Joint Pricing and Inventory Replenishment Decisions in a Multi-level Supply Chain

YUN HUANG, GEORGE Q. HUANG

Abstract—This paper coordinates pricing and inventory replenishment decisions in a multi-level supply chain composed of multiple suppliers, one manufacturer, and multiple retailers. We model this problem as a three-level nested Nash game where all the suppliers formulate the bottom-level Nash game, the whole supplier sector play the middle-level Nash game with the manufacturer, and both sectors as a group player formulate the top-level Nash game with the retailers. Analytical method and solution algorithm are developed to determine the equilibrium of the game. A numerical study is conducted to understand the influence of different parameters on the decisions and profits of the supply chain and its constituent members. Several interesting research findings have been obtained.

Index Terms—pricing, replenishment, multi-level supply chain, Nash game.

I. INTRODUCTION

In the decentralized supply chain, inconsistency and incoordination existed between local objectives and the total system objectives make the supply chain lose its competitiveness increasingly ([10]). Many researchers have recommended organizational coordination for managing supply chain efficiently ([1, 3, 5, 12]). Integrating pricing with inventory decisions is an important aspect to manufacturing and retail industries.

Coordinating pricing and inventory decisions of supply chain (CPISC) has been studied by researchers at about fifty years ago. Weng and Wong [15] and Weng [14] propose a model of supplier-retailer relationship and confirm that coordinated decisions on pricing and inventory benefit both the individual chain members and the entire system. Reference [2] analyzes the problem of coordinating pricing and inventory replenishment policies in a supply chain consisting of a wholesaler, one or more geographically dispersed retailers. They show that optimally coordinated policy could be implemented cooperatively by an inventory-consignment agreement. Prafulla et al. [11] present a set of models of coordination for pricing and order quantity decisions in a one manufacturer and one retailer supply chain. They also discuss the advantages and disadvantages of various coordination possibilities. The research we have discussed above, mainly focus on coordination of individual entities or two-stage channels. In reality, a supply chain usually consists of multiple firms (suppliers, manufacturers, retailers, etc). Jabber and Goyal [6] consider coordination of order quantity in a multiple suppliers, a single vendor and multiple buyers supply chain. Their study focuses on coordination of inventory policies in three-level supply chains with multiple firms at each stage.

Recently, Game Theory has been used as an alternative to analyze the marketing and inventory policies in supply chain wide. Weng [13] study a supply chain with one manufacturer and multiple identical retailers. He shows that the Stackelberg game guaranteed perfect coordination considering quantity discounts and franchise fees. Yu et al. [17] simultaneously consider pricing and order intervals as decision variable using Stackelberg game in a supply chain with one manufacturer and multiple retailers. Esmaeili et al. [4] propose several game models of seller-buyer relationship to optimize pricing and lot sizing decisions. Game-theoretic approaches are employed to coordinate pricing and inventory policies in the above research, but the authors still focus on the two-stage supply chain.

In this paper, we investigate the CPISC problem in a multi-level supply chain consisting of multiple suppliers, a single manufacturer and multiple retailers. The manufacturer purchases different types of raw materials from his suppliers. Single sourcing strategy is adopted between the manufacturer and the suppliers. Then the manufacturer uses the raw materials to produce different products for different independent retailers with limited production capacity. In this supply chain, all the chain members are rational and determine their pricing and replenishment decisions to maximize their own profits non-cooperatively.

We describe the CPISC problem as a three-level nested Nash game with respect to the overall supply chain. The suppliers formulate the bottom-level Nash game and as a whole play the middle-level Nash game with the manufacturer. Last, the suppliers and the manufacturer being a group formulate the top-level Nash game with the retailers. The three-level nested Nash game settles an equilibrium solution such that any chain member cannot improve his profits by acting unilaterally without degrading the performance of other players. We propose both analytical and computational methods to solve this nested Nash game.

