
Real-Time Concurrent Constraint Calculus:
The Complete Operational Semantics

Gerardo M. Sarria M.

Abstract—The Real-Time Concurrent Constraint Programming
Calculus (rtcc) is a model of concurrency developed to specify
systems with real-time behaviour. In this paper we provide the
complete operational semantics of this calculus.

Index Terms—process calculi, rtcc, operational semantics

I. Introduction

The rtcc calculus [1], [2] is a ccp-based formalism [3],
extension of the ntcc calculus [4]. rtcc is obtained from
ntcc by adding constructs for specifying strong preemption
and delay declarations, and by extending the transition system
with support for resources, limited time and true concur-
rency. This calculus allows modeling real-time and reactive
behaviour.

In reactive systems, time is conceptually divided into discrete
intervals (or time units). In a time interval, a process receives
a stimulus from the environment, it computes (reacts) and
responds to the environment. A reactive system is shown in
figure 1.

i1

...

i2 i3

k1

o1 o2 o3

k2 k3

P1 P2 P3

Fig. 1. Reactive System

To model real time, we assume that each time unit is a clock-
cycle in which computations (internal transitions) involving
addition of information to the store (tell operations) and
querying the store (ask operations) take a particular amount
of time dependent on the constraint system. A discrete global
clock is introduced and it is assumed that this clock is
synchronized with the physical time (i.e. two successive time
units in this calculus correspond exactly to two moments
in the physical time). We also assume that the environment
provides the exact duration of the time unit. That is, processes
may not have all the time they need to run, instead, if they do
not reach their resting point in a particular time, some (or all)
of their computations not done will be discarded before the

Manuscript received January 12, 2011; revised January 14, 2011.
G. Sarria is with the Department of Science and Engineering of Comput-

ing, Pontificia Universidad Javeriana, Cali - Colombia, and is a member of
the AVISPA Research Group. Email: gsarria@cic.javerianacali.edu.co

time unit is over. The duration will be then the available time
that processes have to execute. We will take this available
time as a natural number; this allows to think of time as a
discrete sequence of minimal units that we will call ticks.

Now, most formal models of processes abstract away many
properties of real systems such as duration of actions and
number of processors [5]. Others assume maximal paral-
lelism, that is the assumption of having n processors to
execute n parallel processes (as in [6]). Nevertheless, for
real-time systems the fact that processes have to share one
processor cannot be ignored, since it may influence both
the temporal and the functional behaviour of the system
[7]. Moreover, as it is said in [8] the temporal behaviour
of a real-time system depends not only on delays due to
process synchronization, but also on the availability of shared
resources. In this sense, we assume that the environment also
provides a number r of resources. Each process P takes some
of these. When P is finished, it releases them.

Then in the case of rtcc the stimulus ιi provided by the
environment of the reactive system is a tuple consisting
of a constraint representing the initial store, the available
number of resources and the duration of the time unit, and
the response oi of the process is another tuple consisting of a
constraint representing the final store, the maximum number
of resources used in calculations and the time spent in them.
Formally, we can say that for each Pi there is an stimulus
⟨di, ri, ti⟩ and a response ⟨d′i, r

′
i, t

′
i⟩ in the time unit ki.

II. The Calculus

Here we describe the syntax and the operational semantics
for rtcc. We begin by introducing the notion of constraint
system, very important in ccp-based calculi.

Constraint System. The rtcc processes are parameterized
in a constraint system which specifies what kind of con-
straints handle the model. Formally, it is a pair (Σ,∆) where
Σ is a signature (a set of constants, functions and predicates)
and ∆ is a first order theory over Σ (a set of first-order
sentences with at least one model).

An example of a widely used constraint system is the Finite-
Domain Constraint System FD[max] proposed in [9]. This
constraint system is such that:

● Σ is given by the constants symbols 0,1,2, . . . ,max−1,

Engineering Letters, 19:1, EL_19_1_07

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



and the relation symbols =,≠,<,≤,>,≥.
● ∆ is given by the axioms in number theory.

where max > 0. The intended meaning of FD[max] is that
variables range over a finite domain of values {0, . . . ,max−
1}. Throughout this paper a FD constraint system D is
assumed.

Given a constraint system, the underlying language L of the
constraint system is a tuple (Σ,V,S), where V is a set of
variables, and S is a set with the symbols ¬,∧,∨,⇒,∃,∀
and the predicates true and false. A constraint is a first-
order formulae constructed in L.

A constraint c entails a constraint d in ∆, notation c ⊧∆ d,
iff c⇒ d is true in all models of ∆. The entailment relation
is written ⊧ instead of ⊧∆ if ∆ can be inferred from the
context.

For a constraint system D, the set of elements of the
constraint system is denoted by ∣D∣ and ∣D∣0 represents
its set of finite elements. The set of constraints in the
underlying constraint system will be denoted by C.

