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Abstract—The SPHW (semi-programmable hardware:
IWANE Architecture) is a design-level hardware architecture
residing on the path of which the C program with memory
access is converted to hardware. By using the SPHW, the
memory access controller and buffer can be implemented by
writing the software program and parameters respectively
in contrast to the conventional hardware design method.
Compared with the cases that use only HDL (Hardware
Description Language), the SPHW which can design the
efficient memory controllers at C-level abstraction reduces
the development time significantly. In addition, the SPHW
shows the comparable performance compared with the HDL
hardware including the custom memory access controller even
if it is written at high-abstraction in the SPHW. In general, the
HLS (high-level synthesis) tool converting the C program to
the hardware is often used to reduce the burden designing the
data processing hardware. However, the SPHW has not been
introduced into any HLS technology yet. This paper develops
the true C level-design environment including the SPHW as
the data processing hardware on a real commercial HLS tool,
Handel-C. By using the SPHW providing the register-based
data interface to the data processing hardware, we demonstrate
that the HLS tool can easily write the hardware accessing
to the memory in C language. This is because the interface
provided by the SPHW to the data processing hardware hides
the detail of the memory devices and the memory access
patterns by the simple stream data. Since most HLS tools
assume the data interface as the stream data, the SPHW can
be easily combined with the Handel-C. In order to extract
the performance of the hardware maximally, hiding memory
access latency is very important. On the SPHW, the simple
software-pipelining can be applyed to the memory access
program and the parameters of the buffer to hide the memory
access latency by overlapping the data processing with the
memory access. Consequently, the designer can realize the
data processing hardware with an efficient data-prefetching
mechanism at the complete C-level design entry.

Index Terms—high-level synthesis, C program, hardware
design, memory latency hiding, system-on-chip, hardware ar-
chitecture

I. I NTRODUCTION

FOR the design of the system-on-chips, the high-level
synthesis (HLS) technologies generating the hardware

from C program have been researched and developed [1]–
[7]. The HLS tool can reduce the design burden signif-
icantly due to the high design abstraction. Generally, the
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HLS technologies are good at generating a data processing
hardware assuming simple and typical data access patterns
like the stream data. This is because an algorithmic way to
automatically convert the C program to the hardware can
handle only trivial and statically expectable patterns. For ex-
ample, some compilers of the HLS support only the dedicated
memory access pattern [4], [6], [7]. However, across the
users, the application programs and the buffering methods,
the memory access patterns are commonly different. Thus,
the memory accesses are hard to be treated systematically
by an algorithmic way.

In order to extract the performance of the hardware maxi-
mally, hiding memory access latency is very important. How-
ever, the conventional HLS tools [1]–[7] cannot implicitly
hide memory access latency by data prefetching [8]. To hide
memory latency, the hardware has to be written skillfully
in the C description with the deep knowledge of the used
HLS tool and target device. As a result, the HLS tool might
generate the hardware including an efficient memory access
controller. Even if the HLS tool is used, such burden may be
comparable to designing a custom memory access controller
from scratch in a hardware description language (HDL).

To tackle the problems mentioned above, we have pro-
posed a design-level hardware architecture, SPHW (semi-
programmable hardware: IWANE Architecture) which is
inserted onto the path converting the C program with memory
access to the hardware [9]. The SPHW implements the
memory access controller and the buffer by writing the
software program and parameters respectively in contrast to
the conventional hardware design method. Compared with
the design cases that use the HDL (Hardware Description
Language), the SPHW which can design the efficient mem-
ory access controllers at C-level abstraction reduces the
development time significantly [9]. In addition, the SPHW
shows the comparable performance compared with the HDL
hardware including the custom memory access controller
even if it is written at high-level abstraction [9].

