
  

Abstract— This paper presents an efficient axi-symmetric 

finite element based on the “Inverse Approach” for the 
numerical modeling of cold forging process. In contrast to the 
classical incremental methods, the Inverse Approach exploits 
the known shape of the final part and executes the calculation 
from the final part to the initial billet. The assumptions of the 
proportional loading and the simplified tool actions make the 
I.A. calculation very fast. The formulation of an axi-symmetric 
element based on the I.A. is presented. The metal’s 
incompressibility is ensured by the penalty method. The 
comparison with the simulation by Abaqus® shows the 
efficiency and limitations of the I.A. This kind of modeling will 
be a good tool for the preliminary preform design. 

 
Index Terms— Cold forging process, large logarithmic 

strains, integrated constitutive law, axi-symmetrical element, 
Inverse Approach.  

 

I. INTRODUCTION 

In a cold forging process, the metal is largely deformed 
under the tool actions. The forging process allows not only to 
change the billet’s shape but also to improve the metal 
properties because it refines the metal grain sizes. Forged 
parts are often used for high performance and high reliability 
applications where the strength and the human safety are 
crucially important.  

The numerical modeling plays an important role in the tool 
design for the forging process. Many research groups work 
on the forward method or on the backward tracing method for 
the forging simulation and optimization [1]-[7]. Very 
advanced works have been done by Chenot, Fourment et al. 
from CEMEF in France and the corresponding software 
FORGE is largely used in the forging industry.  

Two simplified methods called Inverse Approach (I.A.) 
and Pseudo Inverse Approach (P.I.A.) have been developed 
by Batoz, Guo et al. [8], [9] for the sheet forming modeling. 
These approaches are less accurate but much faster than 
classical incremental approaches. 
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The aim of the present work is to study the feasibility of the 
I.A. for the cold forging modeling [10]. The formulation of 
an axi-symmetric element based on the I.A. is developed for 
the preliminary preform design and optimization. 

In this study, firstly, we present the basic idea of the I.A. 
and the main steps of the modeling. Then, we detail the 
formulation of an axi-symmetric element based on the I.A.: 
the principle of virtual work in large deformation, the 
definition of large logarithmic strains, the integrated 
constitutive law based on the assumption of proportional 
loading, the technique to ensure the incompressibility of the 
metal and the special treatment of the boundary conditions. 
Two examples will be presented to show the efficiency and 
limitations of the present I.A. for the forging process 
modeling. 

 

II. OUTLINE OF THE INVERSE APPROACH 

The Inverse Approach is based on the knowledge of the 
final part shape. The prediction of the trajectories of all 
material points from the initial billet to the known final part is 
done in one step by comparing directly the initial and final 
configurations. Two basic assumptions are used in this study: 
the assumption of proportional loading (for cold forging) 
gives an integrated constitutive law without considering the 
strain path and the visco-plasticity, and the assumption of 
contact between the part and tools allows one to replace the 
tool actions by nodal forces without contact treatment. These 
two assumptions make the I.A. calculation very fast.  

The I.A. procedure is carried out as follows (Fig. 1): 
1) The finite element mesh is created on the known final 

part. 
2) As an initial solution, the nodes at the part contour are 

mapped on the known contour of the initial billet and a linear 
resolution allows determining the positions of the internal 
nodes in the initial billet. 

3) The large logarithmic strains are calculated by using the 
Cauchy-Green left tensor between the two meshes, and the 
stresses are obtained by using an integrated constitutive law. 

4) The metal’s incompressibility is ensured by the penalty 
method. 

5) An implicit Newton–Raphson algorithm is used to move 
the nodes in the initial billet in order to satisfy equilibrium in 
the final part. 
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Fig. 1 Two approaches for forging process modeling 

III. AXI-SYMMETRIC ELEMENT BASED ON I.A. 

A. Principle of Virtual Work (PVW) 

By contrast to incremental approaches, in the Inverse 
Approach, the final configuration is known and taken as the 
reference configuration. The equilibrium of the final part is 
expressed by the principle of virtual work which makes the 
finite element formulation much simpler: 
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where int
eW  and ext

eW  are the element internal and external 

virtual works, 
 
 the Cauchy stresses, *

 
the virtual 

strains, *u  the virtual displacements,  f  the volume 

forces (including also other concentrated or distributed 
forces). 