This paper is organized as follows. The next section gives the CPISC problem description and notations to be used. Section 3 develops the three-level nested Nash game model for the CPISC problem. Section 4 proposes the analytical and computational methods used to solve the CPISC problem in Section 3. In section 5, a numerical study and corresponding sensitivity analysis for some selected parameters have been presented. Finally, this paper concludes in Section 6 with some suggestions for further work.
II. PROBLEM STATEMENT AND NOTATIONS

A. Problem description and assumptions

In the three-level supply chain, we consider the retailers facing the customer demands of different products, which can be produced by the manufacturer with different raw materials purchased from the suppliers. These non-cooperative suppliers reach an equilibrium and as a whole negotiate with the manufacturer on their pricing and inventory decisions to maximize their own profits. After the suppliers and the manufacturer reach an agreement, the manufacturer will purchase these raw materials to produce different products for the retailers. Negotiation will also be conducted between the manufacturer and the retailers on their pricing and inventory decisions. When an agreement is achieved between them, the retailers will purchase these products and then distribute to their customers. We then give the following assumptions of this paper:

1. Each retailer only sells one type of product. The retailers’ markets are assumed to be independent of each other. The annual demand function for each retailer is the decreasing and convex function with respect to his own retail price.

2. Solo sourcing strategy is adopted between supplies and manufacturer. That is to say, each supplier provides one type of raw materials to the manufacturer and the manufacturer purchases one type of raw material from only one supplier.

3. The integer multipliers mechanism [9] for replenishment is adopted. That is, each supplier’s cycle time is an integer multiplier of the cycle time of the manufacturer and the manufacturer’s replenishment time is the integer multipliers of all the retailers.

4. The inventory of the raw materials for the manufacturer only occurs when production is set up.

5. Shortage are not permitted, hence the annual production capacity is greater than or equal to the total annual market demand ([4]).

B. Notations

All the input parameters and variables used in our models will be stated as follow. Assume the following relevant parameters for the retailer:

- \(L \): Total number of retailers
- \(r_i \): Index of retailer \(l \)
- \(A_{r_i} \): A constant in the demand function of retailer \(l \), which represents his market scale
- \(e_{r_i} \): Coefficient of the product’s demand elasticity for retailer \(l \)
- \(p_{r_i} \): Retail price charged to the customer by retailer \(l \)
- \(D_{r_i} \): Retailer \(l \)’s annual demand
- \(R_{r_i} \): Retailer \(l \)’s annual fixed costs for the facilities and organization to carry this product
- \(X_{r_i} \): Decision vectors set of retailer \(l \). \(x_{r_i} \in X_{r_i} \) is his decision vector.
- \(Z_{r_i} \): Objective (payoff) function of retailer \(l \)

The retailer’s decision variables are:

- \(G_{r_i} \): Retailer \(l \)’s profit margin
- \(k_{r_i} \): The integer divisor used to determine the replenishment cycle of retailer \(l \)

The manufacturer’s relevant parameters are:

- \(m \): Index of manufacturer
- \(h_{mp} \): Holding costs per unit of product \(l \) inventory
- \(h_{mr_i} \): Holding costs per unit of raw material purchased from supplier \(v \)

- \(S_m \): Setup cost per production
- \(O_m \): Ordering processing cost per order of raw materials
- \(P_l \): Annual production capacity product \(l \), which is a known constant
- \(R_m \): Manufacturer’s annual fixed costs for the facilities and organization to carry the raw material

The relevant parameters for the supplier are:

- \(V \): Total number of suppliers
- \(s_v \): Index of supplier \(v \), \(v=1,2,...,V \)
- \(h_v \): Holding costs per unit of raw material inventory for supplier \(v \)
- \(c_v \): Production cost per unit product \(l \) for the manufacturer
- \(p_{sv} \): Raw material price charged by supplier \(v \) to the manufacturer
- \(X_{sv} \): Decision vectors set of supplier \(v \). \(x_{sv} \in X_{sv} \) is his decision vector.
- \(Z_{sv} \): Objective (payoff) function of supplier \(v \)
III. MODEL FORMULATION