However, the SPHW has not been introduced into any
HLS technology yet. This paper attempts to realize the
complete C level-design environment including the SPHW
on a real commercial HLS tool, Handel-C [10]. By using the
SPHW providing the register-based data accessing interface,
we demonstrate that the HLS tool can easily write the
hardware accessing to the memory in C. This is because
this interface hides the detail of the memory devices and the
memory access patterns, by providing the data processing
hardware with the simple stream data. By introducing the
SPHW into the HLS tool, the simple software-pipelining with
double buffering to hide memory access latency is easily
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Fig. 1. Block Diagram of SPHW

implemented for the data processing hardware at high-level
abstraction.

The rest of the paper is organized as follows. Section
2 describes the overview of the SPHW. Section 3 shows
the design flow using the SPHW. Section 4 demonstrates
the SPHW mapping by using the examples of the color
conversion from RGB to YCrCb. Section 5 performs some
preliminary experiments and shows the experimental results.
Finally, Section 6 concludes the paper.

II. SPHW ARCHITECTURE

A. Organization

Fig. 1 shows the organization of the SPHW. The load/store
unit (LSU) transfers the data between memory and recon-
figurable register file (RRF). The programs to be executed
by the LSU are stored in the LSU memory (LSUMEM).
The execution unit (EXU) is data processing hardware. The
synchronization mechanism (SM) performs the producer–
consumer synchronization between the LSU and the EXU.
The producer performs the release synchronization to invoke
the consumer waiting for the data on the RRF by the wait
synchronization.

The reconfigurable register file (RRF) consists of the
input/output data buffer registers (DBRI and DBRO). They
have one or more banks which contain one or more entries.
The number of the banks and entries are configurable by the
parameters. Thus, the suitable buffer for the data processing
hardware on the EXU can be implemented by parameters.
The mailbox (MB) is control/status registers for the SPHW.
The external modules can check the statuses of the SPHW via
mailboxes. The parameters required for the SPHW execution
can be set via the mailboxes. The general purpose register
(GPR) is used by the LSU and the EXU.

The EXU has the finite state machine (FSM), the working
registers (WR) and the data path. The FSM has the states
(⟨EXEi⟩) to control the data path. In addition, the states
(⟨SYNCi⟩) to synchronize the LSU are inserted.

B. Memory Access

The LSU has the load/store instructions per the word and
the line containing continuous words as shown in Fig. 2.
Each of instructions can specify the number of transfers

Load line

LLS(B/Be/BE/E/Eb/EB, mem addr, str width, num of trans, sync)LLS(B/Be/BE/E/Eb/EB, mem addr, str width, num of trans, sync)

Load word

LWS(B/BE/E/EB, mem addr, str width, num of trans, sync)

Store line

SLS(B/Be/BE/E/Eb/EB, mem addr, str width, num of trans, sync)

Store word

SWS(B/BE/E/EB dd t idth f t )SWS(B/BE/E/EB, mem addr, str width, num of trans, sync)

B : Increment the bank pointer per each word transfer.

Be: Increment the bank pointer per each word transfer.

Increment the entry pointer per each line transfer.

BE: Increment the bank pointer per each word transfer.

Increment the entry pointer when all of transfers finish.

E : Increment the entry pointer per each word transfer.

Eb: Increment the entry pointer per each word transfer.

Increment the entry pointer per each line transfer.Increment the entry pointer per each line transfer.

EB: Increment the bank pointer per each word transfer.

Increment the entry pointer when all of transfers finish.

Fig. 2. Load/store Instructions of LSU

LLS(BE, img, 4*sizeof(pixel), 2, RLS);
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Fig. 3. Example of Load Instruction

and the stride width per each word/line transfer. That is,
the LSU can perform the gather/scatter operations by one
instruction. Since the load/store instructions have the syn-
chronization field, the synchronization can be also performed
simultaneously with the memory access. The pointers to the
bank and entry can be incremented automatically according
to the notation in the instruction as shown in Fig. 2. The LSU
converts the distributed data in the memory to the streamed
data in the RRF, executing such sophisticated load/store
instructions.

