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Abstract—Spatial superresolution techniques have been in-
vestigated for several decades in many fields: Communication,
radar, sonar, etc. One of the most investigated techniques
is multiple signal classification (MUSIC) algorithm. Its sim-
plicity has made it very attractive in such fields. However,
the main drawback of this algorithm lies on its failure to
resolve coherent/highly correlated signals. Many algorithms
have been developed in order to overcome this problem. One
of the famous algorithms is the spatial smoothing method. In
this paper we have developed new algorithm that improves
the spatial smoothing algorithm and raises the probability of
signals resolution. The performances of our new algorithm were
analyzed via extensive simulations under imperfect conditions
of electrical calibration and mechanical deformations of phased
array antenna.

Index Terms—direction-of-arrival estimation, adaptive ar-
rays, spatial smoothing, array signal processing, beamformer.

I. I NTRODUCTION

SUPERRESOLUTION methods refer to techniques that
estimate the direction of arrival (DoA) of closely spaced

signals which are received at phased array antenna. The moti-
vation for superresolution of closely spaced/coherent signals
can be found in many important fields. Multipath problem
can be found for example at radar field. When a signal
is received with multipath components (which are closely
spaced signals) a high altitude estimation error occurs [1,2].
At air defence system there is a strong motivation for signals
superresolution [3]. Earlier identification of attack cluster of
targets will help to improve the overall performances of a
defense system against difficult attack scenarios.

MUSIC algorithm [4,5,19] is the most known algorithm
for superresolution technique. Its simplicity has made it very
attractive in many fields. At this method the estimated DoA
of signals are extracted from the peaks of MUSIC spectrum.
This spectrum is composed of the eigenvectors of the noise
subspace which is orthogonal to the signal subspace. These
eigenvectors are extracted by singular value decomposition
(SVD) applied on the array correlation matrix [20]. The
main drawback of this algorithm lies on its failure to resolve
closely spaced/coherent signals [6]. Alternative approach for
closely spaced signals separation is the weighted subspace
fitting (WSF) [7,8]. This approach works well at the envi-
ronment of coherent signals. However since WSF method is
based on multi-variable minimization, the computational load
is very high. Many researches have been made in order to
enhance MUSIC algorithm to resolve closely spaced signals
[9,10,11]. The most known technique is the spatial smoothing
[12]. At this technique the array is divided into multiple
overlapping sub-arrays. The correlation matrix of each sub-
array is being estimated from its sampled data. Then the final
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correlation matrix from which we estimate the signal and
noise sub-space parameters is given as the average of all sub-
array correlation matrices. This method does not work well
as the signals are become highly correlated. When the signals
are highly correlated the probability of signals resolution, by
this method, is getting lower. The new method introduced
here improves the probability of highly correlated signals
resolution.

The paper is organized as follows: In section 2, we
present the mathematical formulation of the DoA estimation
problem. Section 3 presents the development of our new
method. In section 4 we demonstrate the performances of
new method compared to the ordinary spatial smoothing
method. Performances of our new algorithm under electri-
cal and mechanical errors are also introduced. Concluding
remarks are reported in section 5.

II. PROBLEM FORMULATION

The mathematical presentation of the signals received at
uniform linear array (ULA) can be written as follows:

y(m) =
N∑

n=1

a(θn)gn(tm) + v(tm) (1)

whereN is the number of received signals,θn and gn(tm)
are DoA and waveform (sampled attm) of signaln, respec-
tively, v is consideredto be zero-mean spatially and tempo-
rally white complex Gaussian vector with second moment:

Rn = E[v(t)vH(s)] = σ2Iδt,s (2)

whereδt,s stands for Kronecker delta and is given by:

δt,s =
{

1, t = s
0, else

(3)

I is the identity matrix,E stands for the expectation oper-
ation and(·)H is the hermitian operation. The signal DoA
vector is given by:

a(θn) =




1
e−jksin(θn)

...
e−jk(L−1)sin(θn)


 (4)

wherek is the wave number given by2πd
λ , d is the element

interspace,λ is the wavelength andL is the number of
elements at ULA. The estimation problem is to extract
the signals DoAθn, n = 1, ...N , from time samples of
y(m), m = 1, ...,M whereM is the number of time samples.
The correlation matrix of the array is given by [15]:

R = SΛsS
H + EΛeE

H (5)
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whereS denotesanL by N matrix with its N columns being
the eigenvectors corresponding to theN largest eigenvalues
of the array correlation matrixR. Λs is a diagonal matrix
that contains the relevant eigenvalues at its diagonal.E
denotes anL by L − N matrix with its L − N columns
being the eigenvectors corresponding to theL−N smallest
eigenvalues of the array correlation matrixR. Λe is a
diagonal matrix contains the corresponding eigenvalues at its
diagonal. MUSIC algorithm is based on searching of signals
DoA vectors that are orthogonal to the noise subspace. This
is accomplish by searching for peaks in MUSIC spectrumΨ
given by:

Ψ =
1

aH(θ)ÊLÊH
L a(θ)

(6)

P. Stoica et. al [16] have shown that MUSIC algorithm can be
realized as a special case of Maximum Likelihood Method
(MLM) if and only if the signals are uncorrelated. Large
sample realization of the MLM estimator is given by the
minimizer of the following function:

tr[AHEEHA]P (7)

where tr(·) stands for trace operation andP is the signal
correlation matrix given by:

P = E[g(tm)gH(tm)] (8)

where
g(tm) = [g1(tm) . . . gN (tm)]T (9)

and(·)T stands for the transpose operation.A is DoA signals
matrix and is given by:

A(θ) = [a(θ1) . . . a(θN )] (10)

A. SignalsCorrelation

In this section we will explain the failure of MUSIC
algorithm to estimate the DoA of signals in the presence of
correlative/coherent signals. The correlationρ between two
signalsx(t) andy(t) is given by:

ρ(τ) =
Rxy(τ)√

Rxx(τ)Ryy(τ)
(11)

whereRxy(τ) = E(x(t)y(t + τ)). The correlation matrix of
the array can also be introduced as follows:

R = AHPAH + Rn (12)

Explicit formulation for signal correlation matrix (forN = 2)
is given by:

P =
(

p1
√

p1p2ρ√
p1p2ρ p2

)
(13)

wherepi is power of signali. Note that if signals are uncor-
related, namelyρ = 0, P is a diagonal matrix guaranteeing
R to be positive definite (assuming that vectorsa(θn) arelin-
early independent,rank(A) = N ) and therefore invertible.
If correlation matrixR is invertible then MUSIC algorithm
can be applied (via SVD process). Signals correlation affects
the rank of S and thus ofR. If signals are correlated,
correlation matrixR may not be a full rank matrix and
thus not invertible, which can cause MUSIC algorithm to
be failed.

III. I MPROVED SPATIAL SMOOTHING ALGORITHM

In this section we will describe our new algorithm for
superresolution of closely spaced signals. The algorithm has
been developed in order to improve the resolution perfor-
mances especially at scenarios of high correlated signals. The
ordinary spatial smoothing method is based on extracting the
array correlation matrix as the average of all correlation ma-
trices from the sub-arrays. The estimated correlation matrix
of this method can be written as follows:

R̂ =
1
k

K∑

k=1

R̂l (14)

whereK is thenumber of sub-arrays and̂Rl is the estimated
correlation matrix extracted from thelth sub-array and is
given by:

R̂l =
1
M

M∑
m=1

yl(m)ylH(m) (15)

and

yl(m) =




yl
1(m)

...
yl

ξ(m)


 (16)

yl
ε(m) is the received data (sampled at timetm) from theεth

element at thelth sub-array,ε = 1, ..., ξ and ξ is the length
of sub-array. Note that all sub-arrays have the same length.

Our method is based on processing each of sub-array sep-
arately and then averaging the DoA estimations. From each
sub-array we extract its correlation matrix and then applying
eigenvalue decomposition in order to build MUSIC spectrum.
From each sub-array we estimate independently signals DoA.
The algorithm averages DoAs estimation only from those
sub-arrays that have full targets resolution, namely, the
number of picks at MUSIC spectrum equals to the estimated
number of signals. This new algorithm can be realized as
multiple estimators that work on different part of the sampled
data which is received at the elements array. The new method
can be summarized as follows:
• Divide the array intoK overlapping sub-arrays.
• From each subarray estimate its correlation matrixR̂l.
• Estimate the number of received signals [13].
• Apply MUSIC algorithm on each sub-array.
• Choose the estimators that have full resolution (namely,

the number of MUSIC peaks equals the estimated
number of received signals). This group will be denoted
by Ω. Let us denote bŷθ

ς
the estimatedDoA of sub-

array ς (ς ∈ Ω).
• The final estimation is given by:

θ̂ =
1

size(Ω)

size(Ω)∑
ς=1

θ̂
ς

(17)

IV. SIMULATIONS RESULTS

We have analyzed the new proposed algorithm under
different types of Mote-Carlo simulations. In this section we
introduce the results of the analysis. We compared the new
proposed algorithm to the ordinary spatial smoothing MUSIC
algorithm. In the simulations we assumed that we knew a-
priori the number of received signalsN . At all simulations
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Fig. 1. MUSIC spectrum, M=64, K=4.