It is well to note that the virtual strains are infinitesimal, 
so they are linear functions of virtual displacements; 
whereas, the above Cauchy stresses are related to the large 
strains, so generally they are calculated by an incremental 
algorithm. In the present study, a total method is proposed:  

1) The deformation gradient tensor and the 
Cauchy-Green left tensor are defined between the initial and 
final configurations.  

2) Then, the principal elongations and large logarithmic 
strains are calculated.  

3) Finally, the Cauchy stresses are calculated by using an 
integrated constitutive law based on the assumption of 
proportional loading. 

B. Virtual strain operator 

For an axi-symmetrical problem, the virtual strains in the 
global cylindrical coordinate system (rZ) are written as 
follows (Fig. 2): 
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 where r is the radial coordinate, U* and W* are the virtual 
displacements in the radial direction r and the vertical 
direction Z. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Cylindrical coordinate system (r,Z)  

 
In our finite element formulation, it is more convenient to 

define the strains in the element local system (xz) (Fig. 3): 
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where u* and w* are the virtual displacements along x and z, 
( , )  r x  is the inclination angle of the local axis x with 

respect to the horizontal global axis r.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 3 Local (xz) and global (rZ) cylindrical coordinates 
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The proposed element is an axi-symmetrical CST element 
with three nodes and six degrees of freedom. The 
displacements are interpolated linearly in terms of nodal 
displacements: 

 1 2 3
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0 0 0 n
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where Ni(x, z) are the classical linear interpolation functions 
for an element [11]. 

Substituting (5) into (4), we obtain the following virtual 
strain operator [Bm]: 
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C. Internal force vector 

Substituting (7) into (2) gives the element internal force 
vector in the local element reference:   

     * *
int int2

e

Te e
n m nA

W u B rdA u F         (9) 

       
Since the term  r  depends on r, generally we should 

introduce the reference element and use the numerical 
integration to calculate the internal force vector in the local 
reference.

 

A reduced integration method is proposed by 
Batoz and Dhatt [11]: the stresses are supposed constant in an 
element and the barycenter is taken as a single integration 
point for this linear function. Thus the calculation of the 
internal force vector becomes very simple: 
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D. External force vector 

In a forging process, the initial billet is submitted to a 
normal pressure force and a tangential friction force on the 
contour. In the Inverse Approach, these tool actions are 
simply represented by some external nodal forces at the final 
configuration to avoid the contact treatment. At a node, the 
value of the resultant force is unknown; and the direction of 
this force fn can be determined by the friction cone and the 

slide direction (Fig. 4): 
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where n  is the unit normal vector of the contour, t the unit 
tangent direction of the contour, 

 



 

the friction coefficient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Tool force direction determined by friction cone   

The values of the tool action forces can be determined by 
the equilibrium condition at the contour. The FE 
discretization allows one to establish the following equations 
representing the equilibrium at a node k: 
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force vector. The value of the resultant force kP  is then 
calculated by: 
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The element external force vector is finally obtained: 
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E. Inverse of deformation gradient tensor 

In the Inverse Approach, we use an integrated 
constitutive law which associates the total strains to the total 
stresses. These large strains between the initial and final 
configurations are calculated by the following steps: the 
inverse of deformation gradient tensor  the inverse of the 
Cauchy-Green left tensor  the principal elongations  the 
logarithmic strains. 

The word « inverse » is used to indicate that the known 
final configuration is taken as the reference configuration, 
and the calculation is carried out from the known final part to 
the unknown initial billet.  

The solid has an axis of revolution Z. A point M in the 
solid is defined in the global reference by its cylindrical 
coordinates (r, θ, Z) (Fig. 2). The displacement field is 
composed of the radial, circumferential and vertical 
displacements (U, V, W): 
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The above equation can be rewritten in the reference 
( )r , ,e e k  in a matrix form to define the displacement 

gradient tensor in cylindrical coordinates: 
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For an axi-symmetric problem, each point of the solid 
moves in its meridian plane (V=0) and the displacement field 
is independent of the circumferential coordinate ( / 0   ). 
Thus, the displacement gradient tensor in cylindrical 
coordinates is reduced to: 

0

0 0

0

,r ,Z

,r ,Z

U U

U

r
W W

 
        
 
 

U

r
                          (18) 

In our Inverse Approach in large strain and plasticity, it is 
more convenient to define the displacement gradient tensor in 
the element local system. It is easy to demonstrate that: 
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where  T is the transformation matrix between the global 

and local coordinate systems.