A. The three-level nest Nash game scheme

We model the CPISC problem as a three-level nested Nash game with V + L + 1 players, i.e., V suppliers, one manufacturer and L retailers. Each supplier controls decision vectors set \(X_{vi} \) to maximize his payoff function \(Z_{vi} \). A decision vector \(x_{vi} \) includes profit margin \(G_{vi} \) and replenishment decisions \(K_{vi} \). The manufacturer controls the decision vectors set \(X_{m} \) to maximize his payoff function \(Z_{m} \). His decision vector \(x_{m} \) consists of profit margin \(G_{m} \) and replenishment decisions \(K_{m} \), to maximize his payoff function \(Z_{m} \). When none of them would like to alter their decisions, the bottom-level Nash equilibrium is obtained. Second, the suppliers in equilibrium being a player formulate the middle-level Nash game with the manufacturer. In this game, given the retailers’ decision vectors, the suppliers adjust their decision vectors to maximize his payoff function \(Z_{v} \). When none of them would like to alter their decisions, the bottom-level Nash equilibrium is obtained. Third, the middle-level Nash equilibrium being a player formulate the top-level Nash game with the manufacturer. In this game, given the retailers’ decision vectors, the manufacturers control the decision vectors set \(X_{o} \), whose decision vector \(x_{o} \) is composed of profit margin \(G_{o} \) and replenishment decisions \(k_{o} \), to maximize his payoff function \(Z_{o} \).

In our game framework, firstly, the V suppliers formulate the bottom-level Nash game. Given the manufacturer’s and the retailers’ decision vectors, each supplier’s decision vector \(x_{vi} \) varies with the change of the other suppliers’ decision vectors to maximize his payoff function \(Z_{vi} \). When none of them would like to alter their decisions, the bottom-level Nash equilibrium is obtained. Secondly, the suppliers in equilibrium being a player formulate the middle-level Nash game with the manufacturer. In this game, given the retailers’ decision vectors, the suppliers adjust their decision vectors \(x_{vi} = (x_{vi1}, \ldots, x_{viL}) \) with the change of the manufacturer’s decisions, while the manufacturer varies his decision vector \(x_{vi} \) as the suppliers’ decisions changing until none of them could improve his payoff function by unilaterally altering his decisions. Thus, the middle-level Nash equilibrium achieves. Lastly, the top-level Nash game is played between the manufacturer and all the retailers. Each retailer’s decision vector \(x_{r} \) varies with the change of the suppliers’ and the manufacturer’s decisions and the other retailers’ decisions. The suppliers and the manufacturer also adjust their equilibrium decision vectors \((x_{vi}, x_{m}) \) with the change of the retailers’ decisions. The process continues until the suppliers, the manufacturer and the retailers cannot increase their payoffs by changing their decisions. That is the top-level Nash equilibrium reaches.

B. The retailers’ model

We first consider the objective (payoff) function \(Z_{r} \) for the retailers. The retailer’s objective is to maximize his net profit by optimizing his profit margin \(G_{r} \) and replenishment decision \(k_{r} \).

As indicated in the fourth point of the assumption in section 2.1, the integer multipliers mechanism is employed between the manufacturer and the retailers. Since the setup time interval for the manufacturer is assumed to be \(T \), the replenishment cycle for retailer \(l \) is \(T / k_{l} \). \(k_{l} \) should be a positive integer. Thus, the annual holding cost is \(h_{l} TD_{l} / 2k_{l} \) (see Fig. 1(a)) and the ordering process cost is \(O_{l} k_{l} / T \). The retailer \(l \) faces the holding cost, the ordering cost and an annual fixed cost. Therefore, the retailer \(l \)’s objective function is given by the following equation:

\[
\max_{k_{l}, \delta_{l}} Z_{r} = G_{r} D_{l} \frac{TD_{l}}{2k_{l}} - h_{l} \frac{O_{l} k_{l}}{T} - R_{l},
\]

Subject to

\[
\begin{align*}
& k_{l} \in \{1, 2, 3, \ldots, k_{l}\}, \\
& G_{r} = p_{r} - p_{m}, \\
& D_{l} = A_{l} - e_{r} p_{r}, \\
& G_{r} \geq 0, \\
& 0 \leq D_{l} \leq P.
\end{align*}
\]

Constraint (2) shows the demand function. Constraint (3) gives the value of the divisor used to determine the retailer \(l \)’s replenishment cycle time. Constraint (4) indicates the relationship between the prices (the retail price and the wholesale price) and retailer \(l \)’s profit margin. Constraint (5) ensures that the value of \(G_{r} \) is nonnegative. Constraint (6) gives the bounds of the annual demand, which cannot exceed the annual production capacity of the product.