a ULA with length of 2.8 [m] was taken. All signals at all
simulations were fully correlated (with correlation coefficient
equals one). The center frequency of the signals was 3.3
[Ghz]. The signals waveformg(t) was taken to be a LFM
pulse of 10 [µs] with duty cycle of 10 percent. At the
receiver we used a matched filter to this waveform. The
number of Monte-Carlo trials was 1500. The figure of merit
in all Monte-Carlo simulations was targets probability of
resolution. Fig. 1. demonstrates a scenario of three signals
located at27.1o, 27.7o and 28.3o. The figure presents the
spectrum of MUSIC algorithm applied at the ordinary spatial
smoothing and at the new method from single trial. The SNR
was taken to be 30 [dB] and the number of time samples
was 64. Four sub-arrays were taken. As we can see, the
new method has 2 out of 4 estimators that has three peaks
(|Ω| = 2) at MUSIC spectrum (full resolution), while at the
ordinary method there are only two peaks.

A. SNR Analysis

This part of analysis introduces the performances of new
proposed method as a function of SNR. Two signals were
simulated. The first one was located at27.1o and the second
one was located at27.9o. We defined the SNR to be:

SNR =
(
∑N

n=1 a(θn)gn(tm))H(
∑N

n=1 a(θn)gn(tm))
E(vH(tm)v(tm))

=
bH(AH(θ)A(θ))b

Lσ2
(18)

σ2 is thevariance of the noise andb = (1...1)H (Nx1 vector).
Fig.2. demonstrates the performances of new spatial

smoothing technique compared to ordinary spatial smoothing
at different levels of SNR. The number of time samples
(transmitted pulses) was 64 and the number of sub-arrays
was 4. As we can see, the new algorithm achieves better
signals separation and below a SNR level of 30 [dB] it has
about 25 percent of targets resolution probability more than
the ordinary method. Fig. 3. introduces the performances of
both methods with time samples equals 128. Note that as
the number of time samples raises the performances of both
algorithms are improved.
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Fig. 2. Probability of resolution versus SNR.
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Fig. 3. Probability of resolution versus SNR.

B. Targets Separation Analysis

In this section we analyze the performances of new algo-
rithm as a function of signals DoA separation. The number
of time samples that were taken to estimate the correlation
matrices was 64 and the number of overlapping sub-arrays
was 4. Three signals were simulated. The simulation was
run with SNR equals 30 [dB]. As we can see from Fig.
4., at difficult scenarios with signals separation below0.6o

(the 3-dB beam-width was2o) new method outperforms
significantly the ordinary method and achieves about 30
percent of probability of targets separation more than the
ordinary method.

C. Time Samples Analysis

In this section we analyze the performances of new al-
gorithm as a function of the number of time samples. The
number of overlapping sub-arrays was 4. Three signals were
simulated with DoA separation of0.6o. The simulation was
run with SNR equals 30 [dB]. As we can see from Fig. 5.,
when the number of time samples is below 100 the new
method outperforms the ordinary method. At time samples
above 100 the performances of both methods are not so
different.

D. Electrical Calibration Errors Analysis

Phased array antenna must be calibrated before its opera-
tion. At calibration process we match phase and amplitude of
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Fig. 4. Probability of resolution versus signals DoA separation.
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Fig. 5. Probability of resolution versus number of time samples (with DoA
separation of 0.6 [deg]).

all elements at the array [21]. Calibration errors degrade the
performances of superresolution algorithms. Each superres-
olution algorithm may be affected differently due to calibra-
tion errors [18]. In this section we analyze the degradation of
our proposed algorithm. The calibration error is represented
by a complex number that describes the deviation of each
Rx channel (of each element at the array) from its nominal
value. The calibration errors are statistically independent
from element to element. The phase errorψ is modeled as
white noise uniformly distributed between[−φmax : φmax].
The amplitude errorξ is modeled as follows:

ξ = 1 + δ (19)

where δ ∼ N(0, σ2
δ ) (a white Gaussian noise). The total

calibration errorχ is given byξe−jψ.
1) Two Signals Analysis:At this analysis the number of

pulses was taken to be 32. Signals DoA was 27.1 and 27.6
[deg]. Number of sub-arrays was three and the SNR was 20
[dB]. First signal and second signal are introduced with solid
line and dash-dot line, respectively. As we can see from Fig.
6., phase noise has almost no effect on the performances of
our algorithm. The probability of signals resolution is about
95 percent for almost all values of phase noise parameter. At
Fig. 7., we can see the performances under amplitude error
which is more dominant then phase noise. As we can see,
the algorithm cannot perform well with RMS values more
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Fig. 6. Performances with calibration phase noise (two targets scenario).
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Fig. 7. Performances with calibration amplitude noise (two targets
scenario).

than -15 [dB].
2) Three Signals Analysis:At this analysis the number of

pulses was 64. Signals DoA was 27.1, 27.8 and 28.6 [deg].
Number of sub-arrays was 4 and the SNR was 20 [dB]. First
signal, second signal and third signal are introduced with
solid line, dash-dot line and dashed line, respectively. As we
can see from Fig. 8., phase noise has almost no effect on
algorithm performances. These results are coincide with the
results obtained with two signals. From Fig. 9., we can see
that for three signals the algorithm can perform well until
RMS error of -20 [dB].

