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Abstract—Due to emerging trend of design reuse in VLSI
circuits, the intellectual property (IP) of design faces serious
challenges like forgery, theft, misappropriation etc. These in-
creasing risks of design IP stored in design repositories, or
the threat of hacking the same during its Internet-based trans-
mission, mandates design file encryption and its appropriate
watermarking. In this paper, we propose a novel Internet-
based scheme to tackle this problem. Input to the proposed
scheme is a generic graph corresponding to a digital system
design. Watermarking of the graph and its encryption are
achieved using a new linear feedback shift register(LFSR)-based
locking scheme. The proposed scheme makes unauthorized
disclosure of valuable designs almost infeasible, and can easily
detect any alteration of the design file during transmission.
It ensures authentication of the original designer as well as
non-repudiation between the seller and the buyer. Empirical
evidences on several well-known benchmark problem sets are
encouraging.

Index Terms—Intellectual property protection (IPP), Water-
marking, Encryption, Decryption.

I. INTRODUCTION

THE need of design reuse has been incessantly encour-
aged by the increasing complexity of VLSI circuits, the

pressures to reduce time to market, better design productivity,
etc. It offers more integration on a single chip within a shorter
design cycle. Circuit components, available in electronic
form, signify intellectual property (IP) of VLSI design [1].
Unfortunately, unlimited and careless design reuse may lead
to infringement of IP [1], [2], and enhance the possibility of
certain typical attacks such as:
• Interception and recovery of original design.
• Malicious attempt to randomly modify the design.
• Denial of validity [3] of a legal purchaser by the seller.
• Claiming false IP ownership.
• Illegal reselling by a purchaser without paying proper

royalty to the designer.
• Attempt to recover original design by a buyer from its

modified version prepared for another buyer.
Since the design of a circuit is extremely expensive,

it is essential that it should not be vulnerable to any of
these attacks. Several works on the use of encryption and
watermark embedding of circuits [4], [5], [6], [7], [2], [8],
[9] have been reported so far, as discussed in Section II.
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Major contributions of our work include: (i) it is Internet-
based, (ii) it is quite robust due to the use of a strong
encryption algorithm, and an easily verifiable, but hard to
tamper the watermark of the design, (iii) it is generic as the
input is considered to be a representative graph of a digital
system, and (iv) it makes use of Linear-Feedback Shift
Registers (LFSR) for achieving the objectives of protecting
the design. In general, the proposed approach can be used
for any type of graph.

A. Motivation of the work

IP protection scheme is typically judged by several pa-
rameters, such as its strength against any attempt to infringe
IP, imperceptibility, maximal capacity, the ease of watermark
detection, and so on [10]. None of the existing IP protection
techniques can ensure complete IP security in terms of all
these parameters. The tradeoffs between the solution quality
and the strength of the watermark, and the lack of correlation
between size of watermark and reduction in solution space
motivate us to adopt a new viewpoint for IP protection.
Selling of design tool instead of design itself, is more
risky as indirect IP protection techniques can not prevent
IP infringement in such a case. Any misuse of the design
tool, without being noticed and detected, causes huge loss
of royalty to the IP owner. This warrants watermarking of
design. As discussed in [4], a design IP may be supplied by
a vendor to a buyer in either of the following two ways:
• Selling design tool to customer.
• Running the design tool at vendor’s end with design

parameters from the customers and supplying the cus-
tomer only with required design.

In the former case, if the customer uses the tool to generate
new design for a third party, genuine creator suffers from
royalty loss. This can be controlled through watermarking.
In the latter case, unless the channel of transmission is highly
secured, the high quality design may be hacked, and hence
the design needs to be encrypted. The Internet has yielded
too many new opportunities for the creation and delivery
of content in digital forms. Transmission of the encrypted
(irregular) partial design rather than encrypted high quality
complete design is more secure as far security is concerned.
We propose an Internet-based IP protection scheme, where
the design tool is split into two modules: the first module
is executed at the creator’s end, generating a watermark and
encrypted intermediate design, which is transmitted electron-
ically, whereas the second module of the tool is executed at
the buyer’s end generating the final design, only after the
legitimate buyer decrypts the intermediate design using the
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private key. A cryptosystem [3] using private or public keys
almost eliminates the use of ultra-secure key transmission.
A different Internet-based scheme for VLSI floorplans has
already been proposed in [4]. This paper also proposes an
effective watermarking scheme to protect the IP rights of
the authentic designer. A system such as a digital computer,
or VLSI circuit, may be defined as a collection of objects,
connected to form a coherent entity with a well-defined
function. A natural and effective way of modeling such a
system is the use of a graph [11]. In the proposed scheme,
the core concept involves watermarking and encryption of
the design graph with the help of LFSR [12]. The seller
uses two LFSRs: one for generating the watermark which
is known to the seller only, and the other for encryption-
cum-decryption which is known to both the seller and the
buyer. During watermark generation, a mask bit string is
also generated. This mask bit string is provided to the buyer
only on demand for watermark verification. Encryption of
the graph is performed by changing the interconnection
pattern in the graph randomly. When a design IP is being
sold to a buyer, the sold instance of the IP always consists
of two components: the “encrypted design graph”, and the
associated “watermark”. If the encrypted graph is tampered
during its transmission, the hash value can be used to detect
it at the receiver’s end.

The rest of the paper1 is organized as follows: Section II
discusses related works in the literature. Section III recalls
some preliminary concepts. Section IV discusses the pro-
posed schemes for watermark generation and verification,
and Section V illustrates the methods of encryption and
decryption of the design graph. Section VI discusses the
empirical observations, and Section VII concludes the paper.