![Inventory level](image)

Fig. 1. Inventory of retailer, manufacturer, supplier

(Advance online publication: 23 November 2010)
C. The manufacturer’s model

The manufacturer’s objective is to determine his decision vector \(x_m \), composed of the profit margins for all the products \(G_v \) and the setup time interval for production \(T \), to maximize his net profit.

The manufacturer faces annual holding costs, setup and ordering costs, and an annual fixed cost. The annual holding cost for the manufacturer is composed of two parts: the cost of holding raw materials used to convert to products, the cost of holding products. During the production portion, the average inventory of raw material \(v \) used for product \(l \) is

\[
\delta_j \cdot D_j / 2.
\]

The production time in a year is \(D_j / P_j \).

During the non-production portion of the cycle, the raw materials inventory drops to zero and the holding cost is zero according to our assumption. Hence, the annual holding cost for raw material \(v \) is

\[
h_m \cdot \delta_j \cdot T \left(D_j / 2 \right) / 2P_j.
\]

The annual inventory for product \(l \)’s is given by

\[
\frac{T}{2} \left(\frac{1}{k_{ij}} - \frac{D_j}{P_j} \right)
\]

(as suggested by [8]). The behavior of the inventory level for the manufacturer is illustrated as Fig. 1(b). The setup cost \(S_a \) and ordering cost \(O_m \) occur at the beginning of each production. Thus, we can easily derive the manufacturer’s objective (payoff) function \(Z_m \):

\[
\max_{G_m, \ldots, G_v, T} Z_m = -\sum_{v} G_v \cdot D_v \cdot \frac{T}{2} \left(\frac{1}{k_{ij}} - \frac{D_j}{P_j} \right) - S_a - O_m - R_m.
\]

Subject to

\[
G_v = p_v - c_v, \quad \text{for each } l = 1, 2, \ldots, L
\]

\[
G_v \geq 0, \quad \text{for each } l = 1, 2, \ldots, L
\]

\[
T > 0.
\]

Constraint (8) gives the relationship between the price (the wholesale price and the raw material price) and the manufacturer’s profit margin. Constraint (9) and (10) ensure that the values of \(G_v \) and \(T \) are nonnegative.

D. The suppliers’ model

Each supplier’s problem is to determine an optimal decision vector \(x_v \) (including replenishment decisions \(K_v \) and profit margin \(G_v \)) to maximize his net profit.

According to the fourth point of the assumption in section 2.1, the integer multipliers mechanism is adopted between the suppliers and the manufacturer. So the replenishment cycle time for supplier \(v \) is \(K_v \cdot T \). The raw material inventory drops every \(T \) year by \(T \sum \delta_{v_l} D_l \) starting from

\[
(K_v - 1)T \sum \delta_{v_l} D_l
\]

as Fig. 1(c) shows. Therefore, the holding cost is

\[
(K_v - 1)T \sum \delta_{v_l} D_l \cdot \left(T/k_v \right) / 2.
\]

IV. SOLUTION ALGORITHM

In this paper, we mainly based on analytical theory used by [7] to compute Nash equilibrium. In order to determine the three-level nested Nash equilibrium, we first use analytic method to calculate the best reaction functions of each player and employ algorithm procedure to build the Nash equilibrium.

A. Reaction functions

1) The retailers’ reactions

We express the retailer \(l \)’s demand function by the corresponding profit margins. Substituting (3), (8), (13), we can rewrite (5) as:

\[
D_l = A_l - c_l \left(G_v + G_m + \sum_{v} \delta_{v_l} \left(G_v + c_v \right) + c_m \right)
\]

(15)

Now suppose that the decision variables for suppliers and manufacturer are fixed. Then the retailer’s problem of finding the optimal replenishment cycle becomes:

\[
\min_{k_v} \frac{TD_l}{2} h_l + \frac{k_v O_m}{T}
\]

(16)

The value of \(k_v \) that minimize \(U \) is by the smallest \(k_v \) that satisfies:

\[
k_v^* \left(k_v^* - 1 \right) \leq \frac{T^2 h_l D_l}{2O_m} \leq k_v^* \left(k_v^* + 1 \right)
\]

(17)

The best reaction \(k_v \) can be expressed as [13]:

\[
k_v^* = \left[\left(1 + \sqrt{\frac{2T^2 h_l D_l}{O_m}} \right) / 2 \right]
\]

(18)

Here, we define \(\left[a \right] \) as the largest integer no larger than \(a \).