From the above results we may conclude that as the
number of signals is raised the calibration requirements from
the phased array antenna are more stricter.

E. Mechanical Deformation Analysis

Phased array antenna may have mechanical deformations
due to its heaviness or manufacturing limitations [22]. In this
section we will analyze the performances of our algorithm
with two main deformations: parabolic deformation and ele-
ment position error. The element position errorψ describes
the position error (along one dimension) with respect to the
true element position. This error is modeled as a zero mean
white Gaussian noise (N ∼ (0, σ2)) statistically independent
from element to element. Parabolic deformationξ is an
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Fig. 8. Performances with calibration phase noise (three targets scenario).
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unknown deterministic deformation along z-axis while X-
Y plane is antenna plane (ξrepresents the z-coordinate of
element). The mathematical formulation of this deformation
is given by:

ξ = ξmax(1− (
2x

La
)2) (20)

whereLa standsfor the array length,x is x-coordinate of
element andξmax is the maximum distortion of element
position along z-axis.

We analyze the performances of our new algorithm under
conditions of mechanical deformations via extensive simula-
tions. At these simulations number of signals was three. The
number of pulses was taken to be 64 and signals DoA was
27.1, 27.8 and 28.5 [deg]. Number of sub-arrays was 4 and
the SNR was 20 [dB].

We can see from the results that the performances are not
much affected by errors up to 1 [mm] under both element
position error and parabolic deformation. For larger errors a
compensation architecture should be added. The reason for
degradation of our algorithm under mechanical deformation
errors larger than 1 [mm] (for ULA) is that at these order
of errors array symmetry breaks down. Spatial smoothing
technique needs array symmetry namely, each element at
the array located at position vectorρ shouldhave identical
element at position−ρ [17]. Sinceour algorithm works with

TABLE I
RESULTS FOR SIGNAL NO.1

Mechanicaldistortion (ξmax[mm],σ [mm]) Bias [deg] RMS [deg]

Probabilityof resolution

(0,0) 0.01 0.1

97.5

(1,0) 0.04 0.17

89.4

(2,0) 0.22 0.32

61

(0,1) 0.02 0.12

95.4

(0,2) 0.03 0.17

84

(1,1) 0.02 0.18

87

TABLE II
RESULTS FOR SIGNAL NO.2

Mechanicaldistortion (ξmax[mm],σ [mm]) Bias [deg] RMS [deg]

Probabilityof resolution

(0,0) 0.01 0.1

97.5

(1,0) 0 0.19

89.4

(2,0) 0 0.3

61

(0,1) 0 0.15

95.4

(0,2) 0.01 0.18

84

(1,1) 0 0.2

87

TABLE III
RESULTS FOR SIGNAL NO. 3

Mechanicaldistortion (ξmax[mm],σ [mm]) Bias [deg] RMS [deg]

Probabilityof resolution

(0,0) 0.01 0.06

97.5

(1,0) 0.01 0.12

89.4

(2,0) 0.06 0.2

61

(0,1) 0.01 0.08

95.4

(0,2) 0.01 0.12

84

(1,1) 0.03 0.15

87

multiple sub-arraysthe symmetry property inside a sub-array
under mechanical deformation with errors larger than 1 [mm]
cannot hold.

V. CONCLUSION

High probability of signals separation is a very important
task in many fields, as we mentioned before. Closely spaced
signals problem can be found for example at communication
and radar.
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In this paper we introduced a new technique that im-
proves signals separation. We compared our new technique
to the ordinary spatial smoothing algorithm. The results that
were introduced in this paper prove that the new method
outperforms the ordinary spatial smoothing especially at
difficult scenarios (very close sources, low SNR, etc). The
new method raises the probability of closely spaced signals
resolution at about 25 percent with comparison to the or-
dinary spatial smoothing. At scenarios of high SNR (more
than 35 [dB]) or high signals spatial separation (more than
0.7 [deg]), the performances of both methods are close. The
new method does not increase dramatically the computational
load compared for example, to WSF algorithm and can be
easily applied at real-time systems. Our new algorithm has
been investigated under electrical and mechanical distortions.
Analysis of these distortions reveals that our new algorithm
can perform well under reasonable mechanical deformation
and calibration errors.
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