 Now we consider the movement of a material 
point 0  x x u , where 0x  and x are the initial and final 
position vectors, u is the displacement vector in the local 
reference from 0x  to x . Then the inverse of the deformation 
gradient tensor is defined as follows: 

 

           
0

0   
1

l
d d I d F d

                

x u
x x x x

x x
         

(20) 

   

,x ,z

1

l

,x ,z

1 u 0 u

u cos w sin
F 0 1 0

r
w 0 1 w

 

  
   
 
   

     (21) 

F. Cauchy-Green left tensor and large logarithmic strains 

The inverse of the Cauchy-Green left tensor in the local 
reference is defined by the following expressions: 
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defined in the local reference can be 

transformed to the principal reference to obtain the three 
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where 

 

is the angle from the local reference to the principal 

reference. 
Finally, the principal logarithmic strains are obtained: 
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The large logarithmic strains in the local reference can be 
obtained by the following transformation: 
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The assumption of incompressibility of the metal leads to 
the null volume strain: 
 

1 2 3 0v x z            
                   

(28)
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G. Penalization method for metal incompressibility 

The incompressibility of the metal can be ensured by 
introducing a Lagrange multiplier or a penalization term 
(Kobayashi and Altan [2]). In our Inverse Approach, we add 
a penalization term in the Principle of Virtual Work: 
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where v  
is the volume strain, K is a great positive factor 

which allows to annul v in the convergence loop. Using the 
virtual strains operator (8), we obtain a vector of "equivalent 
forces" relative to the volume stain:
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We finally obtain: 
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H. Integrated constitutive law (Hencky-Mises) 

In the present study, the isotropic constitutive law is 
adopted. The Von Mises criterion of plasticity is expressed 
by: 
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where   is the equivalent stress, Y  is the
 
yield stress.

 The normality law allows us to establish the relation 
between the plastic strain rate and the Cauchy stress using the 

plastic multiplier : 
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Using (34) to (36), we obtain: 
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The assumption of proportional loading allows to 
analytically integrating the plastic strain rate: 
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where sE 



 is the secant modulus of the uniaxial 

stress–strain curve (Fig. 5). 

Adding the elastic strains to the plastic strains of (38), we 
obtain the total strain: 
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where  C
 
is the elastic flexibility matrix. 

Finally, the total Cauchy stresses are obtained in terms of 
the total logarithmic strains as: 
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Fig. 5 Secant modulus of the uniaxial stress–strain curve 
 

I. Boundary conditions on an irregular contour 

In the present Inverse Approach, the displacements of the 
nodes on the contour are supposed tangential to the contour 
defined by the tools. Dhatt and Touzot [12] proposed to 
establish a contour reference and impose the null normal 
displacement in this reference. 

Considering a node i on the contour of a mesh (Fig. 6). 
We establish a contour reference defined by the tangential 
and normal directions in which we impose the normal 
displacement '

iV 0 (tangent displacement '
iU 0 ). The 

following matrix allows one to transform the displacements 
between the contour reference and the global reference: 

cos sin '

sin cos '
i i i i

i i i i

U U

V V

 
 

     
    

     
          (41) 

It is more convenient to transform the tangent stiffness 
matrix and the vector of residual forces at the elementary 
level.  

After the resolution, the displacements in the contour 
references ( '

iU 0 ,
,

'
iV 0 ) should be re-transformed into 

the global reference.  

 
Fig. 6 Contour reference for boundary condition treatment 
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IV. NUMERICAL RESULTS 

The validation of the simplified Inverse Approach is done 
by using the commercial code ABAQUS®/Explicit. Two 
axi-symmetric parts are considered. 

A. Cold forging of a circular disc 

 
The geometry of the circular disc is shown in Fig. 7. In the 

simulation by the Abaqus incremental approach, the initial 
billet is discretized into 1064 axi-symmetric triangle 
elements (CAX3 of Abaqus). The tools (punch and die) are 
supposed rigid and modeled by analytic rigid wires. The 
punch’s displacement was specified by using a reference 
point on the punch. The total punch travel is 35.2 mm. 

A master-slave contact method is used in this simulation 
where the tools are considered as the master surfaces and the 
outer surface of the billet (surface facing the tools) 
constitutes the slave surface.  

