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Abstract—We consider the influence of ligaments on

spinal stability. The human spine has an initial curva-

ture which should be taken into account when dealing

with spinal stability. A formula for the change in sub-

tended distance between two curves will be derived.

This formula will be integrated with the variational

method in order to obtain a relation for spinal stabil-

ity. Stability requires two conditions from a mathe-

matical point of view. From these two conditions a

criterion for spinal stability is obtained.
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1 Introduction

A part of this article was presented at the World Congress
on Engineering (Botha and Spoelstra, 2010:621-626).
The problem to be investigated in this paper is the role
and influence of the spinal ligaments on spinal stability.
The importance of the spinal ligaments and the effect on
the total spinal stability have not been emphasized suf-
ficiently in the literature and is currently a big field of
interest world wide.
The spinal column has both intrinsic and extrinsic sta-
bility:
Intrinsic stability results from the opposing forces of (a)
ligaments restraining vertebral motion, and (b) pressure
within the nucleus pulposus tending to push the verte-
brae apart (Nixon and Brown, 1986:100).
Extrinsic stability results largely from trunk muscula-
ture and intra-abdominal pressure, which is in turn
maintained by abdominal wall musculature (Nixon and
Brown, 1986:100).
A study was done on the muscles acting on the L4/L5
joint of the lumbar spine (Potvin and Brown, 2005:973-
980). Bergmark (1989) was the first to fully define and
examine the mechanical stability of a muscular system
which can be considered stable when the potential energy,
V (a function of several variables), of the entire system is
at a relative minimum. A stable system must always be
able to return to its original state of equilibrium in re-
sponse to perturbations around this original state.
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In obtaining these goals, one of the problems to be
solved is the change in subtended distance between two
curves. From previous research we obtained formulae

Figure 1: Spinal ligaments

to determine the change in subtended distances between
two lines/curves, but the requirement was that the ini-
tial line/curve on which the force is applied should be
straight, and after deformation it is curved. In our study
we have an initially curved rod.
The planes we use (see figure 2) are: The axial plane rep-
resents the xy-plane; the coronal plane is the xz-plane
and the sagittal plane is our yz-plane. For this specific
situation we could not find any information or formu-
lae for determining the change in subtended distance be-
tween two curves (starting with an initially curved rod.
In the next section we derive a formula for this special
case.
The classical Euler buckling theory will also be used.

2 A formula to calculate the change

in subtended distance between two

curves

In this section we derive a formula to determine the
change in distance between two curves, with the assump-
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Figure 2: The form of spinal curve

tion and condition that the lengths of the two curves re-
main the same and equal, before and after deformation.
The initial curve (before deformation), is described by
the function u0(z). The deformed state of the curve is
described by the function u(z). (See Figure 3)

Consider the curves to be composed of i chords each with
the same length Li, subtended by δi on the z-axis. (See
Figure 4)
The lengths of the cords Li remain the same after defor-
mation.

From simple trigonometry we know that

tanα = u′

0(z)

tan (α+ θ) = u′(z)

cosα =
1

1 + [u′

0(z)]
2

cos (α+ θ) =
1

1 + [u′(z − δ(δz))]2
. (1)

Another assumption we make is that the difference be-
tween u′(z − δ(δz)) and u′(z) is negligibly small. That
means u′(z − δ(δz)) ≈ u′(z). From this we obtain an
equation to determine the difference in the lengths sub-
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Figure 3: The buckling of an initially curved rod.
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Figure 4: Composed curved rod.

tending the initial chord and the deformed chord:

δz − δ(δz) = L cos (α+ θ)

=
δz

cosα
cos (α+ θ)

δ(δz) = δz

[
1−

√
1 + [u′

0(z)]
2√

1 + [u′(z − δ(δz))]2

]
(2)

Equation 2 holds for each chord i. Adding up all the
small δ(δzi) we find an expression for Δ�:

Δ� =

n∑
i=1

δ(δzi)

=

n∑
i=1

[
1−

√
1 + [u′

0(zi)]
2

1 + [u′(zi)]2

]
δzi (3)
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Using the limiting process, we obtain

l∫
0

[
1−

√
1 + [u′

0(z)]
2

1 + [u′(z)]2

]
dz (4)

3 Variational Method

Having an expression for Δl, our next step is to look
at the classical Euler buckling theory, but we modify the
theory to hold for an initially curved rod, since the human
spine has an initial curvature. We apply the minimal
potential approach on an initially curved rod, considering
the spine as a whole.