II. LITERATURE SURVEY

The core idea of constraint-based IP Protection is to
shrink the original solution space by embedding signatures
as additional constraints. A watermarked solution meets both
the original and the additional constraints, and this fact is
used to show the authorship. Smaller solution space makes
the watermark stronger. Kahng el al. [2] first proposed
constraint-based watermarking technique that consists of the
following parts: (i) An optimization problem, which is an
NP-hard problem that needs constraints and heuristics to be
solved; (ii) An off-the-shelf optimization software/algorithm
to solve such a problem; (iii) A set of constraints that should
be applied to the design; and (iv) A well-formed grammar
to add extra constraints to the previous ones for building
the required watermarked design. The last part is the main
watermarking tool where the watermark is converted into a
set of extra constraints and is applied to the design. Due
to the generic nature of this approach, it can be applied at
different levels of the design flow.

The public constraint-based watermarking technique in [7]
embeds public as well as private watermark where the former
is visible to public, while the latter is visible to authorized
people only. Both the public and private watermarks are
in the form of additional design constraints. Author uses
cryptographic techniques for data integrity to deter any
attempt of removing or modifying the public watermark.

1The paper is a revised and extended version of [13]

Saha et al. [4] proposed a watermarking scheme with a
completely different viewpoint to protect the physical design
at its early stage. They explain the proposed scheme through
the floorplanning phase. The input to floorplanning is a graph
representing connectivity of the logic modules. The starting
step of this scheme is to transform the graph into a Planar
Triangulated Graph (PTG) from which two graphs, viz.,
Horizontal Path Directed Graph (HPDG) and Vertical Path
Directed Graph (VPDG) are formed. The scheme consists of
two steps: encryption of the design and watermark embed-
ding. The encryption is done by inserting some new dummy
nodes along different directed paths in HPDG and VPDG
under the control of a secret key K. In watermark embedding
phase, a unique integer computed from date-stamp and K
is used to identify some modules in the design. Additional
Flip-Flops are inserted into each of those selected modules
as watermark.

In [5], authors suggest an encoding scheme for tree-based
floorplan representation to ensure security during design
storage or transmission. The encoding involves replacement
of subtree with another subtree of same size using ranking-
unranking technique, swapping of subtrees, tree rotation etc.
under the control of a symmetric key K. The encoding has
O(n) timing requirement and zero space overhead for a
floorplan with n modules.

In [14], authors introduced a generic IPP technique, called
localized watermarking where the constraints of each water-
mark are placed in a smaller part (locality) of the design
and can be detected in its locality independently. Therefore,
such watermarks are able to protect parts of the design as the
detection algorithm does not need to see the entire design.

Charbon and Torunoglo [15], [16] introduced a hierar-
chical watermarking technique which independently process
multiple abstraction levels present in a design flow. This
approach increases the robustness, since the deletion of a
watermark at a certain abstraction level, leaves watermarks
at most other abstraction levels intact. Also forgery can
be traced to the source, since watermarks at the lowest
abstraction levels are associated with the last “legal” IP
buyers who ultimately caused the breach.

The watermarking and fingerprinting techniques for
FPGA, proposed by Lach et al [17], is performed by inserting
the signature in the unused look-up tables (LUTs) in the
configurable logic blocks (CLBs) that do not increase the
area of the system. However it suffers from the removal
attack by reverse engineering a design to a stage before
the signature has been applied. In [8], authors presented
an IP protection technique for reusable modules used in
field programmable logic (FPL) implementations that has the
following stages: signature preparation using cryptographic
hash function, signature spreading through used or unused
positions of look-up tables (LUTs), signature extraction by
using an LFSR-based additional logic, and finally, signature
validation.

The watermarking of sequential circuits has been intro-
duced in [18], [19]. The essence of these techniques is to
use unused input/output sequence or adding new input/output
sequences (in case of completely specified FSM) at the finite
state machine (FSM) representation of the design.
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Fig. 1. An example of an LFSR with a feedback loop

III. PRELIMINARIES

A. Introducing Linear Feedback Shift Register (LFSR)

Definition 1: The linear feedback shift register (LFSR)
is a series of connected Flip-Flops, with XOR feedback.
They have no input except for clocks. The basic components
of linear feedback shift register are D flip-flops, modulo-2
adders and modulo-2 scalar multipliers [12].

The value with which an LFSR is initialized, is called seed
value. The stream of values produced from the output of an
LFSR is completely determined by its current (or previous)
state. An example of a 5-stage LFSR is shown in Figure 1.
However, an LFSR with a well-chosen feedback connection
can produce a sequence of bits which appears random and
which has a very long cycle.

Definition 2: An L-stage LFSR is a maximum length
LFSR if some initial state will result in a sequence of a
number of bits repeating at intervals of every 2L - 1 bits. The
sequence is called maximum length sequence or m-sequence
[12].

Two types of Linear Feedback Shift Registers, called
type1/external/Fibonacci and type2/internal/Galois are
shown in Figures 2 and 3 respectively. The Fibonacci
implementation consists of a simple shift register in which
a binary-weighted modulo-2 sum of the taps2 is fed back
to the input. The Galois implementation consists of a shift
register whose contents are modified at every step by a
binary-weighted value of the output stage. For any given
tap, the weight ci = 0 means there is no connection, while ci
= 1 means the weight is fed back. There are, however, two
exceptions: c0 = cm = 1, both are always connected. Note
that the order of the Galois weights is opposite to that of the
Fibonacci weights. An LFSR is characterized by two types
of polynomials: one is characteristic polynomial P (x) and
the other one is reciprocal characteristic polynomial P ∗(x).
The characteristic polynomial and reciprocal characteristic
polynomial corresponding to the external and internal LFSR
are:

P (x) = 1 + cm−1x+ cm−2x
2 + · · ·+ c1x

m−1 + xm

P ∗(x) = 1 + c1x+ c2x
2 + · · ·+ cm−1x

m−1 + xm

A given set of feedback connections can be expressed in a
convenient and easy-to-use shorthand form, called feedback
equation, with the connection numbers being listed within
a pair of brackets. In doing so, connection c0 is implied,
and not listed, since it is always connected. Although cm
is also always connected, it is listed in order to convey the
shift register size (number of flip-flops). A set of feedback

2The bit positions that affect the next state are called the taps.
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Fig. 3. Galois implementation of LFSR

taps for a Galois generator is denoted as [f1, f2, f3, ..., fj ]g ,
where subscript j is the total number of feedback taps (not
including c0), f1 = m is the highest-order feedback tap (and
the size of the LFSR), and fj are the remaining feedback
taps. The subscript g signifies the Galois LFSR form. The
set of feedback taps for the equivalent Fibonacci generator
is denoted as [f1,m − f2,m − f3, ...,m − fj ]f , where the
subscript f signifies the Fibonacci LFSR form.

Some properties of LFSRs are as follows:

Property 1 : The number of 0s and 1s in an m-sequence
obtained from an L-stage maximum-length LFSR are 2L−1

and 2L−1 − 1 respectively and thus, differs by only one
[12].

Property 2 : For an m-sequence obtained from an L-stage
maximum length LFSR, there is one run of L consecutive
1s and one run of L - 1 consecutive 0s. For L - 1 < r <
0, there are 2L−(r+2) runs of length r for 1s and the same
number of runs of 0s [12].

B. Merkle-Damgård’s Meta method for Hashing

Merkle-Damgård’s generic method [20] to build crypto-
graphic hash functions is depicted in Figure 4. In this method,
the message x is divided into L blocks x1, x2, x3, . . . , xL,
each of length r, say. If the length of the last block is less than
r, it appends 0s to make it of length r. In order to prove that
the construction is secure, Merkle and Damgård proposed
that messages be padded with a set of bits that encodes
the length of the original message. This is called length
padding or Merkle-Damgard strengthening. The algorithm
starts with an initialization vector (IV) of length r whose
value is algorithm or implementation specific. The function
F is a one-way compression function that transforms two
fixed length inputs to an output of same size. The input to the
function F is the current block xi and previous intermediate
value hi−1 to produce current value hi i.e. hi = F (xi, hi−1)
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for i = 2, . . . , L, where h1 = F (x1, IV). After applying F
to all L blocks we obtain the final hash value hL of length
r.

xL

 

x1   x2 x3 

F 

  IV                   h1              h2                  h3                    hL-1                hL 

F F F. . . 

. . . .

Fig. 4. Hashing using Merkle-Damgård’s Meta method

The notations we use in the rest of the paper are listed in
Table I.

TABLE I
TABLE OF NOTATIONS USED IN THE STUDY

Notation Description

G Input graph corresponding to a digital system design

L Length of LFSR i.e. number of flip-flops in LFSR

g(x) Polynomial generated from design graph G

gc Binary co-efficient of g(x)

q(x) Quotient obtained from LFSR after applying g(x) to the input
terminal of LFSR

qc Binary co-efficient of q(x)

r(x) Remainder obtained from LFSR after applying g(x) to the
input terminal of LFSR

rc Binary co-efficient of r(x)

S Combined signature of both the seller and the buyer

W Watermark used to authenticate the seller and the buyer

M Mask bit string which is used in verification phase

arbi ith arbitrary bit string of appropriately chosen length used to
generate W and M

kb Symmetric private key

λ Length of kb

α Fraction used to obtain a part of output sequence from the
LFSR

V Vertex set of G

N Number of nodes in G i.e. |V |
E Set of edges of G

G′ Encrypted graph

G′′ Decrypted graph

δ Percentage of change in the number of edges due to encryption,
called degradation factor

ρ(G) Percentage of edges actually present in the graph G, called
density of the graph

Our proposed scheme consists of two phases:

• Generating watermark for the given input graph G by
considering signatures of both the seller and the buyer.

• Encrypting the graph G, say, with the help of a linear
feedback shift register (LFSR) by randomly inserting
some new edges in and deleting some existing edges
from G.

An alternative scheme could be to generate the complete
design, encrypt the design file, embed watermark in it, and
transmit it through a secure channel. However, this scheme
may not be feasible due to the huge volume of the design

files, and associated risks. During watermarking phase of the
proposed scheme, a watermark of the design IP is generated
based on the combined signature of both the seller and the
buyer. The buyer can verify the signature of the seller to
make sure that the product is being purchased from the legal
source. The seller can also trace the buyer in case of illegal
reselling. Moreover, in order to check for any doubt of illegal
design usage, hidden combination of seller’s and buyer’s
signature of a design IP may be retained. The flowchart of
the overall scheme is depicted in Figure 5.

     Signature S
     Signature S

 
 
 
 
 
 
 
 
 
  

        Design graph G Secret Parameters 

Encrypted partial design G′ ,  
Watermark W, Mask M,  
Hash value h 

Secret Parameters      Design graph G

  Decryption + Watermark VerificationWatermarking+Encryption 

Fig. 5. Flowchart of the overall scheme

IV. PROPOSED WATERMARKING SCHEME

In this Section we describe the method to generate and
verify unique and robust watermark of a design graph by
considering signatures of both the buyer and the seller. The
watermark generation is performed by exploiting the feature
of linear feedback shift register-based polynomial division
technique, whereas the verification phase is performed sim-
ply by using the technique of masking.