Process Syntax. Processes communicate with each other by
posting and reading partial information (constraints) about
the variables of the system they model. This partial informa-
tion resides in common store of constraints. Henceforth the
conjunction of all posted constraints will be simply called
the store.

Proc is defined as the set of all rtcc processes. The
Processes P,Q, . . . ∈ Proc are built from constraints c ∈ C
and variables x ∈ V in the underlying constraint system by
the following syntax:

P,Q, . . . ::= tell(c) ∣ ∑i∈I when ci do Pi ∣ P ∥ Q
∣ local x in P ∣ unless c next P
∣ catch c in P finally Q ∣ next P
∣ delay P for δ ∣ !P ∣ ⋆P

Intuitively, the process tell(c) adds constraint c to the store
within the current time unit. The ask process when c do P
is generalized with a non-deterministic choice of the form
∑i∈I when ci do Pi (I is a finite set of indices). This
process, in the current time unit, must non-deterministically
choose one of the Pj (j ∈ I) whose corresponding guard
constraint cj is entailed by the store, and execute it. The
non-chosen processes are precluded. Two processes P and
Q acting concurrently are denoted by the process P ∥ Q. In
one time unit P and Q operate in parallel, communicating
through the store by telling and asking information. The “∥”
operator is defined as left associative. The process local x
in P declares a variable x private to P (hidden to other
processes). This process behaves like P , except that all
information about x produced by P can only be seen by

P and the information about x produced by other processes
is hidden to P . The weak time-out process, unless c next P ,
represents the activation of P the next time unit if c cannot
be inferred from the store in the current time interval (i.e.
d ⊭ c). Otherwise, P will be discarded. The strong time-out
process, catch c in P finally Q, represents the interruption
of P in the current time interval when the store can entail
c; otherwise, the execution of P continues. When process
P is interrupted, process Q is executed. If P finishes, Q is
discarded.

The execution of a process P can be delayed in two ways:
with delay P for δ the process P is activated in the current
time unit but at least δ ticks after the beginning of the time
unit, whilst with next P the process P will be activated in
the next time interval. The operator “!” is used to define
infinite behaviour. The process !P represents P ∥ next P ∥
next(next P ) ∥ . . ., (i.e. !P executes P in the current time
unit and it is replicated in the next time interval). An arbitrary
(but finite) delay is represented with the operator “⋆”. The
process ⋆P represents an unbounded but finite P + next P +
next(next P ) + . . ., (i.e. it allows to model asynchronous
behaviour across the time intervals).

The guarded-choice summation process ∑i∈I when ci do Pi
is actually the abbreviation of

when ci1 do Pi1 + . . . +when cin do Pin

where I = {i1, . . . , in}. The symbol “+” is used for binary
summations (similar to the choice operator from CCS [10]).
If there is no ambiguities, the “when c do” can be omitted
when c = true, that is, ∑i∈I Pi. The process that do nothing
is skip. The inactivity process is defined as the empty
summation ∑i∈∅ Pi. This process is similar to process 0
of CCS and STOP of CSP [11]. Furthermore, terminated
processes will always behave like skip. We write ∏i∈I Pi,
where I = {i1, . . . , in} to denote the parallel composition of
all the Pi, that is, Pi1 ∥ . . . ∥ Pin . When process Q is skip,
the “finally Q” part in process catch c in P finally Q can be
omitted, that is, we can write catch c in P . A nest of delta
delay processes such as delay (delay P for δ1) for δ2 can be
abbreviated to delay P for δ1+δ2. Notation nextn P (where
next is repeated n times) is written to abbreviate the process
next (next (. . . (next P ) . . .)). A bounded replication and
asynchrony can be specified using summation and product.
!IP and ⋆IP are defined as abbreviations for ∏i∈I nextiP
and ∑i∈I nextiP , respectively. For example, process ![m,n]P
means that P is always active between the next m and m+n
time units.

Now we will show a simple example illustrating the
specification of temporal behaviour in this calculus.

Example II.1. Suppose a simple improvisation situation
where there are two machines M1 and M2. The first machine
M1 performs a single random action from a list Actions
every 15 ticks. The second machine M2 must follow it,

Engineering Letters, 19:1, EL_19_1_07

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



that is, perform a series of actions depending on the action
performed by M1. Additionally, in some occasions M1 not
only performs a single action but two in the same time unit
(it performs one action and 5 ticks later performs another).
In this case M2 must stop its performance and try to follow
the second action (there may be cases in which this is not
possible due to the limit of time). This behaviour can be
modeled as follows:

First, we have to model M1:

M1
def
= ! ∑

i∈Actions
tell(action1 = i) ∥

⋆ delay ∑
i∈Actions

tell(action2 = i) for 5

Now for the second machine we assume a process
FollowingActions that calculates the actions to follow and
performs them. Also, we assume an action 0 ∉ Actions. Thus
M2 is modeled:

M2
def
= ! when action1 ≠ 0 do

catch action2 ≠ 0

in FollowingActions(action1)
finally FollowingActions(action2)

To model the whole system we simply launch the process
M1 ∥M2.