In Figure 3 P is the applied force (from the top); u(z) is
the displacement; l is the length of the rod (the length
remains the same); z represents the distance from the
initial point and u0(z) is the initial displacement of the
curved rod.
The bending moment for a straight rod that is buckled,
is given by

M(z) = Pu(z). (5)

The constitutive equation is given by

M(z) = −EI
d2u

dz2
(6)

where EI is the bending stiffness.
But the human back is not straight initially, and therefore
we are considering an initially curved rod (see Figure 3).
We consider the difference between the initial bending
and the actual bending that occurred to obtain the actual
bending. Therefore the actual bending is given by

u′′(z)− u′′

0(z) (7)

and now the constitutive equation becomes

M(z) = −EI(u′′(z)− u′′

0(z)). (8)

We rewrite the constitutive equation as

u′′(z) + λ2u(z) = u′′

0(z) = Pu(z) (9)

with

λ =

√
P

EI
(10)

where we have the conditions:

u(0) = u(l) = 0. (11)

By definition, the potential energy in the deformed state
of the material

U = W −A(b)
u (12)

where U is the total potential energy, W is the elastic

potential energy, and A
(b)
u refers to the work done by

(given) external forces.

W =
1

2
EI

l∫
0

(u′′(z)− u′′

0(z))
2 dz (13)

and

A(b)
u = PΔl

= P

l∫
0

[
1−

√
1 + (u′

0(z))
2

1 + (u′(z))2
dz

]

Using Taylor series expansion and looking at the maxi-
mum value for |u′

0(z)| and therefore max| tan θ|, assuming
θ < 10◦ we can neglect all the fourth order and higher
order terms. That gives us

A(b)
u ≈ P

⎡
⎣�−

l∫
0

[
1 +

1

2
((u′

0(z))
2 − (u′(z))2)

]⎤⎦ dz

= −
P

2

l∫
0

[(u′

0(z))
2 − (u′(z))2] dz (14)

Substituting (13) and (14) back into (12) we get an ex-
pression for the potential energy

U =
1

2
EI

l∫
0

(u′′(z)− u′′

0(z))
2 dz

−
1

2
P

l∫
0

[(u′(z))2 − (u′

0(z))
2] dz

= U{u(z)}. (15)

For verification of the constitutive equation (9) we ob-
tained, we now want to look at the effect that a small
disturbance δ will have on the potential function U(z).
For this we consider the variation of U and u

δU = U(u(z) + δu(z))− U(u(z)) (16)

where |δu(z)| is small, and δu(z) satisfies the kinematic
boundary conditions

δu(0) = δu(l) = 0. (17)

By substituting (15) in (16) we obtain, after some calcu-
lation,

δU(z) = EI

l∫
0

(u′′(z)− u′′

0(z))
d2

dz2
[δ(u(z))] dz

−P

l∫
0

[
u′(z)

dδu(z)

dz

]
dz. (18)
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Using integration by parts with the constraints

u′′(l)− u′′

0(l) = u′′(0)− u′′

0(0) = 0. (19)

and the kinematic boundary conditions from (17) we ob-
tain

δU =

�∫
0

[
EI(uiv(z)− u′′

0(z) + Pu′′(z))

]
δ(u(z)) dz

(20)

But δU should be zero for all δu(z), because we are look-
ing for an equilibrium state u(z) which implies δU = 0
This gives us the following equation and constraints

EIu(4)(z) + Pu′′(z) = EIu
(4)
0 (z)

subject to

EI[u′′(0)− u′′

0(0)] = EI[u′′(l)− u′′

0(l)] = 0,

u(0) = u0(0) = u(l) = u0(l) = 0.

Integrating the equation twice yields

EIu′′(z) + Pu(z) = EIu′′

0(z) +A1z +A2

but from our constraints we have that

A1 = A2 = 0.

Therefore

u′′(z) + λ2u(z) = u′′

0(z) (21)

where

λ =

√
P

EI
.

Equation (21) is similar to (9), therefore we have a non-
homogeneous linear equation.
In order to solve this differential equation we need an es-
timation for the initial form of the spine. Looking at the
literature we see a representation of the human spine in
Figure 5.

Hereby we can describe the form of the spine by fitting
a curve with optimization by minimizing the root mean
square error. The anterior (front), posterior and central
line from a mathematical fitting is given in the figure 5.
Three different forms were used (see figure 6).

The first one is a single sine function, the second a double
sine function and the last form is a triple sine function.
The root mean square error for the triple sine function
shows that it is the best fit. The equation of the function
best describing the curve of the human spine, is given by

y = a1 + a2z + a3 sin

(
πz

a4

)
+ a5 sin

(
2 ·

πz

a4

)

+ a6 sin

(
3 ·

πz

a4

)
(22)

Cervical vertebrae

Thoracic vertebrae

Lumbar vertebrae

Figure 5: A function describing the initial form of the
human spine

where a1, ..., a6 are the coefficients of the function and z,
measured on a scale with the vertical distance from the
top to the bottom of the curve given by the function, is
340 units.
From (22) it is clear that we can choose our initial dis-
placement function to be a sine function. The difference
between the root mean square errors of the three func-
tions were small enough to use a single sine function.
Therefore, our initial displacement function is given by

u0(z) = ε sin
2πz

l
=⇒ u′′

0(z) = −ε

(
2π

l

)2

sin
πz

l
(23)

which gives us

u′′(z) + λ2u(z) = −ε

(
2π

l

)2

sin
2πz

l
(24)

subject to
u(0) = u(l) = 0.