A. Watermark generation

For each of the source-destination pairs associated with a
particular design graph G, the watermark W will be gener-
ated in such a way so that it can identify the pair uniquely.
To ensure uniqueness as well as robustness of the generated
watermark, an LFSR and the technique of shift register
polynomial division using it is used. Figure 6 shows how an
LFSR initialized by 0s can perform shift register polynomial
division. The flowchart of the watermark generation phase
is depicted in Figure 7. In this phase, the seller is free to
choose an LFSR of length, say L, and any one of its primitive
feedback connections. This LFSR information is treated as
secret parameters and is known only to the seller. Given a
design graph G, a polynomial g(x) is generated from G as
described in Section IV-C. This polynomial characterizes the
graph G. However, given a polynomial g(x), the construction
of a unique G is not possible. Thus, generation of g(x) from
G is a one-way function. The polynomial g(x) is applied at
input of the LFSR initialized by 0s. Let q(x) and r(x) be the
quotient and remainder obtained from the LFSR respectively.
Suppose gc, qc, and rc represent the binary coefficients of
polynomials g(x), q(x) and r(x) respectively. To generate
watermark, the seller embeds the signature S into polynomial
g(x), and obtains a binary coefficient gcs in the following
manner: concatenate the ASCII code of each character in S
to generate a binary string Sc and compute gcs = gc ⊗ Sc. S
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Fig. 6. An LFSR performing shift register polynomial division
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Fig. 7. Flowchart of watermark generation

may be signature of the seller or the buyer, or combination
of the two. Next, gcs, qc, and rc are concatenated to generate
a unique watermark W (see Lemma 1). A mask M is also
generated along with W to be used in the verification phase.
Generation of W and M are according to the Equations 1
and 2.

W = arb0 + qc + arb1 + rc + arb2 + start bit+
gcs + end bit+ arb3 (1)

where ‘+’ denotes the concatenation operator of bits, arbi, i
= 0 to 3 denotes some arbitrary bit strings of appropriately
chosen lengths. The use of these bit strings make it impos-
sible for an intruder to guess about gcs, qc, and rc (so as to
guess about LFSR and G). Bit ‘1’ is used as start bit and
end bit to indicate the begin and end of gcs.

M = arb0 + qc + arb1 + rc + arb2 + {0}∗ + arb3 (2)

where {0}∗ represents a string of 0s used in generating
mask M , and is of length (start bit + gcs + end bit). The
formal description of the proposed algorithm for watermark
generation appears in Figure 8.

It may be noted that the use of secret LFSR ensures
uniqueness as well as robustness of the watermark. Lemma
1 summarizes the utility of LFSR.

Lemma 1: Let G, L and S represent the set of design
graphs, maximum length LFSRs and signatures respectively.
Let W l

gs denotes the watermark of g ∈ G associated with
signature s ∈ S and is obtained by using LFSR l ∈ L. Then,
∀G1, G2 ∈ G, ∀L1, L2 ∈ L and ∀s ∈ S:

WL1
G1s
6= WL2

G2s
if L1 6= L2

where G1 and G2 are completely different designs or two
versions of the same design.

Proof: Let WL1
G1s

and WL2
G2s

be two watermarks gener-
ated for the input design graphs G1 and G2 with signature
s using LFSRs L1 and L2 respectively.

Let p∗1(x) and p∗2(x) be the reciprocal characteristics
polynomials of L1 and L2 respectively. Suppose, g1(x)
and g2(x) are two polynomials generated from G1 and G2

respectively. After applying g1(x) to L1 and g2(x) to L2

we get the quotients and remainders q1(x), r1(x) and q2(x),
r2(x) respectively. Thus we get,

g1(x) = p∗1(x)q1(x) + r1(x) (3)

and
g2(x) = p∗2(x)q2(x) + r2(x) (4)

Consider the following cases where for two graphs G1 and
G2 there is a chance that the generated watermarks for them
can be same:

1) G1 6= G2 but generates same polynomial.
2) G1 and G2 represent two versions of the same design

for a given seller.
We already know that the watermark characterizes the design
graph as well as the source of that design. To make unique
watermark for each of the cases above, we use different
LFSRs. Thus, we have p∗1(x) 6= p∗2(x) and g1(x) = g2(x).
Hence, from equations 3 and 4 we get, q1(x) = q2(x)
implies r1(x) 6= r2(x). Similarly, r1(x) = r2(x) implies
q1(x) 6= q2(x). In other words, both q1(x) = q2(x) and
r1(x) = r2(x) can not be satisfied simultaneously. Since
the watermark is formed by concatenating the binary co-
efficients gcs, qc and rc, different qc or different rc makes
WL1
G1s
6= WL2

G2s
.

Algorithm 1: GenWatermark
Input: System Graph G, An LFSR of length L with
primitive feedback loop, Signature S
Output: Watermark W and mask M

1. Generate a polynomial g(x) from G.
2. Apply g(x) to the input terminal of LFSR (initialized

by zeros) to produce quotient q(x) and remainder r(x).
3. Represent signature S into binary string Sc by con-

catenating the ASCII code of each character in S.
4. Compute gcs = Sc ⊗ gc.
5. Create W by concatenating gcs, qc, rc and arbi,

i=0,...,3.
6. Create corresponding mask M .

Fig. 8. Algorithm for watermark generation
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B. Watermark verification
The flowchart of watermark verification phase is depicted

in Figure 9. While verifying the watermark of the design,

Received System 
Graph G 

Watermark W 

Apply 
Masking 

Generate 
Polynomial  

 

Mask M 

Signature embedded 
Polynomial gcs(x) 

Extract 
signature 

Polynomial g(x) 

Signature  S 

Fig. 9. Flowchart of watermark verification

the buyer needs to use the mask M transmitted in the
encrypted file. W ⊗ M is computed to find the value of
the string “start bit + gcs + end bit”, from which the
value of gcs can be easily obtained. Buyer can now generate
the polynomial g(x) from the design graph (s)he bought.
Finally, the signature S can be produced by performing
gcs ⊗ gc which is used to verify the authenticity of the
design. A formal description of the algorithm for watermark
verification is shown in Figure 10.

