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An Improved Spatial Smoothing Technique for
DoA Estimation of Highly Correlated Signals

Avi Abu

Abstract—Spatial superresolution techniques have been in- correlation matrix from which we estimate the signal and
vestigated for several decades in many fields: Communication, noise sub-space parameters is given as the average of all sub-
radar, sonar, etc. One of the most investigated techniques 4.ray correlation matrices. This method does not work well

is multiple signal classification (MUSIC) algorithm. Its sim- . . .
plicity has made it very attractive in such fields. However, as the signals are become highly correlated. When the signals

the main drawback of this algorithm lies on its failure to are highly correlated the probability of signals resolution, by
resolve coherent/highly correlated signals. Many algorithms this method, is getting lower. The new method introduced

have been developed in order to overcome this problem. One here improves the probability of highly correlated signals
of the famous algorithms is the spatial smoothing method. In resolution.

this paper we have developed new algorithm that improves Th . ized foll - fi >
the spatial smoothing algorithm and raises the probability of € paper IS orgamze as O_ ows. In sec |on. J \_/ve
signals resolution. The performances of our new algorithm were Present the mathematical formulation of the DoA estimation

analyzed via extensive simulations under imperfect conditions problem. Section 3 presents the development of our new

of electrical calibration and mechanical deformations of phased method. In section 4 we demonstrate the performances of

array antenna. new method compared to the ordinary spatial smoothing

Index Terms—direction-of-arrival estimation, adaptive ar- method. Performances of our new algorithm under electri-

rays, spatial smoothing, array signal processing, beamformer. ca| and mechanical errors are also introduced. Concluding
remarks are reported in section 5.

I. INTRODUCTION

UPERRESOLUTION methods refer to techniques that
estimate the direction of arrival (DoA) of closely spaced The mathematical presentation of the signals received at
signals which are received at phased array antenna. The mgfiform linear array (ULA) can be written as follows:
vation for superresolution of closely spaced/coherent signals
can be found in many important fields. Multipath problem . n
can be found for example at radar field. When a signal (m) = ZQ(G”)Q (tm) + v(tm) @)
is received with multipath components (which are closely . ) .
spaced signals) a high altitude estimation error occurs [1,9{ere N is the number of received signalg,, and g" (¢,.)
At air defence system there is a strong motivation for signaié€ DOA and waveform (sampled &t) of signaln, respec-
superresolution [3]. Earlier identification of attack cluster dfvely, v is consideredo be zero-mean spatially and tempo-
targets will help to improve the overall performances of Elly white complex Gaussian vector with second moment:
defense system against difficult attack scenarios.

MUSIC algorithm [4,5,19] is the most known algorithm R, = Eu(t)v" (s)] = 0%16,, 2
for superresolution technique. Its simplicity has made it ve
attractive in many fields. At this method the estimated Do
of signals are extracted from the peaks of MUSIC spectrum. {

Il. PROBLEM FORMULATION

n=1

%hereém stands for Kronecker delta and is given by:

1, t=s
0, else

This spectrum is composed of the eigenvectors of the noise Ot,s = 3)
subspace which is orthogonal to the signal subspace. These

eigenvectors are extracted by singular value decompositibrts the identity matrix,E’ stands for the expectation oper-
(SVD) applied on the array correlation matrix [20]. Thetion and(-)" is the hermitian operation. The signal DoA

main drawback of this algorithm lies on its failure to resolv¥€ctor is given by:

closely spaced/coherent signals [6]. Alternative approach for 1
closely spaced signals separation is the weighted subspace o—iksin(0n)
fitting (WSF) [7,8]. This approach works well at the envi- a(6,) = ) 4)

ronment of coherent signals. However since WSF method is
based on multi-variable minimization, the computational load

is very high. Many researches have been made in order t . . id g
enhance MUSIC algorithm to resolve closely spaced signéﬁ'gerek is the wave number given b=, d is the element

