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Modelling the Lot Streaming Problem with Setup
times in a Job Shop Manufacturing System

Udo Buscher and Liji Shen

Ab . . . . discussed in [18]. Vickson and Alfredsson [21] considered
stract—This paper aims at solving the lot streaming prob- . . -
lem in a job shop environment, where setup times are involved. tW0 and three machine flow shop scheduling problems with
The proposed integer programming formulation sufficiently unit-sized transfer lots (that is, each sublot contains only
describes the processing dynamics of individual sublots and en- one unit). A modification of Johnson’s Algorithm [16] for
ables the simultaneous determination of schedules on machinesmakespan minimization is proposed. Baker [1] extended the

and sublot sizes. Small instances of job shop problems with : : : :
consistent sublots can thus be optimally solved. Computational model established by [21] and derived optimal scheduling

results confirm that, by applying the lot streaming strategy, both Policies for the two-machine flow shop with lot streaming
idling times of machines and completion times of operations and setup times. Trietsch and Baker [20] presented an
are significantly reduced. In view of setups, various types of overview of basic models and solution algorithms for the lot
setups are incorporated in the model. The influence of setup streaming problem. Their study provided important insights
times on the performance of lot streaming is also intensively i, yhe solution structure for larger lot streaming problems.
examined. In addition, the efficiency of the formulation with . . .
special constraints is evaluated. For them-machine production environment, Glass et. al.
[13] used a network representation to analyse the structure of
optimal solutions. Chen and Steiner [5] extended the results
of [13] to further consider detached setup times. Chen and
Steiner [6] examined the attached setup case. Glass and
Potts [14] developed a two-phase method to find the optimal
HE purpose of this paper is to solve the lot streamingliocation of sublots. First, a powerful relaxation algorithm
problem in a job shop environment, where setup tim&gas derived to reduce the number of machines that needed to
are involved. Thgob shopscheduling problem can be brieflybe considered. In the second stage, the critical path structure
described as follows [11]: A set of jobs and a set of maching$ an optimal solution is characterized. Steiner and Truscott
are given. Each machine can process at most one job g18] and Chen and Steiner [7] studied the no-wait problem,
time. Each job consists of a sequence of operations, whighwhich each sublot must be continuously processed from
need to be processed during an uninterrupted time perig@ start to its completion, without interruption between
of a given length on a given machine. gcheduleis an  machines [15]. Biskup and Feldmann [2] presented an in-
allocation of the operations to time intervals on the machinagger programming formulation to solve one-product flow
The objective is to find a schedule of minimum lengtBhop problems. This model was then extended to deal with
(makespah This class of problems has been proven to hifferent settings and objectives, where variable sublots are
NP-hard [12]. considered. Feldmann and Biskup [10] extended the model
With respect tolot streaming a job is actually alot to solve multi-product problems. In order to investigate
composed of identical items. In classical job shop schedulifige benefits of lot streaming, 160 small and medium sized
problems a lot is usually indivisible. The entire lot must béhstances were tested. Although the job shop scheduling
completed before being transferred to its successor operatigfbblem is generally more complex compared to the flow
which leads to low machine utilization and long completioghop problem, their model provided important inspiration
times. Lot streaming techniques, on the other hand, proviftg formulating the lot streaming problem in a job shop
the possibility of splitting a lot into multiple smaller sublotsenvironment.
which can be treated individually and immediately trans- The job shop scheduling problem, on the contrary, has
ferred to the next stage once they are completed. Differgateived little attention. Dauzére-Pérés and Lasserre [9]
sublots of the same job can thus be simultaneously prgtroduced an iterative procedure to solve the lot streaming
cessed at different operation stages. As a result of operatjsfablem in a job-shop environment. The procedure alternates
overlapping, the production can be considerably acceleratgdtween solving a lot-sizing problem with a given sequence
However, due to the complex interaction between sublots agfisublots on the machines and a standard job shop schedul-
machines, job shop problems with the application of the lgig problem with fixed sublot sizes. By adopting the modified
streaming strategy is difficult to formulate mathematically.shifting bottleneck procedure [8], a good solution can be
In the last years, a majority of researches focused @btained within a few iterations. For the same problem,
solving lot streaming problems in a flow shop productioBuscher and Shen [3] presented an advanced tabu search
system. Heuristics for two machine flow shops with equadigorithm which outperforms the previous heuristic. This
sized sublots and a makespan objective function were fieggorithm is also able to reach the theoretical lower bounds
for some hard benchmark instances in scheduling. In [17]
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that the sublot sizes are given, several examples were tesiesl available at time zero. Furthermore, the total number of
with the conclusion that equal-sized sublots provide bettsublots is given and consistent sublot sizes are considered.