III. Operational Semantics

The operational semantics can be formally described by
means of a transition system conformed by the set of
processes Proc, the set of configurations Γ and transition
relations → and ⇒. A configuration γ is a tuple ⟨P, d, t⟩
where P is a process, d is a constraint in C representing the
store, and t is the amount of time left to the process to be

executed. The transition relations → = {
⟨r⟩
Ð→, r ∈ Z+} and ⇒

are the least relations satisfying the rules in tables I and II.

The internal transition rule ⟨P, d, t⟩
r
Ð→ ⟨P ′, d′, t′⟩ means that

in one internal time using r resources process P with store
d and available time t reduces to process P ′ with store d′

and leaves t′ time remaining. We write ⟨P, d, t⟩→ ⟨P ′, d′, t′⟩
(omitting the “r”) when resources are not relevant.

The observable transition rule P
(ι,o)
Ô⇒ Q means that process

P given an input ι from the environment reduces to process
Q and outputs o to the environment in one time unit. Input
ι is a tuple consisting of the initial store c, the number of
resources available r within the time unit and the duration
t of the time unit. Output o is also a tuple consisting of
the resulting store d, the maximum number of resources r′

used by processes and the time spent t′ by all process to
be executed. An observable transition is constructed from a
sequence of internal transitions. It is assumed that internal
transitions cannot be directly observed.

TABLE I
INTERNAL TRANSITION RULES OF RTCC

t −ΦT (c, d) ≥ 0

⟨tell(c), d, t⟩
1
Ð→ ⟨skip, d ∧ c, t −ΦT (c, d)⟩

t −ΦA(cj , d) ≥ 0 d ⊧ cj , j ∈ I

⟨∑i∈I when ci do Pi, d, t⟩
1
Ð→ ⟨Pj , d, t −ΦA(cj , d)⟩

⟨P, d, t⟩
sp
Ð→ ⟨P ′, d′p, t′p⟩ ⟨Q,d, t⟩

sq
Ð→ ⟨Q′, d′q , t′q⟩ sp + sq ≤ r

⟨P ∥ Q,d, t⟩
sp+sq
ÐÐÐ→ ⟨P ′ ∥ Q′, d′p ∧ d′q ,min(t′p, t′q)⟩

⟨P, d, t⟩
sp
Ð→ ⟨P ′, d′p, t′p⟩ sp ≤ r

⟨P ∥ Q,d, t⟩
sp
Ð→ ⟨P ′ ∥ Q,d′p, t′p⟩

⟨Q,d, t⟩
sq
Ð→ ⟨Q′, d′q , t′q⟩ sq ≤ r

⟨P ∥ Q,d, t⟩
sq
Ð→ ⟨P ∥ Q′, d′q , t′q⟩

⟨P, c ∧ ∃xd, t −ΦT (c,∃xd)⟩
s
Ð→ ⟨P ′, c′, t′⟩

⟨local x, c in P, d, t⟩
s
Ð→ ⟨local x, c′ in P ′, d ∧ ∃xc′, t′⟩

t −ΦA(c, d) ≥ 0 d ⊧ c

⟨unless c next P, d, t⟩
1
Ð→ ⟨skip, d, t −ΦA(c, d)⟩

t −ΦA(c, d) ≥ 0 d ⊧ c

⟨catch c in P finally Q,d, t⟩
1
Ð→ ⟨Q,d, t −ΦA(c, d)⟩

⟨P, d, t −ΦA(c, d)⟩
s
Ð→ ⟨P ′, d′, t′⟩ d ⊭ c

⟨catch c in P finally Q,d, t⟩
s
Ð→ ⟨catch c in P ′ finally Q,d′, t′⟩

δ > T − t t > 0

⟨delay P for δ, d, t⟩
0
Ð→ ⟨delay P for δ, d, t − 1⟩

δ ≤ T − t

⟨delay P for δ, d, t⟩
0
Ð→ ⟨P, d, t⟩

⟨!P, d, t⟩
0
Ð→ ⟨P ∥ next !P, d, t⟩

⟨⋆P, d, t⟩
0
Ð→ ⟨nextm P, d, t⟩

if m ≥ 0

γ1 → γ2

γ′1 → γ′2
if γ1 ≡ γ

′
1 and γ2 ≡ γ

′
2

TABLE II
OBSERVABLE TRANSITION RULE OF RTCC

⟨P, c, t⟩→∗
S ⟨Q,d, t′⟩↛

P
(⟨c,r,t⟩, ⟨d,max(S),t−t′⟩)
ÔÔÔÔÔÔÔÔÔÔÔÔ⇒ R

if R ≡ F (Q)

Now we are going to explain the transitions rules in tables I
and II.