The material properties of the billet are: Young's modulus 
E=10300 MPa, Poisson's ratio =0.3, friction coefficient 

=0.15, Hollomon stress-strain curve  p 0.26
σ=567.29 ε  

MPa.  
In order to compare the two approaches, we mesh the 

billet (Fig. 8a) and use Abaqus to obtain the mesh of the final 
part (Fig. 8b), then we use this mesh for I.A. modeling to 
obtain the mesh of the initial billet (Fig. 8c). We note that the 
mesh of the initial billet obtained by I.A. is very similar to 
that used for Abaqus simulation. 

The distributions of the equivalent plastic strain obtained 
by the Inverse Approach and Abaqus are shown in Fig. 9. We 
note that the distributions are similar and the maximal and 
minimal values are in good agreement.  

 

Fig. 7 Geometry of the circular disc 

The CPU times for the modeling of the circular disc are 
compared: 233s are used by Abaqus incremental approach, 
only 9s are used by the Inverse Approach (a ratio of 25). The 
Inverse Approach is faster than the classical incremental 
approach. 

 
 

Fig. 8 Initial and final meshes of the part 1 

 

 
 

Fig. 9 Equivalent plastic strain obtained by I.A. and Abaqus 
 

B. Cold forging of a wheel 

The wheel (Fig. 10) has a horizontal plane of symmetry. 
The half section is meshed with 889 axi-symmetric triangle 
elements (CAX3 of Abaqus) (Fig. 11). 

The material of the billet is the lead having the following 
properties: Young's modulus E=17 GPa, Poisson's ratio 
=0.42, friction coefficient =0.35, Hollomon stress-strain 

curve  0.27pσ=65.8 ε  MPa. The punch travel is 37.2 mm.  

The mesh of the initial billet and the mesh of the final part 
obtained by Abaqus are shown by Fig. 11a and Fig. 11b. 
Then we use the mesh of Fig. 11b for the I.A. modeling 
which gives the mesh of the initial billet (Fig. 11c). A fairly 
good agreement is observed between the two meshes of the 
initial billet (Fig. 11a and Fig. 11c). 

 ABAQUS incremental     Inverse Approach 

(b) Final part

(a) Initial billet  (c) Initial billet 

b. ABAQUS (Incremental Approach)

a. Inverse Approach  0.4496

0.4502

150 mm 

Symmetry axis 

115.2 mm 
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Fig. 10 Geometry of the wheel 

 

 

     
 

     
 
 

Fig. 11 Initial and final meshes of the wheel 
 

Fig. 12 shows the distributions of the equivalent plastic 
strain obtained by the Inverse Approach and Abaqus 
incremental approach. We observe that these strain 
distributions are quantitatively very close to each other. The 
maximum plastic equivalent strains are respectively 0.967 
and 1.011. The error is reasonably acceptable (4.4%). 

For the modeling of the wheel, the Inverse Approach has 
shown once again its efficiency compared to the incremental 
approach: 325s of CPU are used by ABAQUS incremental 
calculation, but only 54s are used by the Inverse Approach (a 
ratio of 6).  

V. CONCLUSIONS 

An efficient axi-symmetric element based on the “Inverse 
Approach” (I.A.) has been developed for the cold forging 
modeling. The approach exploits at the maximum the 
knowledge of the shape of the final part. The assumptions of 
the proportional loading and the simplified tool actions make 
the I.A. simulation very fast. 

The equivalent plastic strain distribution obtained by the 
Inverse Approach is very close to that obtained by the 
Abaqus incremental approach. The Inverse Approach is very 
advantageous to quickly realize the preliminary perform 
design and optimize the process parameters.  

 

 
 

 
Fig. 12 Equivalent plastic strain obtained by I.A. and Abaqus 

 
Some limitations of the I.A. are also observed. The 

assumptions on the constitutive law and the tool actions are 
questionable; they cannot provide good stress estimation 
because of neglecting the loading history. For complex parts 
in very large strains, the remeshing operation and a more 
powerful resolution algorithm should be considered. 

The future work for the forging modeling is to improve 
the stress estimation. Recently, a new approach called 
“Pseudo Inverse Approach” (P.I.A.)has already been 
proposed by Guo et al. [9], [13] for the sheet forming 
modeling, which keeps the advantages of the I.A. but gives 
good stress estimation with the loading history consideration. 
This new P.I.A. will be adapted for the forging applications.  
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