Algorithm 2: VerifyWatermark
Input: System Graph G, Mask M , Watermark W
Output: Ownership claim as true or false

1. Generate polynomial g(x) from G.
2. Compute gcs from W ⊗ M .
3. Obtain signature S from gc ⊗ gcs.
4. If signature S matches with the original signature, then

claim := true else claim := false.

Fig. 10. Algorithm for watermark verification

C. Generating a Polynomial from a given graph
Let G be an input design graph. Count the number of

nodes of G having identical degrees in decreasing order of
their degrees. The degree is used to denote the power of each
term and (count+degree) contributes to the coefficient of the
corresponding term. Since the coefficients of the polynomial
are binary, apply mod-2 operation on (count+degree) to
obtain the binary coefficients. In the worst case, even values
for all (count+degree) may yield an empty polynomial. To
ensure the generation of non-empty polynomial, we make the
polynomial monic by enforcing the coefficient of the highest
degree term to 1.

D. Version Control

The proposed watermark generation scheme assigns a
unique watermark to each input design graph G, and uniquely
identifies a source-destination pair for G. A privately chosen
LFSR is used to make W robust and unique. Suppose the
seller wants to sell different versions of same G to more than
one buyer. As S represents the combined signature of both
seller and buyer, S will vary for same seller and different
buyer, and this change is reflected in W . Moreover, in
order to control different versions of same design graph, the
seller can use different private LFSRs to generate different
unique watermarks and corresponding masks. The above
version control mechanism generates robust watermark and
corresponding mask for the following reasons:
• LFSR is hidden and known to the seller only.
• Different versions use different LFSR, reducing chances

of duplication.

V. PROPOSED ENCRYPTION AND DECRYPTION SCHEMES

In this Section we discuss the encryption and decryption
of the design graph G with the help of an L-stage LFSR.
Hereafter, by LFSR, we refer to only maximum length LFSR.

A. The encryption scheme

The flowchart of design graph encryption is depicted in
Figure 11. We consider (i) An L-stage LFSR at the seller’s
end, and (ii) A symmetric private key kb of the seller. The
LFSR is first initialized with a seed of length L generated
from kb in the following way: generate a sub-key k1 from the
private key kb. Let the length of K1 be λ. We generate the
seed (a bit string) of the L-stage LFSR by first converting
K1 into a compressed key K ′1 and then choosing the first
L-bits obtained from K ′1 as the seed. We explain the method
with an example. Let K1 = ABCDEFGHIJKLMN. Then, K1

is divided into a number of parts, each part having length =
dL8 e = 3, say. Thus, the parts obtained from K1 are (ABC),
(DEF), (GHI), (JKL), (MN). Now K ′1 = (b1, b2, . . ., bdL

8 e
)

will be formed, where bi is obtained by adding the ordinal
values (1 for A, 2 for B, and so on) of the ith characters in
these components. Thus, the first alphabet in K ′1 is obtained
by (i) taking the sum of ordinal values of A, D, G, J, and
M = 1 + 4 + 7 + 10 + 13 = 35, and (ii) taking (mod 26
+ 1) over the integer generated. Thus, the first alphabet of
K ′1 = 35 mod 26 + 1 = 10 = ‘J’. Similarly, the second and
the third alphabets of K ′1 are ‘O’ and ‘E’ respectively. Thus,
starting with K1 = (a1, a2, . . ., aλ) where λ ≥ dL8 e, we
obtain K ′1 = (b1, b2, . . ., bdL

8 e
). Next, the ASCII values of

all the characters represented by bj , j = 1, 2, . . ., dL8 e in
K ′1 are concatenated. This gives the binary string of length
dL8 e × 8 bits. If L is a multiple of 8, all bits of the binary
string together is considered to be the seed, otherwise only
the first L bits of it is considered as the seed. Next, the LFSR
is initialized with the seed value.

The maximum-length LFSR outputs an m-sequence of
length 2L − 1 which repeats itself. We just pick a binary
string of length 2 ×

√
α × N from the output of the LFSR,

where 0 < α < 1 and N = | V | is the number of nodes
in the design graph G. Lemma 2 depicts the criteria for this
sequence of length 2 ×

√
α × N to be random, in contrast

to pseudorandom.
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Fig. 11. Flowchart of design graph encryption

Lemma 2: The sequence of length 2 ×
√
α × N , where

0 < α < 1 and N = | V | which is taken from the output
of a maximum-length LFSR of length L must be random if
L ≥ log2((2×

√
α×N) + 1).

Proof: For an LFSR of length L, there exist 2L possible
states. Since for any maximum length LFSR all states except
0 must occur, the number of possible states is 2L − 1.
Therefore, after the length 2L − 1, the output sequence
repeats. Thus, if we consider an output sequence of length
more than 2L − 1, it is pseudorandom. In contrast, since
any state can not occur more than once within a length of
2L − 1, any part of output sequence of length equal or less
than 2L − 1 must be random. Thus we have,

2×
√
α×N ≤ 2L − 1

or, (2×
√
α×N) + 1 ≤ 2L

or, L ≥ log2((2×
√
α×N) + 1)

In the next step of encryption, the positions of all 0s and
1s in the random sequence of length 2 ×

√
α × N are

marked. The positions of all 0s and all 1s respectively in the
sequence form two sets of integers: let S1 and S2 be two sets
of integers formed by collecting the positions of all 0s and
the positions of all 1s in the sequence respectively. In these
two sets, if any integer element p is greater than or equal to N

(= | V |), the value of ‘p mod N ’ is computed. If the value
‘p mod N ’ does not exist in the sets, p is replaced with ‘p
mod N ’, otherwise p is simply deleted from the set. Thus,
the integers in S1 and S2 represent the vertex numbers of
the design graph G.