We then consider the optimal value of \(G_v \). From constraints (6) and (7), we can obtain lower bound and the upper bound of \(G_v \):

\[
(K_v - 1)T \sum \delta_{v_l} D_l
\]

which is equal to \(\frac{TD_l}{2} h_l \). The supplier faces holding costs, ordering costs, and an annual fixed cost. Thus, the supplier \(v \)’s objective (payoff) function \(Z_v \) is:

\[
\max_{G_v, \ldots, G_v, T} Z_v = (K_v - 1)T \sum \delta_{v_l} D_l \cdot \left(T/k_v \right) / 2 - O_v - R_v
\]

(11)

Subject to

\[
K_v \in \{1, 2, 3, \ldots, V \},
\]

\[
G_v = p_v - c_v,
\]

\[
G_v \geq 0.
\]

(12)

(13)

(14)

Constraint (12) gives the value of supplier’s multiplier used to determine his replenishment cycle time. Constraint (13) indicates the relationship between the raw material price and the supplier’s profit margin. Constraint (14) ensures the non-negativity of \(G_v \).

\[G_{y} = \max \left\{ 0, \frac{A_{y} - P_{y}}{e_{y}} - \left[G_{y} + \sum_{v} \delta_{v} (G_{v} + c_{v}) + c_{m} \right] \right\} \] (19)

\[\bar{G}_{y} = \frac{A_{y}}{e_{y}} - \left[G_{y} + \sum_{v} \delta_{v} (G_{v} + c_{v}) + c_{m} \right] \] (20)

Substituted (16) into (2), we can see that \(Z_{y} \) is a quadratic function with respect to \(G_{y} \). Because the second derivative of \(Z_{y} \) with respect to \(G_{y} \) is negative, we have:

\[\frac{\partial^{2} Z_{y}}{\partial G_{y}^{2}} = -2e_{y} < 0. \] (21)

Thus, \(Z_{y} \) is a concave function of \(G_{y} \).

Set the first derivative of \(Z_{y} \) with respect to \(G_{y} \) equal to zero. Then \(G_{y} \) can be obtained as:

\[G_{y} = \frac{C_{y}}{2e_{y}} + \frac{h_{y} T}{4k_{y}}, \] (22)

where \(C_{y} = A_{y} - e_{y} \left[G_{y} + \sum_{v} \delta_{v} (G_{v} + c_{v}) + c_{m} \right] \).

If \(G_{y} \) obtained from (22) is in the interval of \([G_{y}^{\text{min}}, G_{y}^{\text{max}}] \), it is obviously the optimal reaction \(G_{y}^{*} \) of the retailer. Otherwise, we have to substitute the bounds (19) and (20) into (2), the bound that provides higher profit is the best reaction \(G_{y}^{*} \).

2) The manufacturer’s reactions

Assume that the decision variables for the suppliers and the retailers are fixed. The manufacturer’s problem of finding the optimal setup interval in this case becomes:

\[\min U_{m} = \frac{T}{2} \sum_{i} \left[\frac{1}{T} \left(\frac{D_{i}}{k_{i}} \right) h_{m} + \sum_{v} \delta_{v} \left(\frac{T(D_{i})}{2P_{i}} \right) h_{w} + S_{m} + O_{m} \right] \]

Since the second derivation of (23),

\[\frac{\partial^{2} U_{m}}{\partial T^{2}} = -2 \left(\frac{S_{m} + O_{m}}{T^{3}} \right) \leq 0, \] (23)

the optimal \(T \) for the minimum of \(U_{m} \) can be derived from:

\[\frac{\partial^{2} U_{m}}{\partial T^{2}} = 0 \]

or

\[T^{*} = \frac{S_{m} + O_{m}}{\sqrt{2} \sum_{i} D_{i} \left(\frac{1}{k_{i}} - \frac{D_{i}}{P_{i}} \right) h_{m}} + \sum_{v} \delta_{v} \left(\frac{D_{i}}{2P_{i}} \right) h_{w}. \] (24)

Obviously, the optimal \(T^{*} \) obtained from (25) satisfies constraint (11).