A tell process adds a constraint to the current store and

Engineering Letters, 19:1, EL_19_1_07

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



terminates, unless there is not enough time to execute it (in
this case it remains blocked). The time left to other processes
after evolving is equal to the time available before the
transition less the time spent by the constraint system to add
the constraint to the store. The time spent by the constraint
system is given by functions ΦT ,ΦA ∶ ∣D∣0×∣D∣0 Ð→ N−{0}
(ΦT (c, d) approximates the time spent in adding constraint
c to store d, and ΦA(c, d) estimates the time querying if the
store d can entail a constraint c). In addition, execution of a
tell operation requires one resource.

The rule for a choice says that the process chooses one of
the processes whose corresponding guard is entailed by the
store and execute it, unless it has not enough time to query the
store in which case it remains blocked. Computation of the
time left is as for the tell process. The store in this operation
is not modified. It consumes one resource unit.

The first rule of parallel composition says that both processes
P and Q executes concurrently if the amount of resources
needed by both processes separately is less than or equal
to the number of resources available. The resulting store is
the conjunction of the output stores from the execution of
both processes separately. This process terminates iff both
processes do. Therefore, the time left is the minimum of
those times left by each process. The second and third rules
affirm that in a parallel process, only one of the two processes
can evolve due to the number of resources available.

To define the rule for locality, following [12], we extend the
construct of local behaviour to local x, c in P to represent the
evolution of the process. Variable c is the local information
(or store) produced during the evolution. Initially, c is empty,
so we regard local x in P as local x,true in P . The rule
for locality says that if P can evolve to P ′ with a store
composed by c and information of the “global” store d not
involving x (variable x in d is hidden to P ), then the local
... in P process reduces to a local ... in P ′ process where d
is enlarged with information about the resulting local store
c′ without the information on x (x in c′ is hidden to d and,
therefore, to external processes).

In a weak time-out process, if c is entailed by the store,
process P is terminated. Otherwise it will behave like next P .
This will be explained below with the rule for observations.

For a strong time-out, a process P ends its execution (and
another process Q starts) if a constraint c is entailed by
the store. Otherwise it evolves but asking for entailment of
constraint persists.

The two rules for delaying state that a process delay P for δ
delays the execution of P for at least δ ticks. Once the
delay is less than the current internal time (T represents
the duration of the time-unit given by the environment),
the process reduces to P (i.e. it will be activated). In each
transition this process does not consume any resource.

The replication rule specifies that the process P will be

executed in the current time unit and then copy itself (process
!P ) to the next time unit.

The rule for asynchrony says that a process P will be delayed
for an unbounded but finite time, that is, P will be executed
some time in the future (but not in the past).

The rule that allows to use the structural congruence relation
≡ defined below states that structurally congruent configura-
tions have the same reductions.

Finally, the rule for observable transitions states that a process
P evolves to R in one time unit if there is a sequence
of internal transitions starting in configuration ⟨P, c, t⟩ and
ending in configuration ⟨Q,d, t′⟩. Process R, called the
“residual process”, is constituted by the processes to be
executed in the next time unit. The latter are obtained from
Q by applying the future function defined as follows:

Let F ∶ Proc→ Proc be defined by

F (Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R if Q = next R or
Q = unless c next R

F (Q1) ∥ F (Q2) if Q = Q1 ∥ Q2

catch c in F (R) finally S if Q = catch c in R finally S
local x in F (R) if Q = local x, c in R
skip Otherwise

To simplify the transitions, a congruence relation ≡ is defined.
Following [3], we introduce the standard notions of contexts
and behavioural equivalence.

Informally, a context is a phrase (an expression) with a single
hole, denoted by [⋅], that can be plugged in with processes.
Formally, processes context C is defined by the following
syntax:

C ::= [⋅] ∣ when c do C + M
∣ C ∥ C ∣ local x in C
∣ unless c next C ∣ catch c in C finally C
∣ delay C for δ ∣ next C
∣ ! C ∣ ⋆C

where M stands for summations.

Two processes P and Q are equivalent, notation P ≐ Q, if
for any context C, P ≐ Q implies C[P ] ≐ C[Q]. Let ≡ be
the smallest equivalence relation over processes satisfying:

1) P ≡ Q if they only differ by a renaming of bound
variables

2) P ∥ skip ≡ skip ∥ P ≡ P
3) P ∥ Q ≡ Q ∥ P
4) next skip ≡ skip
5) local x in skip ≡ skip
6) local x y in P ≡ local y x in P
7) local x in next P ≡ next(local x in P )

We extend ≡ to configurations by defining
⟨P, c, t⟩ ≡ ⟨Q, c, t⟩ iff P ≡ Q.

