gence,Menlo Park, CA, USA, pp. 476–483, 2002.

[5] Dave Ferguson, Anthony Stentz, “The Delayed D*
Algorithm for Efficient Path Replanning,” IEEE In-
ternational Conference on Robotics and Automation,
Washington DC, pp. 968–975, 4/05.

[6] Weiya Yue, John Franco, “Avoiding Unnecessary
Calculations in Robot Navigation,” Lecture Notes in
Engineering and Computer Science: Proceedings of
The World Congress on Engineering and Computer
Science 2009, WCECS 2009, 20-22 October, 2009,
San Francisco, USA, pp. 718–723.

Engineering Letters, 18:4, EL_18_4_03

(Advance online publication: 23 November 2010)

__