Fig. 3 (a) shows the examples implementing a double
buffer for the streaming data. We assume that the line
contains 4 words, the number of banks of the DBRI is 8 and
each bank contains 2 entries. Fig. 3 (b) shows an example
loading the 4 × 4 window. In this example, the DBRI has 4
banks containing 4 entries. As shown in these examples, the
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LSU can easily realize the sophisticated memory accesses.

III. SPHW DESIGN FLOW

Fig. 4 shows the framework of the design flow which
employs the SPHW. In this paper, we employ the Handel-C
[1] as the HLS tool for the EXU.

For the SPHW, the memory accesses are implemented by
the software programming to the load/store unit (LSU). The
reconfigurable register file (RRF) is configured by the param-
eters to implement the optimum buffer. The data processing
unit (EXU) streamly processes the sequential data on the
RRF. The memory data which shows the sophisticated access
patterns are put into the RRF as the stream data by the LSU.

The Handel-C is based on the concept of the com-
municating sequential processes (CSP) model [11] whose
input/output are the streaming interface. Thus, the Handel-C
hardware is a good candidate as the EXU to be connected
to the RRF

Since the LSU and the EXU are executing individually
across the RRF, the memory access by the LSU can overlap
onto the data process by the EXU. By using the SPHW, the
designer can design the hardware with the data prefetching
mechanism [8] easily in the high-level description using the
program and parameters.

IV. MAPPING EXAMPLE

A. Interface Description of EXU

Fig. 5 shows the interface description of the EXU in
Handel-C. All modules share the clock signal (clk i) and
the reset signal (rst i).

As for the DBRI and the DBRO, the number of banks
(BN) and the bank width (BW) are configured by the same
parameters as the RRF. The width of the entry pointer (EPW)
is calculated with the number of the entries.

When the EXU is the producer to the LSU, it asserts
the rls o to execute the release synchronization. When the
EXU is the consumer to the LSU, it asserts the wait o to
execute the wait synchronization and waits while the stall i
is asserted.

After the LSU loads the data needed into the DBRI,
the released EXU reads the entry of the DBRI to which
the nD points. These entry data in all banks can be read
simultaneously via the D.D i[BW×BN-1:0].

The EXU writes the processed data into the entries in the
DBRO to which the nQ points. These entries can be written
simultaneously across all banks via the q[BW×BN-1:0].

B. Color Conversion from RGB to YCrCb

Fig. 6 and Fig. 7 show an example of mapping the
color conversion from RGB to YCrCb into the SPHW.
The former indicates the hardware behavior in Handel-C.
The latter shows the LSU program in C-like language. We
have developed the tool converting the LSU program to the
machine code by perl.

Now, we assume that the pixel of the image data is 32bit
containing each of 8bit-R, G and B data. In this version, the
SPHW supports the following features.
(1) The number of words in the line is 4. The word width

is 32bit.
(2) The width of each bank of the DBRI/O is 32bit.
(3) The LSU supports the burst transfer containing 4 words.
(4) The LSU is the pipelined scalar processor with 3 stages.

Fig. 6 shows an overview of mapping to the SPHW. The
RGB data in the memory is loaded by the LSU into the
DBRI. The EXU waits until the RGB data needed is stored
into the DBRI. When the LSU loads the RGB data and
releases the EXU, the EXU starts to process the RGB data
in the DBRI and stores YCrCb data into the DBRO. Then
the EXU releases the LSU waiting the YCrCb data. After
this, the LSU stores the YCrCb data into the memory.

Fig. 7 shows the LSU programming. In this case, the
mailbox #0 (MB0) is used as the start flag invoking the
SPHW. The read address of the RGB data and write address
of the YCrCb data are set to the MB1 and MB2. The stride
width per line transfer that is 16byte is set to the MB3. The
number of the transferred lines to fill all banks is set to MB4,
which divides the number of banks by 4. The number of total
lines over the image data is set to the MB5, which divides
the number of total pixels by the number of banks. The MB6
is the flag indicating that the SPHW finishes.