Lemma 3: The length 2 ×
√
α × N , where 0 < α < 1

and N = | V | of the sequence must be greater than L (length
of LFSR) to include at least one 1 and one 0 so as to enable
the formation of two sets.

Proof: According to Property 1 (Section III), an m-
sequence has 2L−1 1s and (2L−1 − 1) 0s. Also Property 2
says that there is one run of L consecutive 1s and one run of
L− 1 consecutive 0s in the m-sequence. For L− 1 < r < 0,
there are 2L−(r+2) runs of length r for 1s and the same
number of runs of 0s. Since one run of L consecutive 1s
and L − 1 consecutive 0s always occur in an m-sequence,
and the length of other runs of 0s or 1s are less, the length
2 ×
√
α × N of the sequence obtained from the output of

LFSR must be greater than L to include at least one 1 and
one 0.

Observe that Lemma 2 gives the lower bound for L,
whereas lemma 3 gives the upper bound for L. Thus, from
Lemma 2 and Lemma 3, we get

log2(2×
√
α×N) ≤ L < 2×

√
α×N

In the next step, the Cartesian product Π of the two sets
S1 and S2 is formed. Any pair in it corresponds to an edge
to be used to modify the design graph G. If any pair in Π
corresponds to an edge in G, that edge is deleted from G.
Otherwise the edge is inserted in G. This forms a modified
graph G′. Lemma 4 shows that applying the encryption
algorithm twice on an input graph will yield the original
graph only.

Lemma 4: Assuming encryption of a graph G to be a
function F (G), F (F (G)) = G.

Proof: Suppose G(V,E) represents an input graph and
B be the set of edges to be modified in G, where B is
obtained after performing cartesian product of S1 and S2.
Let F be the encryption function that removes an edge e ∈ B
from G if e ∈ E, and inserts e ∈ B into G if e 6∈ E. Suppose,
application of the function F on G using B yields a graph
G′ i.e. F (G) = G′, and performing F again on G′ using the
same B yields a graph G′′ i.e. F (F (G)) = F (G′) = G′′.
We have to prove that G = G′′ i.e. V = V ′′ and E = E′′.

Since the encryption function F does not make any
changes in the number of nodes when applied on a graph,
we have V = V ′′. Now we prove, E ⊂ E′′ first and then
E′′ ⊂ E. For the first, ∀e ∈ E consider the following:

1) e 6∈ B: Since F complements from G only those
edges that belong to B, the resultant graphs G′ and
G′′ contain e.

2) e ∈ B: In this case, F removes e from G and thus,
disappear in G′. Further application of F on G′ using
the same B will make the edge e again available in
G′′.

Thus, ∀e ∈ E : e ∈ E′′ i.e. E ⊂ E′′.
Now we prove E′′ ⊂ E. To do that, ∀e ∈ E′′ we again
consider the following:

1) e 6∈ B: The function F does not change any edges
e 6∈ B from G or G′ to generate G′′. Thus, the fact
e 6∈ B ∧ e ∈ E′′ clearly says that e ∈ E′ ∧ e ∈ E.
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2) e ∈ B: In this case, the fact e ∈ B ∧ e ∈ E′′ says that
e 6∈ E′. Similarly, e ∈ B ∧ e 6∈ E′, in turn, says that
e ∈ E.

Thus, ∀e ∈ E′′ : e ∈ E i.e. E′′ ⊂ E. Hence, from E ⊂ E′′

and E′′ ⊂ E we get E = E′′ which proves our lemma.
In the final step of encryption, at the sender’s end, a hash

value of G is generated, which is transmitted along with the
encrypted graph G′. This hash value is used in verification
phase performed at the buyer’s end to detect any alteration
of G occurred during its Internet-based transmission. For
generating the hash value, G is first represented as an
adjacency matrix containing 0s and 1s. The adjacency matrix
is then converted into a binary string by concatenating all its
rows (or all its columns). Merkle-Damgård’s Meta method
[20] is applied on this binary string to generate the hash value
of G. Observe that the value of the initialization vector IV
is computed from another subkey k2 obtained from kb.

B. Recovery of the original graph at buyer’s end

At the buyer’s end, the same procedure as that applied
for encryption at the seller’s end is applied on the modified
design G′ to produce G′′ (= G). By Lemma 4, G′′ should be
the same as G. To check if the design has not been tampered
during the transmission, the buyer also generates the hash
value of G′′ and compares with the hash value received
from the sender. If these two values match, the buyer is sure
that G′′ = G and the received design has not been tampered
during transmission.

C. Properties of the Encryption and Decryption schemes

The encryption scheme primarily is used to guard the valu-
able design against an intruder while transmitting through
the Internet or when stored in the design repositories. As
discussed earlier, an additional precaution through watermark
embedding helps to detect any unauthorized use of the
valuable design by any user other than the valid buyer. In
our proposed scheme, the watermarking helps to check non-
repudiation as well.

We now attempt to justify the use of LFSR in the encryp-
tion of G. LFSR is used to implement random number gener-
ators. Thus, for a specific G, its modification with the use of
random sequence from an LFSR yields a random graph. The
LFSR can be simulated in software or can be implemented in
hardware. However, if the feedback is non-linear for a given
number of stages in LFSR, the resulting key sequence will
be of higher linear complexity [21]. Therefore, to obtain a
better security, we can combine multiple LFSRs, or we can
use binary random sequences based on elliptic curve points
[22] to introduce the nonlinearity in the sequence.