Example III.1. To illustrate a sequence of transitions in

Engineering Letters, 19:1, EL_19_1_07

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



rtcc, we consider the example II.1. The two machines were
modeled thus:

M1
def
= ! ∑

i∈Actions
tell(action1 = i) ∥

⋆ delay ∑
i∈Actions

tell(action2 = i) for 5

M2
def
= ! when action1 ≠ 0 do

catch action2 ≠ 0

in FollowingActions(action1)
finally FollowingActions(action2)

In order to describe the transitions we have to make some
assumptions about the system. Let us say that

● the set Actions is composed by 1 and 2, that is,
Actions = {1,2},

● the time needed by the constraint system to post a
constraint is 2 ticks (no matter the size of the store),
and the same for querying the store,

● process FollowingActions posts the following four
constraints: reaction1 = 1, reaction2 = 2, reaction3 =
3, and reaction4 = 4 given the input action1 (each post-
ing every two ticks) and posts the constraint reaction5 =
5 given the input action2, and it consumes only one
resource,

● finally, there are 3 resources available (enough for the
whole system).

Now, to simplify notation we define

P1
def
= ∑

i∈Actions
tell(action1 = i)

P2
def
= ∑

i∈Actions
tell(action2 = i)

P3
def
= delay P2 for 5

P4
def
= catch action2 ≠ 0 in FollowingActions(action1)

finally FollowingActions(action2)

P5
def
= when action1 ≠ 0 do P4

The initial configuration consists in both process M1 and M2

executing in parallel, an empty store, and the duration of the
time unit (15 ticks). Then internal transitions may look like
this for those time units where the first machine performs a
single action (since this is nondeterministic it is not possible
to know the results in advance):

⟨M1 ∥M2,true,15⟩
0
Ð→ ⟨((P1 ∥ next !P1) ∥ nextm P3) ∥ (P5 ∥ next !P5),

true,15⟩

1
Ð→ ⟨((tell(action1 = 1) ∥ next !P1) ∥ nextm P3) ∥

(P5 ∥ next !P5),

true,13⟩
1
Ð→ ⟨((skip ∥ next !P1) ∥ nextm P3) ∥

(when action1 do P4 ∥ next !P5),

action1 = 1,11⟩
1
Ð→ ⟨(next !P1 ∥ nextm P3) ∥

(catch action2 in FollowingActions(action1)
finally FollowingActions(action2) ∥

next !P5),

action1 = 1,9⟩
1
Ð→ ⟨(next !P1 ∥ nextm P3) ∥

(catch action2 in FollowingActions(action1)
finally FollowingActions(action2) ∥

next !P5),

action1 = 1 ∧ reaction1 = 1,7⟩
1
Ð→ ⟨(next !P1 ∥ nextm P3) ∥

(catch action2 in FollowingActions(action1)
finally FollowingActions(action2) ∥

next !P5),

action1 = 1 ∧ reaction1 = 1 ∧ reaction2 = 2,5⟩
1
Ð→ ⟨(next !P1 ∥ nextm P3) ∥

(catch action2 in FollowingActions(action1)
finally FollowingActions(action2) ∥

next !P5),

action1 = 1 ∧ reaction1 = 1 ∧ reaction2 = 2 ∧

reaction3 = 3,3⟩
1
Ð→ ⟨(next !P1 ∥ nextm P3) ∥ next !P5,

action1 = 1 ∧ reaction1 = 1 ∧ reaction2 = 2 ∧

reaction3 = 3 ∧ reaction4 = 4,1⟩

↛

For those time units where the first machine performs two
actions, the internal transitions may look like this:

⟨M1 ∥M2,true,15⟩
0
Ð→ ⟨((P1 ∥ next !P1) ∥ P3) ∥ (P5 ∥ next !P5),true,15⟩
1
Ð→ ⟨((tell(action1 = 1) ∥ next !P1) ∥ delay P2 for 5) ∥