[9,10,11]. The most known technique is the spatial smoothng};terSpace’)‘ Ililfze _nqavelquth .ancL |sb|the number of
[12]. At this technique the array is divided into muItipIee eme_ntslatD Ae. ieft'mjzf;'op probiem 1S tol extr:\ct
overlapping sub-arrays. The correlation matrix of each su‘p—e signals DoAfy,n = 1,..N, from time samples o

array is being estimated from its sampled data. Then the fi f")’ m= 1’. o M whereM s the nL_me.er of time samples.
e correlation matrix of the array is given by [15]:

o—ik(L—1)sin(6n)
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whereS denotesaan L by N matrix with its N columns being [1l. | MPROVED SPATIAL SMOOTHING ALGORITHM

the eigenvectors corresponding to tNelargest eigenvalues | this section we will describe our new algorithm for
of the array correlation matriX. A, is a diagonal matrix syperresolution of closely spaced signals. The algorithm has
that contains the relevant eigenvalues at its diagofial. heen developed in order to improve the resolution perfor-
denotes anl by L — N matrix with its L — N columns mances especially at scenarios of high correlated signals. The
being the eigenvectors corresponding to the N smallest  grdinary spatial smoothing method is based on extracting the
eigenvalues of the array correlation matrR. A iS @ array correlation matrix as the average of all correlation ma-

diagonal matrix contains the corresponding eigenvalues atyfges from the sub-arrays. The estimated correlation matrix
diagonal. MUSIC algorithm is based on searching of signa§$ this method can be written as follows:

DoA vectors that are orthogonal to the noise subspace. This

is accomplish by searching for peaks in MUSIC spectam . 1 E =
given by: 1 R=2> R (14)
S - ©®) | S
a"(0)ELET a(f) whereK is the number of sub-arrays anfé is the estimated

P. Stoica et. al [16] have shown that MUSIC algorithm can beorrelation matrix extracted from thith sub-array and is
realized as a special case of Maximum Likelihood Metho@ven by:
(MLM) if and only if the signals are uncorrelated. Large

M
izati i is gi ~ 1
samplg realization of Fhe MLM egtlmator is given by the Rl — Z yz(m)ym(m) (15)
minimizer of the following function: M~
tr[A" EE" A]P (7) and l
y1(m)
wheretr(-) stands for trace operation arfd is the signal yl(m) = : (16)
correlation matrix given by: = L
" yg(m)
P =FElg(tm tim 8 . . i
l9(tm)g” (tm)] ® yL(m) is the received data (sampled at titpg) from thecth
where element at théth sub-arraye = 1, ...,£ and¢ is the length
9(tm) = [g (tm) ... g™ (t)]F (9) of sub-array. Note that all sub-arrays have the same length.

Our method is based on processing each of sub-array sep-
arately and then averaging the DoA estimations. From each
sub-array we extract its correlation matrix and then applying
eigenvalue decomposition in order to build MUSIC spectrum.
From each sub-array we estimate independently signals DoA.
The algorithm averages DoAs estimation only from those
A. SignalsCorrelation sub-arrays that have full targets resolution, namely, the

In this section we will explain the failure of MUSIC humber of picks at MUSIC spectrum equals to the estimated

algorithm to estimate the DoA of signals in the presence Bmber of signals. This new algorithm can be realized as
correlative/coherent signals. The correlatioibetween two multiple estimators that work on different part of the sampled
signalsz(t) andy(t) is given by: data which is received at the elements array. The new method

can be summarized as follows:

and(-)7 stands for the transpose operatighis DoA signals
matrix and is given by:

A(0) = [a(01) - - a(On)] (10)

p(1) = L(T) (11) « Divide the array intoK overlapping sub-arrays.
Ryu(T)Ryy(7) « From each subarray estimate its correlation maftix
whereR,., (1) = E(z(t)y(t +7)). The correlation matrix of ~« Estimate the number of received signals [13].
the array can also be introduced as follows: « Apply MUSIC algorithm on each sub-array.
« Choose the estimators that have full resolution (namely,
R=A"PA" + R, 12) the number of MUSIC peaks equals the estimated
Explicit formulation for signal correlation matrix (fav = 2) number of received S|grlgls). Th's_’ group will be denoted
is given by: by Q. Let us denote by the estimatedDoA of sub-
arrays (s € Q).
p— ( p1 VP1p2p ) (13) « The final estimation is given by:
vP1p2p p2 size(Q)
wherep; is power of signal. Note that if signals are uncor- )= — Z @S a7)
related, namely = 0, P is a diagonal matrix guaranteeing size())

R to be positive definite (assuming that vecta(8,,) arelin-

early independentrank(A) = N) and therefore invertible. IV. SIMULATIONS RESULTS

If correlation matrixR is invertible then MUSIC algorithm  We have analyzed the new proposed algorithm under
can be applied (via SVD process). Signals correlation affectdferent types of Mote-Carlo simulations. In this section we
the rank of S and thus of R. If signals are correlated, introduce the results of the analysis. We compared the new
correlation matrix R may not be a full rank matrix and proposed algorithm to the ordinary spatial smoothing MUSIC
thus not invertible, which can cause MUSIC algorithm talgorithm. In the simulations we assumed that we knew a-
be failed. priori the number of received signalg. At all simulations
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MUSIC Spectrum Probability of Targets Resolution, M=64, SA=4
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Fig. 1. MUSIC spectrum, M=64, K=4. Fig. 2. Probability of resolution versus SNR.

Probability of Targets Resolution, M=128, SA=4

a ULA with length of 2.8 [m] was taken. All signals at all | = New Spatial Smoothing

simulations were fully correlated (with correlation coefficient sl == Ordinary Spatial Smoothing A
equals one). The center frequency of the signals was 3.3
[Ghz]. The signals waveforng(t) was taken to be a LFM
pulse of 10 [1s] with duty cycle of 10 percent. At the

receiver we used a matched filter to this waveform. The &

number of Monte-Carlo trials was 1500. The figure of merit sof "

in all Monte-Carlo simulations was targets probability of ,f'

resolution. Fig. 1. demonstrates a scenario of three signals | ’,\'\

located at27.1°, 27.7° and 28.3°. The figure presents the e

spectrum of MUSIC algorithm applied at the ordinary spatial - \,f’

smoothing and at the new method from single trial. The SNR 5 2 2 2 3 20

was taken to be 30 [dB] and the number of time samples SNR [dB]

was 64. Four sub-arrays were taken. As we can see, H]es Probability of resolution versus SNR
new method has 2 out of 4 estimators that has three pea'?s' ' Y '
(1©2] = 2) at MUSIC spectrum (full resolution), while at the

ordinary method there are only two peaks. B. Targets Separation Analysis

In this section we analyze the performances of new algo-
) rithm as a function of signals DoA separation. The number
A. SNR Analysis of time samples that were taken to estimate the correlation

This part of analysis introduces the performances of nel@trices was 64 and the number of overlapping sub-arrays
proposed method as a function of SNR. Two signals wePé@S 4 Three signals were simulated. The simulation was
simulated. The first one was located24t1° and the second "N With SNR equals 30 [dB]. As we can see from Fig.
one was located at7.9°. We defined the SNR to be: 4., at difficult scenarios with signals separation belaé’

(the 3-dB beam-width wa®f°) new method outperforms

significantly the ordinary method and achieves about 30
(ijzlQ(Gn)gn(tm))H(ZgzlQ(Hn)gn(tm)) percent of probability of targets separation more than the
SNR- = E@H (ty)v(tm)) ordinary method.
b (AT (9)A(9))b
Lo?