Fig. 7 (a) is the straight-forward programming. The LSU
waits by spin-lock on the MB0 until it is set to 1. Then, the
LSU resets the MB0 as the start flag and resets the MB1
as the end flag. The LSU loads the lines into all banks and
performs the release synchronization (RLS). Then, the LSU
performs the wait synchronization (WAIT) and stores the
processed lines in the DBRO into the memory. This program
is very simple and intuitive but suffers from the memory
access latency.

Fig. 7 (b) is the LSU program of which the software
pipelining [8] is applied to hide the memory access latency.
In the software pipelining, the load instruction (LLS) and
the store instruction (SLS) in the main loop are copied to
the front of the main loop and the back of it respectively. In
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// clock and reset =======================================================================EXULSU // clock and reset =======================================================================

interface port_in( uint 1 clk_i ) clk( );

interface port_in( uint 1 rst_i ) rst( );

set clock = internal clk.clk_i;

set reset = internal rst.rst_i;

// SM Interface ==========================================================================

static uint 1 waiting;

static uint 1 release;

rst_i

clk_i

rls_o

wait_o

stall i

SM

EXULSU

static uint 1 release;

interface port_in (uint 1 stall_i )STALL( ) with {vhdl_type = "std_logic"} ;

interface port_out ( )WAIT(signal<uint 1>wait_o=waiting) with {vhdl_type = "std_logic"};

interface port_out ( )RLS (signal<uint 1>rls_o =release) with {vhdl_type = "std_logic"};

// RRF Interface =========================================================================

static signal <uint (BN * 32)> q;

static signal <uint 1> we;

static uint EPW nD;

stall_i

D_i

DBRI

nD_o
static uint EPW nD;

static uint EPW nQ;

interface port_in (uint (BN * BW) D_i)D( ) with {vhdl_type = "std_logic_vector"};

interface port_out ( )ND(signal<uint EPW >nD_o=nD) with {vhdl_type="std_logic_vector"};

interface port_out ( )Q (signal<uint (BN*BW)>Q_o =q ) with {vhdl_type="std_logic_vector"};

interface port_out ( )NQ(signal<uint EPW >nQ_o=nQ) with {vhdl_type="std_logic_vector"};

interface port_out ( )WE(signal<uint 1 >we_o=we) with {vhdl_type="std_logic"};

//========================================================================================

Q_o

nQ_o

DBRO

we_o

//========================================================================================

(a) Image of EXU Interface (b) Description of EXU Interface in Handel C

Fig. 5. Interface Description of EXU in Handel-C.
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cr[1]=0 41869*216*G[i];

}

par{

cb[0]=0.16874*216*R[i];

cb[1]=0 33126*216*G[i];

for(i=0;i<BN 1;i++){

waiting = 0;

R[0] G[0] B[0] R[BN 1] G[BN 1] B[BN 1]

8 8 8

y [1]=0.587*216*G[i];

y [2]=0.114*216*B[i];

cr[1]=0.41869*216*G[i];

cr[2]=0.08131*216*B[i];

Y [i] = y [0] + y [1] + y [2] + 0.5*216;

CB[i] b[0] b[1] b[2] 0 5*216
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}
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24 24 24 24 24 24 24 24 24

CB[i] = cb[0] cb[1] + cb[2] + 0.5*216;

CR[i] = cr[0] cr[1] cr[2] + 0.5*216;

Y[0] CB[0] CR[0]par{

SP ? nQ=BLK++:nQ=0;

release 1;

} 24
}
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Y[BN 1] CB[BN 1] CR[BN 1]

2424
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}

Q
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Fig. 6. Mapping Image from RGB2YCrCb to EXU.

the main loop, the data used at the next iteration is loaded at the current iteration. Thus, the memory accesses of the

Engineering Letters, 19:1, EL_19_1_09

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



MB0 : Start flag

MB1 : Read address

MB2 : Write address

MB3 : Stride width (16)

MB4 : Number of burst trans.