The following parameters used by the seller prior to the
transmission are considered hidden from any intruder: (i) the
private key [3] kb of the seller, (ii) the length L of the LFSR
and the feedback equation for the maximum-length LFSR,
and (iii) the value of α.

In case the length L of the LFSR is known to the intruder,
the following possibilities arise:

• If key kb is not known to the intruder, the number of
possible seed values for initializing LFSR is O(2L).

• If the feedback equation is not known to the intruder, the
number of possible feedback equations for maximum
length LFSR is O(2L).

In all the above cases, it is extremely difficult for the intruder
to guess the maximum-length LFSR used by the seller during
encryption.

Definition 3: The characteristic polynomial associated
with a maximum length LFSR is called primitive polynomial.
A characteristic polynomial is primitive if (i) it is prime i.e.
it can not be factored, and (ii) it is a factor of xN+ 1, where
N = 2L − 1, x is a variable of the polynomial, and L is the
length of the LFSR.

Number of primitive polynomials for an L stage LFSR
is given by Φ(2L−1)

L , where Φ(n) = n × Πp|n(1 − 1
p ), p is

taken over all primes that divide n [12]. Thus for an L stage
LFSR, the number of maximum length LFSRs is O(2L), and
for an intruder knowing L, it is very difficult to guess the
LFSR used in encryption.

D. Use of the parameter α

The length of the output sequence of maximum length
LFSR is 2L−1 ' O(2L). If we consider the complete output
sequence while encrypting the graph G, the time complexity
of encryption would be exponentially large. The parameter α
(0 < α < 1) helps to reduce this time complexity drastically
by considering a part of the output sequence rather than
complete sequence. Moreover, it maintains the randomness
of the sequence. The value of α determines how many edges
will be modified in the graph during encryption, and thus, is
chosen by the owner accordingly. Let the number of nodes in
the input design graph G be N , and the owner would like to
modify a maximum of α × N2 edges. In such a case, owner
chooses a random sequence of length 2 ×

√
α × N from the

entire output sequence of the maximum length LFSR. It can
be shown that the worst-case time complexity of encryption,
considering the parameter α is O(N2) (see Lemma 5). The
length of precision of α has to be chosen properly to improve
the robustness of the encryption as well.

Lemma 5: The best case and worst case time complexities
of encryption and decryption are O(N) and O(N2) respec-
tively, where N is the number of nodes in G.

Proof: In best case, any one of the two sets S1 and S2

(which are formed by taking into account the positions of 0s
and 1s from the output sequence of length 2 ×

√
α × N )

contains only one element, whereas another set contains (2
×
√
α × N ) -1 elements. Hence the Cartesian product of

these two sets yields O(N) edges to modify. In worst case,
the two sets contain equal numbers of elements i.e.

√
α ×

N which yield O(N2) edges after Cartesian product. Thus,
the best and worst case time complexities of encryption and
decryption are O(N) and O(N2) respectively.

VI. EXPERIMENTAL RESULTS

The proposed scheme is implemented using C language
and is executed over some ISPD98 benchmark suite [23] in
a Sun workstation running Solaris. The ISPD98 benchmark
suite includes a set of circuits for physical design applica-
tions, such as partitioning and placement. These circuits were
translated from internal IBM designs that represent many
types of parts, including bus arbitrators, bus bridge chips,
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TABLE II
SUMMARY OF RESULTS FOR WATERMARK GENERATION AND

VERIFICATION

Problem Number
of nodes

LFSR
Length

CPU time(sec) for
watermark
generation verification

ibm01 12752 10 1 0.028
20 1 0.028

ibm02 19601 10 1 0.044
20 1 0.044

ibm03 23136 10 1 0.054
20 1 0.054

ibm04 27507 10 2 0.065
20 2 0.065

ibm05 29347 10 1 0.07
20 1 0.07

ibm06 32498 10 1 0.078
20 1 0.078

ibm07 45926 10 2 0.113
20 2 0.113

ibm08 51309 10 6 0.126
20 6 0.126

ibm09 53395 10 3 0.131
20 3 0.131

ibm10 69429 10 4 0.171
20 4 0.171

memory and PCI bus interfaces, communication adaptors,
memory controllers, processors, graphics adaptors etc. While
performing the simulations, we generate the watermark and
the corresponding mask, and encrypt the netlist graphs (par-
tial physical design) obtained from the benchmark problems.
Finally, we decrypt the graphs into their original form and
verify the watermark using the mask bit string.

For LFSR of length 10 and 20
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Fig. 12. CPU times for watermark generation and verification vs. number
of nodes for LFSR of length 10 and 20

Table II depicts the CPU time required to generate and
verify watermarks for two different LFSRs of length 10 and
20. The variation of CPU times for watermark generation
and verification with the number of nodes in the graph are
depicted in Figure 12 for LFSRs of length 10 and 20. Observe
that generation and verification of the watermark requires
nominal time, which is a desirable feature of such a scheme.
The watermark generation time mainly depends on two fac-
tors: (i) generation of polynomial from the input graph, and
(ii) length of the generated polynomial and its processing
by the LFSR, whereas verification time depends on the first
factor only. This explains the difference between watermark
generation and verification times. The increase in the number
of nodes from ibm01 to ibm10 leads to an increment in
the polynomial generation time which in turn increases the
watermark generation and verification time. The maximum
degree in a graph determines the length of the polynomial
generated from that graph. If the maximum degree is large,

the number of terms in g(x) would be large, implying more
processing time by the LFSR. As the watermark generation
time also depends on the length of the generated polynomial
and its processing by LFSR, the watermark generation time
for ibm04 and ibm08 become little bit larger due to the
larger value of the maximum degree nodes in them. This is
indicated by peaks in the chart. It is worthwhile to mention
that no significant changes in the processing time of the
polynomial by LFSR is observed while using two different
LFSRs of length 10 and 20, resulting into same CPU times
for watermark generation and verification.