The net profit \(Z_{m} \) is the quadratic function about \(G_{m} \).

From constraints (7) and (10), we can obtain lower and the upper bounds of \(G_{m} \):

\[G_{m} = \max \left\{ 0, \frac{A_{m} - P_{m}}{e_{m}} - \left[G_{m} + \sum_{v} \delta_{v} (G_{v} + c_{v}) + c_{m} \right] \right\} \] (26)

\[\bar{G}_{m} = \frac{A_{m}}{e_{m}} - \left[G_{m} + \sum_{v} \delta_{v} (G_{v} + c_{v}) + c_{m} \right] \] (27)

\[Z_{m} \text{’s second derivation about } G_{m} \text{ is} \]

\[\frac{\partial^{2} Z_{m}}{\partial G_{m}^{2}} = -2e_{m} + \left(1 + \frac{1}{k_{m}} \right) e_{m} T + \frac{e_{m}^{2} T}{P_{m}} \left(h_{m} + \sum_{v} \delta_{v} h_{w}. \right) \] (28)

If

\[\frac{\partial^{2} Z_{m}}{\partial G_{m}^{2}} < 0, \] (29)

the optimal \(G_{m} \) can be obtained from the first order condition

\[\frac{\partial Z_{m}}{\partial G_{m}} = 0 \] (30)

Substitute (16) into (30), we have:

\[G_{m} = -\frac{W_{m} - \frac{h_{m} T}{2} \left(1 + \frac{1}{k_{m}} \right)}{2 - \frac{h_{m} T}{2} \left(1 + \frac{1}{k_{m}} \right) + \frac{e_{m} T}{P_{m}} \sum_{v} \delta_{v} h_{w}.} + W_{m}. \] (31)

where \(W_{m} = \frac{A_{m}}{e_{m}} - \left[G_{m} + \sum_{v} \delta_{v} (G_{v} + c_{v}) + c_{m} \right]. \)

If \(G_{m} \) obtained from (31) is in the interval of \([G_{m}^{\text{min}}, G_{m}^{\text{max}}] \), it is the optimal reaction \(G_{m}^{*} \) of the manufacturer. Otherwise, \(Z_{m} \) reaches its maximal value when \(G_{m} \) is at its upper bound or lower bound. The bound that provides higher profit is the optimal reaction \(G_{m}^{*} \).

If

\[\frac{\partial^{2} Z_{m}}{\partial G_{m}^{2}} > 0, \] we also have to find the bound that provides maximal value of \(Z_{m} \). That is the best reaction \(G_{m}^{*} \).

3) The suppliers’ reactions

Lastly, we consider the reaction functions for the suppliers. Suppose that the decision variables for retailers and manufacturer are fixed. The supplier’s problem of finding the optimal replenishment cycle becomes:

(Advance online publication: 23 November 2010)
Step 1. Denote $x_{i_l}^{(0)}$ as the strategy profile of all the chain members in $x^{(0)}$ except for retailer l. For each retailer l, fixed $x_{i_l}^{(0)}$, find out the optimal reaction $x_i^* = (G_i^*, K_i^*)$ to optimize the retailer l's payoff function Z_{i_l} in its strategy set I_{i_l}.

Step 2. Denote $x_{m}^{(0)}$ as the strategy profile of all the chain members in $x^{(0)}$ except for the manufacturer. Fixed $X_{m_l}^{(0)}$, find out the optimal reaction $x_m^* = (G_m^*, K_m^*, \ldots, G_n^*, K_n^*, T^*)$ to optimize the profit function Z_m in its strategy set I_m.

Step 3. Denote $x_{s_l}^{(0)}$ as the strategy profile of all the chain members in $x^{(0)}$ except for supplier v. For each supplier v, fixed $x_{s_l}^{(0)}$, find out the optimal reaction $x_s^* = (G_s^*, K_s^*)$ to optimize the profit function Z_s in its strategy set I_s.