(P5 ∥ next !P5),

true,13⟩
1
Ð→ ⟨((skip ∥ next !P1) ∥ delay P2 for 5) ∥

(when action1 do P4 ∥ next !P5),

action1 = 1,11⟩

Engineering Letters, 19:1, EL_19_1_07

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



1
Ð→ ⟨(next !P1 ∥ delay P2 for 5) ∥

(catch action2 in FollowingActions(action1)
finally FollowingActions(action2) ∥

next !P5),

action1 = 1,9⟩
1
Ð→ ⟨(next !P1 ∥ tell(action2 = 2)) ∥

(catch action2 in FollowingActions(action1)
finally FollowingActions(action2) ∥

next !P5),

action1 = 1 ∧ reaction1 = 1,7⟩
1
Ð→ ⟨(next !P1 ∥ skip) ∥

(catch action2 in FollowingActions(action1)
finally FollowingActions(action2) ∥

next !P5),

action1 = 1 ∧ reaction1 = 1 ∧ reaction2 = 2 ∧

action2 = 2,5⟩
1
Ð→ ⟨next !P1 ∥

(FollowingActions(action2) ∥ next !P5),

action1 = 1 ∧ reaction1 = 1 ∧ reaction2 = 2 ∧

action2 = 2,3⟩
1
Ð→ ⟨next !P1 ∥ next !P5,

action1 = 1 ∧ reaction1 = 1 ∧ reaction2 = 2 ∧

action2 = 2 ∧ reaction5 = 5,1⟩

↛

The sequence of observable transitions may look like this:

M1 ∥M2

⟨ι1,o1⟩
ÔÔ⇒ (!P1 ∥ next2 P3) ∥ !P5

⟨ι2,o2⟩
ÔÔ⇒

(!P1 ∥ next P3) ∥ !P5

⟨ι3,o3⟩
ÔÔ⇒ (!P1 ∥ P3) ∥ !P5

⟨ι4,o4⟩
ÔÔ⇒ . . .

where each input/output ⟨ιi, oi⟩ depends on the choices
made; for example if we consider the same internal tran-
sitions above we can have

ι1 = ⟨true,15,3⟩

o1 = ⟨action1 = 1 ∧ reaction1 = 1 ∧ reaction2 = 2 ∧

reaction3 = 3 ∧ reaction4 = 4,1,1⟩

ι4 = ⟨true,15,3⟩

o4 = ⟨action1 = 1 ∧ reaction1 = 1 ∧ reaction2 = 2 ∧

action2 = 2 ∧ reaction5 = 5,1,1⟩

Properties. It is clear that with the introduction of the
strong time-out construct, the delta delay construct and the
additional observables of the transition system (resources and
time) not all ccp properties hold. For example, the properties

of monotonicity with respect to the store (if a process P
evolve to Q given a particular store d, then P also evolves
to Q given a stronger store e, e ⊧ d) and restartability
explained in [12] do not hold since for a given store a
process may evolve, but if that particular store is augmented,
it is possible that the signal that stops the process (with
the catch construct) be now present, so the process evolves
in a different way. Moreover, time becomes very important
because processes are limited by the available time. This
available time is reduced in every transition, so if we take
the output of a process and we give it to the same process
as input, that process might evolve in another way obtaining
different results. This show that the notion of quiescent point,
usual in CCP calculi, involves time now.

The following two properties state that a process can only
post constraints in the store or leave it unmodified, but
cannot take out constraints from it, i.e. the store can only be
augmented, not reduced. Additionally, a process consumes
some time to evolve, that is, the time available at the
beginning of the transition is always greater than or equal
to the time at the end (since processes ultimately perform
ask and tell operations, they reduce the available time using
functions ΦA and ΦT , in other words, available time in a
transition is always reducing.

Property III.2. (Internal Extensiveness). If ⟨P, c, t⟩ →
⟨Q,d, t′⟩ then d ⊧ c and t > t′ ≥ 0.

Proof: The proof proceeds by simple induction on the
inference of ⟨P, c, t⟩→ ⟨Q,d, t′⟩.

The property above can be extended to the observable rela-
tion.

Property III.3. (Observable Extensiveness). If

P
(⟨c,r,t⟩, ⟨d,s,t′⟩)
ÔÔÔÔÔÔÔ⇒ Q then d ⊧ c and t > t′ ≥ 0.

Proof: By definition, if P
(⟨c,r,t⟩, ⟨d,s,t′⟩)
ÔÔÔÔÔÔÔ⇒ Q, then there

is a sequence

⟨P1, c1, t1⟩→ ⟨P2, c2, t2⟩→ . . .→ ⟨Pn, cn, tn⟩↛

with P = P1, Q = F (Pn), c = c1, t = t1, d = cn and t′ = t−tn.
Then, by property III.2 cn ⊧ . . . ⊧ c2 ⊧ c1 and t1 > . . . > tn ≥
0. Hence d ⊧ c and t > t′ ≥ 0.

Time introduces a different behaviour of transitions than that
of ntcc. For example, suppose that there is 5 ticks of avail-
able time and we have two processes executing in parallel
P1

def
= tell(x = 0) and P2

def
= catch x = 0 in Q1 finally Q2.

If the current store is not strong enough to infer x = 0 and
posting that constraint in the store takes 6 ticks of time, P1

cannot add it so process Q1 will continue its execution; but
if we augment the amount of available time the constraint
will be added, Q1 will be stopped and Q2 probably will be
executed (if there’s time). We can find a similar situations
with other constructs.