= (num. of banks) / 4

MB5 : Number of total trans.

= (num. of pixels) / banks

MB6 : End flagMB6 : End flag

do{

while( MB0 == R0 );

MB0=0; MB6=0;

do{

LLS(B, MB1, MB3, MB4, RLS );

SLS(B MB2 MB3 MB4 WAIT);SLS(B, MB2, MB3, MB4, WAIT);

R2 = R2 + R1;

}while( MB5 > R2 )

MB6 = 1;

}while(1);

(a) Straight forward LSU program

do{

while(MB0 == R0);

MB0=0; MB6=0;

LLS(BE, MB1, MB3, MB4,RLS);

R2++;

(a) Straight forward LSU program

R2++;

do{

LLS(BE, MB1, MB3, MB4, RLS );

SLS(BE, MB2, MB3, MB4, WAIT);

R2++;

}while( MB5 > R2 );

copy

copy

SLS(BE, MB2, MB3, MB4, WAIT);

MB6 = 1;

}while(1);

(b) Software pipelined LSU program

Fig. 7. LSU Programming of RGB2YCrCb.
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LSU are overlapped with the data processing of the EXU.
For the EXU, as shown in Fig. 7 (a), the number of entries
of the DBRI/O becomes two by denoting the SP as 1. In
each iteration in the main loop, the entry pointer (BLK) is
toggled. As mentioned above, the double buffering can be
implemented easily.

V. EXPERIMENT AND DISCUSSION

A. Design Burden

To evaluate a burden of hardware design for the color
conversion mentioned above, we compare the SPHW version
with the cases of which the data processing hardware and
memory access controller are described in Handel-C (HC).
In this evaluation, we measured the number of code lines 1.

1As for the comparison with the cases of which the whole hardware is
described in HDL, we have already shown the validity of the SPHW in [9].
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Fig. 8 shows the result of this comparison. The vertical
axis means the number of code lines. The horizontal axis
indicates the cases of hardware design. In the horizontal
axis, the *nsp means the case not employing the software-
pipelining, while the *sp means the case employing it. All
cases used the same data processing hardware (EXU).

The result shows that the SPHW can significantly reduce
the number of code lines compared with the full Handel-C
description. The code lines of 45% are reduced in the total
number of the straight-forward cases (SPHWnsp vs. HCnsp),
while those of 55% are reduced in the software-pipelined
cases (SPHWsp vs. HCsp).

As for the memory access controller, the SPHW reduces
the code lines of about 93% compared with the full Handel-
C cases. This is because the SPHW can easily describe the
memory access controller and the data-prefetching by the
LSU programming as shown in Fig. 7.

This fact indicates that by introducing the SPHW to
the HLS tool the data processing hardware containing the
sophisticated memory access controller can be implemented
with lower burden than the conventional C-level hardware
design.

B. Implementation Result (SPHW vs. HC)

Varying the number of banks, we implemented the hard-
ware mentioned above into the Virtex5 FPGA of which the
speed grade is 10. We used the ISE12.2 in implementation.
Fig. 9 shows the result of the straight-forward hardware while
Fig. 10 indicates the result of the software-pipelined hard-
ware. The vertical axis means the number of slices consumed
by the EXU, the LSU, the RRF, and the memory access
controller described in Handel-C (MEMC). The horizontal
axis indicates the same meaning as Fig. 8.

Both cases show the same tendency. Where the number
of banks is from 4 to 32, the SPHW shows larger amount
of hardware than that of the full Handel-C hardware. This is
because the SPHW has the LSU which is an embedded pro-
cessor performing the memory access. This overhead makes
SPHW larger than the full Handel-C hardware. However,
when the number of banks is 64, the size of the SPHW is
lower than the full Handel-C hardware. This is because the
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Fig. 11. Clock Frequency of SPHW and HC.

Handel-C hardware becomes more complex and larger in
order to handle the larger number of banks by the large one-
hot decoders and the multiplexers generated by the Handel-C
compiler. In contrast, the SPHW can handle a lot of banks
efficiently by the sophisticated load/store instructions of the
LSU.