V. NUMERICAL EXAMPLE AND SENSITIVE ANALYSIS

In this section, we present a simple numerical example to demonstrate the applicability of the proposed solution procedure to our game model. We consider a supply chain consisting of three suppliers, one single manufacturer and two retailers. The manufacturer procures three kinds of raw materials from the three suppliers. Then the manufacturer uses them to produce two different products and distributes them to two retailers. The related input parameters for the base example are based on the suggestions from other researchers ([7, 11, 16]). For example, the holding cost per unit final product at any retailer should be higher than the manufacturer’s. The manufacturer’s setup cost should be much larger than any ordering cost. These parameters for the base example are given as: $h_r = 0.01$, $h_m = 0.008$, $h_s = 0.002$, $C_l = 12$, $C_m = 23$, $C_n = 33$, $c_s = 0.93$, $c_m = 2$, $c_n = 6$, $h_{s0} = 0.05$, $h_{m0} = 0.02$, $h_{n0} = 0.04$, $h_{m} = 0.5$, $h_{m} = 0.1$, $c_m = 15$, $c_n = 25$, $\delta_{ii} = 1$, $\delta_{ij} = 2$, $\delta_{ij} = 3$, $\delta_{ij} = 5$, $\delta_{i} = 4$, $\delta_{i} = 2$, $S_{l0} = 1000$, $O_{l0} = 50$, $P_l = 500000$, $P_m = 300000$, $h_r = 1$, $h_m = 2$, $A_r = 200000$, $A_m = 250000$, $e_r = 1600$, $e_m = 1400$, $O_{l0} = 40$, $O_{n0} = 30$. And the fixed cost for all the players are 1000. By applying the above solution procedure in section 5.2, the optimal results for the suppliers, the manufacturer and the retailers are shown in Table 1. In order to ensure that our conclusions are not based purely on the chosen numerical values of the base example, we also
conduct some sensitive analysis on some parameters, including the market related parameter, the production related parameter and the raw material related parameter.

Through the three-level nested Nash game model and the numerical example, some meaningful managerial implications can be drawn:

(1) The increase of market parameter \(e_{0i} \) will reduce the retailer 1’s profit, but benefit the other retailer. When \(e_{0i} \) increases, the change of the retailer 1’s demand is more sensitive to the change of his retail price compared with the base example. The retailer 1’s profit can be less reduced by lowering down his retail price. But his market demand cannot be increased, which makes the manufacturer seek for higher profit from other product to fill up the loss deduced by this product / retail market. It is good news to the other product / retailers, because the manufacturer will lower down his wholesale price to stimulate this market demand.

(2) When the manufacturer’s setup cost \(S_m \) increases, the manufacturer’s profit decreases more significantly than the retailers’, while some suppliers’ profits increase. The increase of \(S_m \) makes the manufacturer produce more product with higher profit margin (product 2) and reduce the production of lower profitable product (product 1). The usage of raw materials increases as the change of the manufacturer’s production strategy. At the same time, some suppliers bump up their prices, thus bringing higher profits to them.

(3) The impact of the increase of supplier 1’s raw material cost \(c_{s1} \) on his own profit may not as significant as that on the other suppliers’. The increase of \(c_{s1} \) makes the supplier 1 raise his raw material price and result in an increase cost in final products, as well as the decrease in market demands. Hence, the other suppliers will reduce their prices to keep the market and optimize their individual profits. Supplier 1 has the much lower profit margin than other suppliers, so he will not reduce his profit margin. Hence, the supplier 1’s profit decreases least.

(4) When the market parameter \(e_{0i} \), the manufacturer’s setup cost \(S_m \), or the supplier’s raw material cost \(c_{s1} \) increase, the manufacturer’s setup time interval will be lengthened. A higher \(e_{0i} \) or \(c_{s1} \) results in the total market demands decrease, as well as a lower inventory consumption rate. The increase of \(S_m \) makes the manufacturer’s cost per production hike up. Hence, the manufacturer has to conduct his production less frequently.