(18) C. Time Samples Analysis

In this section we analyze the performances of new al-

o2 is thevariance of the noise arid= (1...1) (Nx1 vector). gorithm as a function of the number of time samples. The

Fig.2. demonstrates the performances of new spati@mber of overlapping sub-arrays was 4. Three signals were
smoothing technique compared to ordinary spatial smoothifgnulated with DoA separation ¢f6°. The simulation was
at different levels of SNR. The number of time sampled!n with SNR equals 30 [dB]. As we can see from Fig. 5.,
(transmitted pulses) was 64 and the number of sub-array8en the number of time samples is below 100 the new
was 4. As we can see, the new algorithm achieves betfégthod outperforms the ordinary method. At time samples
signals separation and below a SNR level of 30 [dB] it habove 100 the performances of both methods are not so
about 25 percent of targets resolution probability more thatifferent.
the ordinary method. Fig. 3. introduces the performances of
both methods with time samples equals 128. Note that Bs Electrical Calibration Errors Analysis
the number of time samples raises the performances of botlPhased array antenna must be calibrated before its opera-
algorithms are improved. tion. At calibration process we match phase and amplitude of
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Probability of Targets Resolution, M=64, SA=4, SNR=30dB Probability of Targets Resolution
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Fig. 4. Probability of resolution versus signals DoA separation. Fig. 6. Performances with calibration phase noise (two targets scenario).
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Fig. 5. Probability of resolution versus number of time samples (with DoArig. 7. Performances with calibration amplitude noise (two targets
separation of 0.6 [deg]). scenario).

all elements at the array [21]. Calibration errors degrade tgan -15 [dB].

performances of superresolution algorithms. Each superres2) Three Signals AnalysisAt this analysis the number of
olution algorithm may be affected differently due to calibrapulses was 64. Signals DoA was 27.1, 27.8 and 28.6 [deg].
tion errors [18]. In this section we analyze the degradation ffumber of sub-arrays was 4 and the SNR was 20 [dB]. First
our proposed algorithm. The calibration error is representg@jnal, second signal and third signal are introduced with
by a complex number that describes the deviation of eaghlid line, dash-dot line and dashed line, respectively. As we
Rx channel (of each element at the array) from its nominghn see from Fig. 8., phase noise has almost no effect on
value. The calibration errors are statistically independeglgorithm performances. These results are coincide with the
from element to element. The phase ergois modeled as results obtained with two signals. From Fig. 9., we can see
white noise uniformly distributed betweer ¢, : dmaz]-  that for three signals the algorithm can perform well until
The amplitude erro€ is modeled as follows: RMS error of -20 [dB].

_ From the above results we may conclude that as the

E=1+40 (19) . e N .
number of signals is raised the calibration requirements from

where § ~ N(0,0%) (a white Gaussian noise). The totathe phased array antenna are more stricter.
calibration errory is given by&e=7?.

1) Two Signals AnalysisAt this analysis the number of
pulses was taken to be 32. Signals DoA was 27.1 and 2%6
[deg]. Number of sub-arrays was three and the SNR was 20Phased array antenna may have mechanical deformations
[dB]. First signal and second signal are introduced with solidle to its heaviness or manufacturing limitations [22]. In this
line and dash-dot line, respectively. As we can see from Figection we will analyze the performances of our algorithm
6., phase noise has almost no effect on the performanceswvith two main deformations: parabolic deformation and ele-
our algorithm. The probability of signals resolution is abounent position error. The element position eriprdescribes
95 percent for almost all values of phase noise parameter.thAé position error (along one dimension) with respect to the
Fig. 7., we can see the performances under amplitude ermare element position. This error is modeled as a zero mean
which is more dominant then phase noise. As we can seéjite Gaussian noise\ ~ (0, 02)) statistically independent
the algorithm cannot perform well with RMS values morérom element to element. Parabolic deformatignis an