Engineering Letters, 19:1, EL_19_1_07

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



Note that resources were not considered in the above prop-
erties. This can be explained with the fact that processes
can evolve with just a single resource, they would only need
enough time.

Finally, since each time unit has a fixed time given by
the environment, the number of internal transitions is finite,
i.e. there is always a final transition in a sequence. This
is important since it guarantees that there are no infinite
computations in one time unit.

Theorem III.4. Every sequence of internal transitions is
finite.

Proof: The proof follows directly from the fact that
∀c, d ∈ ∣D∣0, ΦT (c, d) > 0 and ΦA(c, d) > 0, and from
property III.2.

IV. Encoding ntcc into rtcc

The rtcc calculus is an extension of the ntcc calculus.
In this sense all systems that can be modeled in ntcc can
also be modeled in rtcc (but not in the opposite way). This
section is devoted to show this.

In ntcc the notion of time is different from that of rtcc.
Each time unit is identified with the time needed for the
processes to terminate their computations. In the rtcc
calculus we consider that each time unit is identified with
the duration given by the environment. Therefore, in ntcc
every enabled process computes to its resting point. In our
calculus this could be possible in two ways: (1) if we consider
a duration of each time unit large enough to have no worries
about time, or (2) if the environment knows exactly how
much time take each process to get its resting point. The
first approach is weak and not rigorous because it is not
possible to ensure a good choice for duration. The second
choice is more realistic since in the last section we declared
two functions to approximate the time spent by a process
in two actions. Then if we assume a prior knowledge of
processes, we can model in rtcc the systems modeled in
ntcc.

On the other hand, the ntcc calculus lacks the notion of
resource. This can be solved considering a single resource
and relate it with the duration of each time unit.

About the processes themselves, if we do not consider the
new constructs (strong time-out and delta delay), most prop-
erties of ntcc hold. The reader may observe, for instance,
that the strong time-out construct can stop the execution
of a process at any time (within a time unit). That is, for
a given store a process may evolve, but if that particular
store is augmented, it is possible that now the signal that
stops the process be present, so the process may evolve in
a different way. This leads to think that if there is a catch-
free process (i.e. processes without occurrences of the strong
time-out construct) which in its execution possibly add some

constraints to the store, then it can be executed in the resulting
store obtaining the same result.

V. Concluding Remarks and Related Work

In this paper we described the operational semantics of the
rtcc calculus. This calculus belongs to the ccp family and
is an strict extension of the ntcc calculus. rtcc extends
ntcc to allow modeling systems with real-time behaviour.
There exists several process calculi that have been extended
to support real-time, for instance ACP in [13], CCS in [14]
and CSP in [15]. The π-calculus has been extended with
real time in two ways: with true concurrency semantics in
[16] (stochastic π-calculus), and with interleaving semantics
in [17] (the πRT -calculus). Additionally, in the ccp family
various extensions have been proposed, for example TScc
in [18] and tccp in [19].

In order to guarantee real-time behaviour the operational
semantics has a more realistic notion of time than any
other ccp-based formalism and includes a transition system
with support for expressing amount of resources and time
allowance. The notion of resource and its use as a limit
for processes have been previously included in various for-
malisms. Damas P. Gruska in [5], [20] presented an extension
of CCS called CCSLP, Calculus of Communicating Systems
with Limited Parallelism. Patrice Brémond-Grégoire in [21],
[8] proposed ACSR, Algebra of Communicating Shared Re-
sources. Mikael Buchholtz in [7] presented a process algebra
for shared processors.

In computer science talking about real-time always comes
with the running time of processes and it depends on the
place where they are being executed. Having this in mind,
the development of this formal model to support real-time
systems such as those of improvisation, lead us to build
a theory combining a notion of time as a set of intervals
(time units) and a set of points in those intervals (ticks),
with a notion of resources as a natural number bounding the
concurrency of processes.

We showed the applicability of rtcc by modeling an impro-
visation system. Then we illustrated the use of the operational
semantics by describing a possible sequence of transitions
of the system modeled. Previously in [22] we showed the
musical expressiveness of the rtcc calculus by modeling
musical dissonances.

References

[1] G. Sarria and C. Rueda, “Real-time concurrent constraint program-
ming,” in 34th Latinamerican Conference on Informatics (CLEI2008),
Santa Fe, Argentina, September 2008.

[2] G. Sarria, “Improving the real-time concurrent constraint calculus with
a delay declaration,” in Lecture Notes in Engineering and Computer
Science: Proceedings of the World Congress on Engineering and
Computer Science 2010, WCECS 2010, San Francisco, California,
USA, 20-22 October 2010, pp. 9–14.