VI. CONCLUSION

In this paper, we have considered coordination of pricing and replenishment cycle in a multi-level supply chain composed of multiple suppliers, one single manufacturer and multiple retailers. Sensitive analysis has been conducted on market parameter, production parameter and raw material parameter. The results of the numerical example also show that: (a) when one retailer’s market becomes more sensitive to their price, his profit will be decreased, while the other retailer’s profit will increase; (b) the increase of the manufacturer’s production setup cost will bring losses to himself and the retailers, but may increase the profits of some suppliers; (c) the increase of raw material cost causes losses to all the supply chain members. Surprisingly, the profit of this raw material’s supplier may not decrease as significant as the other suppliers’; (d) the setup time interval for the manufacture will be lengthened as the increase of the retailer’s price sensitivity, the manufacturer’s setup cost or the supplier’s raw material cost.

However, this paper has the following limitations, which can be extended in the further research. Although this paper considers multiple products and multiple retailers, the competition among them is not covered. Under this competition, the demand of one product / retailer is not only the function of his own price, but also the other products’/ retailers’ prices. Secondly, the suppliers are assumed to be selected and single sourcing strategy is adopted. In fact, either supplier selection or multiple sourcing is an inevitable part of supply chain management. Also, we assume that the production rate is greater than or equal to the demand rate to avoid shortage cost. Without this assumption, the extra cost should be incorporated into the future work.

REFERENCES

Table 1. Results for suppliers, manufacturer and retailers under different parameters
(a) Product demand and profits for suppliers, manufacturer and retailers

<table>
<thead>
<tr>
<th></th>
<th>(D_s)</th>
<th>(D_m)</th>
<th>(Z_s)</th>
<th>(Z_m)</th>
<th>(Z_r)</th>
<th>(Z_{cm})</th>
<th>(Z_{cr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base example</td>
<td>3.6486</td>
<td>5.3608</td>
<td>2.5335</td>
<td>11.909</td>
<td>19.804</td>
<td>7.7953</td>
<td>8.0236</td>
</tr>
<tr>
<td>(e_s)</td>
<td>1920</td>
<td>3.0870</td>
<td>5.4689</td>
<td>3.2029</td>
<td>11.181</td>
<td>15.305</td>
<td>7.4206</td>
</tr>
<tr>
<td>(S_w)</td>
<td>1500</td>
<td>3.6345</td>
<td>5.3857</td>
<td>2.5306</td>
<td>12.081</td>
<td>20.084</td>
<td>6.7750</td>
</tr>
<tr>
<td>(c_{as})</td>
<td>1.395</td>
<td>3.6426</td>
<td>5.2531</td>
<td>2.4945</td>
<td>11.568</td>
<td>19.296</td>
<td>7.5513</td>
</tr>
</tbody>
</table>

(Continued)

(b) Pricing and replenishment decisions for suppliers, manufacturer and retailers

<table>
<thead>
<tr>
<th>(P_s)</th>
<th>(P_m)</th>
<th>(P_r)</th>
<th>(P_{as})</th>
<th>(P_{am})</th>
<th>(P_{ar})</th>
<th>(K_s)</th>
<th>(K_m)</th>
<th>(K_r)</th>
<th>(k_s)</th>
<th>(k_m)</th>
<th>(k_r)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.77</td>
<td>6.15</td>
<td>15.15</td>
<td>79.37</td>
<td>101.96</td>
<td>102.20</td>
<td>140.28</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>0.2691</td>
</tr>
<tr>
<td>1.99</td>
<td>5.99</td>
<td>13.58</td>
<td>71.98</td>
<td>100.42</td>
<td>88.09</td>
<td>139.51</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>0.2695</td>
</tr>
<tr>
<td>1.76</td>
<td>6.20</td>
<td>15.27</td>
<td>79.55</td>
<td>101.61</td>
<td>102.28</td>
<td>140.10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>14</td>
<td>0.3252</td>
</tr>
<tr>
<td>2.23</td>
<td>6.09</td>
<td>15.01</td>
<td>79.44</td>
<td>103.50</td>
<td>102.23</td>
<td>141.05</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>0.2707</td>
</tr>
</tbody>
</table>

(Advance online publication: 23 November 2010)