Mechanical Deformation Analysis
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Probability of Targets Resolution
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Probability of Targets Resolution TABLE 1l
% ‘ ‘ RESULTS FOR SIGNAL NO2
§ 80 4
_70 \ Mechanicaldistortion (&maz [mm],c [mm]) || Bias [deg] H RMS [deg] ‘
-2 —20 -15 -10 -5 Probability of resolution
Amplitude noise RMS [dB]
Bias (0,0) oo1 || o1 |
__ 05 : 97.5
D) ———————————————— e |
g ° ] (1.0) o [ o1 |
03 220 s = 5 89.4
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Fig. 9. Performances with calibration amplitude noise (three targets (1.1) 0 H 02 ‘
scenario). 87
TABLE Il
e . . . RESULTS FOR SIGNAL NO 3
unknown deterministic deformation along z-axis while X-
Y plane is antenna plane (gpresents the z-coordinate of mechanicaldistortion (€ qe [mm],o [mm]) || Bias [deg] H RMS [deg] ‘
element). The mathematical formulation of this deformatign Probability of resolution
is given by: (0,0 001 [ 006 |
97.5
_ 1— 2z, 20 (1,0) 001 [ o012 |
5 - fmam( (L ) ) ( ) ’ . .
a 89.4
where L, standsfor the array lengthy is x-coordinate of (2,0) 006 [ 02 |
element and¢,,., is the maximum distortion of element 61
position along z-axis. (0,1) 001 || o008 |
We analyze the performances of our new algorithm under 954
conditions of mechanical deformations via extensive simula- 02 001 [ 012 |
tions. At these simulations number of signals was three. The 84
number of pulses was taken to be 64 and signals DoA was (1,1) 0.03 H 0.15 \
27.1, 27.8 and 28.5 [deg]. Number of sub-arrays was 4 and 87

the SNR was 20 [dB].

We can see from the results that the performances are not
much affected by errors up to 1 [mm] under both elemeAtultiple sub-arrayshe symmetry property inside a sub-array
position error and parabolic deformation. For larger errors4tder mechanical deformation with errors larger than 1 [mm]
compensation architecture should be added. The reasondapnot hold.
degradation of our algorithm under mechanical deformation
errors larger than 1 [mm] (for ULA) is that at these order
of errors array symmetry breaks down. Spatial smoothingHigh probability of signals separation is a very important
technique needs array symmetry namely, each elementtak in many fields, as we mentioned before. Closely spaced
the array located at position vectprshould have identical signals problem can be found for example at communication
element at positior-p [17]. Sinceour algorithm works with and radar.

V. CONCLUSION
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In this paper we introduced a new technique that im20] F. Harabi, H. Changuel and A. Gharsallah, “Estimation of 2-D

proves signals separation. We compared our new techniquedirection of arrival with an extended correlation matri¥AENG Int.
- . . . Journal of Computer Sciengeol. 33, no. 2, pp. 25-31, 2007.
to the ordinary spatial smoothing algorithm. The results th@tl] T. Takahashi, Y. Konishi, S. Makino, H. Ohmine and H. Nakaguro,

were introduced in this paper prove that the new method “Fast measurement technique for phased array calibrati6RE Trans.

outperforms the ordinary spatial smoothing especially gt Antennas Propagatvol. 56, no. 7, pp. 1888-99, 2008. S
difficult . | low SNR. etc). T %2] H. Wang, “Fast measurement technique for phased array calibration,
fmcult scenarios (Very close sources, low ! ) IEEE Trans. Aero. and Electronic Systemasl. 28, no. 2, pp. 535-545,

new method raises the probability of closely spaced signals 1992.
resolution at about 25 percent with comparison to the or-
dinary spatial smoothing. At scenarios of high SNR (more
than 35 [dB]) or high signals spatial separation (more than
0.7 [deq]), the performances of both methods are close. The
new method does not increase dramatically the computational
load compared for example, to WSF algorithm and can be
easily applied at real-time systems. Our new algorithm has
been investigated under electrical and mechanical distortions.
Analysis of these distortions reveals that our new algorithm
can perform well under reasonable mechanical deformation
and calibration errors.
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