Fig. 11 shows the clock frequency reported by the ISE12.2.
According to the report generated by the ISE12.2, the critical
path resides on the data processing hardware (EXU). The
result shows that the SPHW can be combined with the data
processing hardware generated by the HLS tool, without the
bad influence to the hardware speed.

C. Implementation Result (SPHWnsp vs. SPHWsp)

In order to evaluate an influence to the amount of the
hardware due to introducing the mechanism hiding memory
access latency by software-pipelining, we compare in detail
the logic resources consumed by the SPHWsp and the
SPHWnsp. Fig. 12 shows the number of look-up tables
(LUTs), the number of flip-flops (FFs) and the number of
slices. In the FPGA used, the slice contains 4 FFs and 4
LUTs.

In Fig. 12 (a), the reconfigurable register file (RRF)
significantly increases the number of LUTs as the number
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Fig. 12. Implementation Result (SPHWnsp vs. SPHWsp).

of banks becomes larger in the software-pipelined SPHW
(SPHWsp). In contrast, the RRF of the straight-forward
SPHW (SPHWnsp) significantly increase the number of FFs
as shown in Fig. 12 (b). This is because the used logic
synthesis tool (XST) assigns the banks of RRF with one entry
in SPHWnsp to the registers, while it assigns the banks of
RRF with two or more entries in the SPHWsp to the LUTs.
Finally, the SPHWnsp and SPHWsp show the comparable
number of slices as shown in Fig .12. This fact shows that the
software pipelining does not significantly affect the circuit
size despite fact the number of the bank entries is doubled
compared to the straight-forward hardware.

Each LUT of the FPGA used to the bank of the DBRI
and DBRO can contain 64 entries. Thus, until the number of
entries exceeds 64, the circuit size of the SPHWsp does not
expand extremely.
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D. Performance Result

Fig. 13 shows the performance result when the line transfer
from the memory to the LSU consumes 6 clocks. The image
size is 256 × 256. The breakdowns that the EXU shows
are also included in this figure. The stall means the clock
cycles consumed by the EXU waiting for the memory access.
The process indicates the clock cycles of which the EXU
consumes to process the data.

Compared with the full Handel-C hardware (HC*), the
SPHW shows slight performance degradation ranging from
0.4% to 6.4%. This is because the LSU consumes 3 clocks to
fill the pipeline in branching since it is a pipeline processor
with 3 stages. In full Handel-C hardware, the memory access
behavior is well tuned so as to take only 1 clock for branch-
ing. This difference appeared as the performance difference.
However, we think such little performance differences can be
compensated enough by the SPHW lowering design burden.

By hiding memory access latency, the SPHWsp can im-
prove the performance of 1.51 to 1.65 times compared with
the SPHWnsp. We were able to perform such tradeoff among
the number of banks, the circuit size, the clock frequency,
and the performance easily and quickly by only changing
parameters and the LSU program.

VI. CONCLUSION

The semi-programmable hardware is a design-level hard-
ware architecture residing on the pass of which C program
with memory accesses is converted to hardware. The SPHW
realizes the memory access controller and the buffer by
writing the software program and parameters respectively.

In this paper, we have introduced the SPHW as the
data processing hardware into a real commercial HLS tool,
Handel-C. By using the SPHW providing the register-based
data access interface, we have demonstrated that the HLS
tool can easily write the hardware accessing to the memory in
C. This is because this interface hides the detail of the mem-
ory devices and the memory access patterns, by providing the
data processing hardware with the simple stream data. For
hiding memory access latency, the simple software-pipelining
is able to be applyed to the memory access program and the
parameters of the buffer. Consequently, we can realize the
data processing hardware with data-prefetching mechanism
at the complete C-level design entry, with lower burden.

As future work, we will introduce the SPHW into more
HLS tools and evaluate using more application programs.
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