Engineering Letters, 19:1, EL_19_1_07

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



[3] V. A. Saraswat, Concurrent Constraint Programming, ser. ACM Doc-
toral Dissertation Award. Cambridge, MA, USA: The MIT Press,
1993.

[4] C. Palamidessi and F. Valencia, “A temporal concurrent constraint
programming calculus,” in Seventh International Conference on Prin-
ciples and Practice of Constraint Programming, ser. Lecture Notes
in Computer Science, vol. 2239. London, UK: Springer-Verlang,
December 2001, pp. 302–316.

[5] D. P. Gruska, “Process algebra for limited parallelism,” in Concurrency
Specification and Programming (CS&P’96), Humboldt University,
Berlin, 1996, pp. 61–74.

[6] F. S. de Boer, M. Gabbrielli, and M. C. Meo, “A timed concurrent
constraint language,” Information and Computation, vol. 161, no. 1,
pp. 45–83, 2000.

[7] M. Buchholtz, J. Andersen, and H. H. Løvengreen, “Towards a
process algebra for shared processors,” Electronic Notes in Theoretical
Computer Science, vol. 52, no. 3, 2002.

[8] P. Brémond-Grégoire and I. Lee, “A process algebra of communicating
shared resources with dense time and priorities,” Theoretical Computer
Science, vol. 189, no. 1–2, pp. 179–219, December 1997.

[9] P. V. Hentenryck, V. Saraswat, and Y. Deville, “Design, implementa-
tion, and evaluation of the constraint language cc(fd),” in Constraint
Programming: Basics and Trends, Châtillon Spring School, Châtillon-
sur-Seine, France, May 16 - 20, 1994, Selected Papers, ser. Lecture
Notes in Computer Science, A. Podelski, Ed., vol. 910. Springer-
Verlag, 1995, pp. 293–316.

[10] R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes
in Computer Science. Springer-Verlag, 1980.

[11] C. A. R. Hoare, Communicating Sequential Processes, ser. Prentice-
Hall International Series in Computer Science. Prentice Hall, April
1985.

[12] F. S. de Boer, A. D. Pierro, and C. Palamidessi, “Nondeterminism
and infinite computations in constraint programming,” in Selected
Papers of the Workshop on Topology and Completion in Semantics,
ser. Theoretical Computer Science, vol. 151, no. 1. Chartres, France:
Elsevier Science Publishers B. V., 1995, pp. 37–78.

[13] J. Baeten and J. A. Bergstra, “Real time process algebra,” Formal
Aspects of Computing, vol. 3, no. 2, pp. 142–188, 1991.

[14] C. J. Fidge, “A constraint-oriented real-time process calculus,” in IFIP
TC6/WG6.1 Fifth International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols
(FORTE’92), M. Diaz and R.Groz, Eds., Lannion, France, October
1992, pp. 355–370.

[15] J. Davies, “Specification and proof in real-time csp,” Ph.D. dissertation,
University of Oxford, 1993.

[16] C. Priami, “Stochastic π-calculus,” The Computer Journal, vol. 38,
no. 7, pp. 578–589, 1995.

[17] J. Y. Lee and J. Zic, “On modeling real-time mobile processes,” in
Twenty-fifth Australasian Conference on Computer Science (ACSC’02),
ser. Conferences in Research and Practice in Information Technology,
vol. 17. Melbourne, Victoria, Australia: Australian Computer Society,
Inc., 2002, pp. 139–147.

[18] L. Brim, M. Křetinský, D. Gilbert, and J.-M. Jacquet, “Temporal
synchronous concurrent constraint programming,” in 1st International
Workshop on Constraint Programming for Time Critical Systems
(COTIC’97), Piza, Italy, October 1997, pp. 35–50.

[19] F. S. de Boer, M. Gabbrielli, and M. C. Meo, “A temporal logic for
reasoning about timed concurrent constraint programs,” in TIME, 2001,
pp. 227–233.

[20] D. P. Gruska, “Bounded concurrency,” in 11th International Symposium
on Fundamentals of Computation Theory (FCT’97), ser. Lecture Notes
In Computer Science, vol. 1279. London, UK: Springer-Verlag, 1997,
pp. 198–209.

[21] P. Brémond-Grégoire, H. Ben-Abdallah, and I. Lee, “Ordering pro-
cesses in a real-time process algebra,” in 3rd International Workshop
on Real-Time Systems (AMAST’96), Red Lion Hotel, Salt Lake City,
Utah, USA, March 1996.

[22] S. Perchy and G. Sarria, “Dissonances: Brief description and its
computational representation in the rtcc calculus,” in 6th Sound and
Music Computing Conference (SMC2009), Porto, Portugal, July 2009.

Engineering Letters, 19:1, EL_19_1_07

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 