Before discussing the experimental results on encryption
and decryption, we first define two parameters: density of
a graph and the degradation factor.

Let |V | and |E| denote the number of nodes and edges in
a graph G respectively, the density ρ(G) of G is given by
the following equation:

ρ(G) =
2× |E|

|V | × (|V | − 1)
(5)

Let |E′| and |E| denote the number of edges in the
encrypted graph and the original graph respectively, the
degradation factor δ is defined by the following equation:

δ =
|E′| − |E|
|E|

(6)

For α=0.0001
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 Fig. 13. CPU times for encryption and decryption vs. no. of nodes for
α=0.0001

For α=0.0005
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Fig. 14. CPU times for encryption and decryption vs. no. of nodes for
α=0.0005

The encryption and decryption time for different values
of α (i.e. 0.0001, 0.0005, 0.001 and 0.005) is depicted in
Table III. In our experiment, due to want of space, the graph
is implemented using linked list, leading to a difference in
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TABLE III
SUMMARY OF RESULTS FOR ENCRYPTION AND DECRYPTION FOR KEY-LENGTH = 25 AND LFSR LENGTH = 16

Problem Number
of nodes

Number of edges ρ α δ CPU time (sec)

before encryption after encryption for encryption for decryption
47682 0.0001 0.523 1 0
112769 0.0005 2.6 11 2

ibm01 12752 31309 194025 0.000385 0.001 5.2 29 5
844487 0.005 26 298 20
93032 0.0001 0.709 4 1
246556 0.0005 3.53 36 5

ibm02 19601 54426 438606 0.000283 0.001 7.06 101 10
1975516 0.005 35.3 1069 49
113929 0.0001 0.888 6 1
328101 0.0005 4.44 58 7

ibm03 23136 60355 595795 0.000226 0.001 8.87 164 13
2734843 0.005 44.31 1753 66
143003 0.0001 1.13 10 2
445829 0.0005 5.64 99 10

ibm04 27507 67117 823650 0.000177 0.001 11.27 271 19
3849763 0.005 56.36 2925 93
167886 0.0001 1.053 12 2
512518 0.0005 5.27 119 11

ibm05 29347 81768 943610 0.00019 0.001 10.54 326 23
4387154 0.005 52.65 3540 108
193208 0.0001 1.205 16 3
615831 0.0005 6.03 160 13

ibm06 32498 87605 1144185 0.000166 0.001 12.06 438 26
5366355 0.005 60.26 4776 131
325274 0.0001 1.849 41 6
1168712 0.0005 9.24 437 26

ibm07 45926 114158 2222200 0.000108 0.001 18.47 1237 53
10657408 0.005 92.357 13369 260
397272 0.0001 1.973 57 7
1449968 0.0005 9.85 611 33

ibm08 51309 133610 2765871 0.000102 0.001 19.70 1716 65
13294838 0.005 98.51 18708 325
399224 0.0001 2.499 64 7
1539085 0.0005 12.49 690 35

ibm09 53395 114088 2963586 0.00008 0.001 24.98 1923 69
14368822 0.005 124.95 21024 348
622612 0.0001 3.43 141 13
2548818 0.0005 17.14 1508 60

ibm10 69429 140482 4961302 0.000058 0.001 34.32 4176 117
24241432 0.005 171.56 49212 584

For α=0.001
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Fig. 15. CPU times for encryption and decryption vs. no. of nodes for
α=0.001

encryption and decryption times. The matrix representation
of the graph, however, would yield identical encryption and
decryption times.

We already know that the parameter α is used to obtain
a part of m-sequence from which two sets are formed by
taking the positions of 0s and 1s. For a larger value of α,
the length of the part of m-sequence is larger, and thus there
will be more number of 0s and 1s in that part, resulting
in more number of elements in the two sets. Thus, the
Cartesian product of the two sets yields more number of
edges to modify, which in turn increases the encryption and
decryption time. This fact is reflected in Table III i.e. as the
value of α increases from 0.0001 to 0.005, the CPU time for

For α=0.005
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Fig. 16. CPU times for encryption and decryption vs. no. of nodes for
α=0.005

encryption and decryption increases.

As mentioned earlier, the density ρ of a graph refers to the
percentage of edges actually presents in the graph, whereas
the degradation factor δ refers to the percentage of change
in the number of edges in input graph due to encryption.
When the density ρ of the graph decreases from ibm01 to
ibm10, the probability of edge insertion during encryption
increases than the edge deletion. As a result, the number of
edges in the encrypted graph increases i.e. the degradation
factor δ increases from ibm01 to ibm10 for a given value of
α. Since we use linked list implementation that introduces
a difference in edge insertion and edge deletion times, the
increase of δ from ibm01 to ibm10 leads to an increment
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in encryption and decryption time as well. Figures 13, 14,
15 and 16 respectively depict the variation of the CPU times
with the number of nodes in the graph for encryption and
decryption for four different values of α i.e. 0.0001, 0.0005,
0.001 and 0.005.

VII. CONCLUSIONS

In this paper, we propose an Internet-based scheme that
ensures both direct and indirect IP protection. To the best
of our knowledge, this is one of the very few IP protection
schemes encompassing both cryptography and watermarking.
The novelty of the work is that it is Internet-based, and
uses LFSR perhaps for the first time in IP protection. The
proposed method has scopes of improvement in terms of
(i) embedding the watermark within the input graph, (ii)
using public-private key combinations. We are currently
investigating the benefit of the use of Cellular Automata (CA)
[24] instead of LFSR in our proposed scheme, as the pattern
generation in CA does not involve shifting of data that results
into patterns with more randomness in nature as compared
to LFSR.
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