solutions in general.
The integer programming formulation presented in thisnd assumptions, the model can then be summarized as
paper is based on the studies of [4] and [17]. Necessdollows:

In addition, transport times are negligible. With the notations

modifications are conducted in the first place. The model min Crax (1)
@s then further de\(elop_ed to increas_e efficienqy. Moreov%ubject to:

instead of employing fixed sublot sizes, test instances are .

solved with the determination of sublot sizes. According ZX“ - D, Vi )
to our observation, optimal solutions are generally obtained =

with unequal-sized sublots, which obviously contradicts the Xy >0 Vij )
assertion of [17]. Sk < Xi Vi, k 4)

The remainder of the paper is organized as follows: in
the next section, an integer programming formulation for
solving the lot streaming problem in a job shop production
system with setups is developed. Various types of setups are
incorporated in the model. Section 3 provides a detailed
analysis of computational results. An illustrative example

Lijir > tijh+Tik-Oijk + Dik Xij
tigrk 2 tigk + ik - Oigk +pik - Xij Vi k,j <5 (6)
Crmaz > tisk + Tik - Oisk + Pix - Xis V1,045, € L (7)
gk > tirjin + Tk Oy + Dirg - Xorjr — H - Yijurjon,
tirjre > tiji + Tk - Oigk + pie - Xij — H - Yirjrag

\4 (Oijkinjkx’) cA (5)

consisting of 3 jobs and 3 machines is first discussed. The Yijiryow + Yojrge =1 Vi, 5,5 (8)
computational results focusing on various aspects are then  dix =1 Vi, k 9)
presented in detail. Brief conclusions are summarized in Si+1yk = Yigirjre — Yig+1)i 57k

Section 4. Vi#i,j<s, ik (10)

Il. M ODEL FORMULATION

A. Notations

In our model we employ the conventional makespan ob-
jective function (1). Constraints (2) ensure that all required
units are produced. Constraints (3) are the non-negativity
conditions. Since sublot sizes may equal 0, the actual number

Parameters: of sublots is possibly smaller than the given number
_ _ . This adds flexibility to the formulation with the fixed total
A set of pairs of operations constrained by number of sublotss). Obviously, no setup is necessary, if

precedence relations

the corresponding sublot doesn’t exist. Constraints (4) are

n total number of jobs therefore used to avoid redundant setups.
m total number of machines Constraints (5) represent the precedence relations of the
s total number of sublots operations that belong to the same sublot. In the model
1,7/ jobindices,,i =1,...,n of [17] similar constraints are considered, which apply to
k. k' machine indicesk, k' =1,...,m the operations of different sublots as well. It should be
j,7' sublotindicesj,j’' =1,...,s pointed out that the operations of different sublots are not
D;  demand of johy, i.e. the initial lot size constrained by the precedence relation, since sublots are
H sufficiently large number treated as separate jobs.
L set of the last operations of sublots When attached setup times are taken into consideration,
My machinek the setup of a certain machine cannot begin until the
Oij.  the operation of thgth sublot of jobi corresponding sublot has been transferred to this machine.
on machinek Constraints (5) fulfil this requirement. On the other hand,
pi,  unit processing time of jolb on machinek detached setups can be performed in advance, with no regard
Tik setup time of jobi on machinek to the availability of sublots. The constraints can then be
slightly modified as:
Variables: tigh +7ik-Oigrr > tije+rin-Oijrtpie-Xij ¥V Oijr,Oijrr) €A
(11)
g;c” g:::(tet?raznof operation; As an iIIustration,_ both types of setups are depicted in figures
Xij production quantity of thgth sublot of job: 1 and 2, r_espectlvely.
Sin binary variable which equals 1 if setup Constra_lnts (6) state that a sublot can only be _sch_eduled
is required before processing operation;; on a certa_m m_a<_:h|ne a_fter the su_blots Wlt_h smaller indices of
0 otherwise the same job finish their processing. For ms_tance, the second
Yi;»y.  binary variable which equals 1 if Operation sublot can not be processed prior to the first sublot of the

O, is processed prior to Operati@n ;;

0 otherwise.