Solving this nonhomogeneous linear equation, we choose
the particular solution to be

up(z) = c sin
2πz

l

u′

p(z) = c

(
2π

l

)
cos

2πz

l

u′′

p(z) = −c

(
2π

l

)
sin

2πz

l
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Figure 6: The form of spinal curve

Next we determine the constant c by substituting the
particular solution back into the original problem:

−

(
2π

l

)2

c sin
2πz

l
+ λ2c sin

2πz

l
= −ε

(
2π

l

)2

sin
2πz

l[
−

(
2π

l

)2

+ λ2

]
c = −ε

(
2π

l

)2

Thus we have

c =

−ε

(
2π
l

)2

(
2π
l

)2[
− 1 +

(
l
2π

)2

λ2

] =
ε

1−

(
lλ
2π

)2

which gives a displacement function for the particular
solution

up(z) =
ε

1−

(
lλ
2π

)2 sin
2πz

l
(25)

For the general homogeneous equation we have

uh(z) = A cosλz +B sinλz

where A and B are constants to be determined. This
gives us the displacement function for the nonhomoge-

neous linear equation

u(z) = up(z) + uh(z)

=
ε

1−

(
�λ
2π

)2 sin
2πz

l
+A cosλz +B sinλz

(26)

subject to
u(0) = u(l) = 0

and therefore it simplifies to

u(z) =
ε

1−

(
lλ
2π

)2 sin
2πz

l
(27)

Let
�λ

2π
= λ̂,

then we have

u(z) =
ε

1−
(
λ̂
)2 sin

2πz

l

Hence, we found a formula for the displacement function
u(z).

4 Stability analysis

Our objective is to have a potential energy function in
order to analyze the stability as stated earlier. We used
the first condition for stability, that the first derivative of
the potential function should be zero (mechanical equilib-
rium), to derive the displacement function in (27). The
initial displacement function as given by (23).
Next we look at the second condition for spinal stability,
using the method of variation. We want to consider the
effect that a small disturbance δ will have on the poten-
tial function U(z). For this we consider the variation of
U and u, but now we develop our potential function U

up to second order in δu:

U(u+ δu) = U(u(z)) + EI

�∫
0

(u′′(z)− u′′

0(z))δu
′′(z) dz

−P

�∫
0

u′(z)δu′(z) dz

+
1

2
EI

�∫
0

[δu′′(z)]2 −
1

2
P

�∫
0

[δu′(z)]2 dz

= U + δU + δ2U (28)

where |δu(z)| is small, and δu(z) satisfies the kinematic
boundary conditions

δu(0) = δu(l) = 0. (29)
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The equilibrium state is stable if δ2U > 0 for all admissi-
ble δu(z), with δu(z) �= 0. A complete representation for
δu(z) is thus

δu(z) =
∞∑
k=1

ak sin
2kπz

�
(30)

where ak is arbitrary.
Then

δ2U(u(z)) =
1

2
EI

∞∑
k=1

∞∑
m=1

�∫
0

[(
2kπ

�

)2 (
2mπ

�

)2

sin

(
2kπ

�

)
sin

(
2mπ

�

)

−
P

EI

(
2kπ

�

)(
2mπ

�

)

cos

(
2kπ

�

)
cos

(
2mπ

�

)]
dz

(31)

Choose a1 = 1, ak = 0, k ≥ 2 which is the most unfavor-
able situation. This yields

δ2U(u(z)) =
1

2

�∫
0

[(
2π

�

)4

sin2
2πz

�
−

(
2π

�

)2 (
P

EI

)
cos2

2πz

�

]
dz

=
1

2

(
2π

�

)2 (
�

2

)[(
2π

�

)2

EI − P

]
(32)

Hence, for stability of the equilibrium state we have

δ2U(u(z)) > 0 ⇐⇒

(
2π

�

)2

EI − P > 0

(33)

The conclusion from (33) is:

• for

P <

(
2π

�

)2

EI

the equilibrium state of u(z) is stable

• for

P >

(
2π

�

)2

EI

the equilibrium state of u(z) is unstable

5 Conclusions and future work

We obtained a sufficient result to draw conclusions from
for the stability of the human spine. The relation between
the force working on the spine (P ) and the bending stiff-
ness (EI) (see equation 33) can be tested by using data
from the literature. This will be our next objective.
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