B. Integer programming formulation

same job. Due to the simultaneous determination of sublot
sequences and sublot sizes, constraints (6) can be employed
without loss of generality. In the meantime, these constraints
provide the basis for the concise formulation of setup times.
Constraints (7) indicate that the makespan is defined by the

It is assumed that each job consistsmefoperations and latest completion time of the last operation of the sublot with
must pass through each machine exactly once. All machirtae maximal index ). In the model developed in [17], the
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Machine same job are processed under a single setup. In the study
A . setup time
Machine
0 ijk . Y ik =Y i(+1)i'k =0
| time
|
! (0] o} o
t ik ijk i(i+1)k )
ijk’ » time
0 ijk’ ‘
> time

Machine

Fig. 1. lllustration of attached setups % - Y =
ijifk iG+1)ik

Machine o ] o } o )
A . setup time ijk i(+1)k ik
I

time

v

o ijk Fig. 3. lllustration of constraints (10) (1)
| T time

ijk’ Machine

Y iiijk

> .
time

Y |(J+1)|‘J'k:

Fig. 2. lllustration of detached setups

Fig. 4. lllustration of constraints (10) (1)

makespan is similarly calculated, while the sublot precedence

constraints (6) are neglected. This, however, is not always [17] the setup requirements are written as:
correct, since theth sublots are not necessarily scheduled

at the end. g
Theoretically, constraints (6) can be removed. The (Z ) dig+ik 2 ;J; ( (G+1)i' 5’k i’ j k)

makespan is thus determined by: Wik and i # i’

Cmaz > tijk + Tik - Oijk + Diy, - Xij Vi, 7, k. (12)

where Z,, is the total number of operations to be processed
Owing to the complex interaction between sublots and man machinek. In comparison, we formulate this condition
chines, this formulation generally requires more iterations t0 a more intuitive and elegant way.

solve the identical problem.

Constraints (8) are adopted to determine the sequences.on
machines and to prevent overlapping of operation¥;;if ; '
takes the value 1, only the first set of constraints is relevant,1) No-wait: An important class of machine scheduling
which indicates that operatiad; -, must be processed afterproblems is characterized by a no-wait production system,
the completion of operatio®; ;. If Y;;ir; equals O, the where a job must be processed from start to completion
second set of constraints operates in a similar manner. without intermediate buffer between machines. In compari-

In the model of [17], the las set of constraints in (8) i§0N to constraints (5), the no-wait requirement can be simply
neglected. This, in the first place, contradicts the definitig¥xpressed as:
of the binary variabl&’;;, ;.. Moreover, setting bothy ;;
andYj jsji, ¥0 be 1 leads 10 infeasible solutigns. T g = tietracSige vl Xig Y (Oige, Oiger) € A, (13)

In view of setups, constraints (9) ensure that the machinesy) Non-idling: On the other hand, if a non-idling envi-
are set up before processing the first sublot of each job. ronment occurs, where all sublots of the same job must be

~ Note that only one setup is essential, if sublots of the samgntinuously processed on a particular machine, constraints
job are consecutively scheduled on a certain machine. (8) can be modified as follows:

terms of Dauzere-Péres and Lasserre [9], this is a scheduling

problem withsequence-dependent setup timeBich is dif-  tij11)r = tijet7ik- i +pi-Xi; Vi, k and j <s. (14)
ficult to solve. Instead of approximate modelling, constraints ' :
(10) formulate this situation precisely. According to (G)Obwously, only the setup before the first sublot of each job

operation0;, should always be scheduled befavg 1y, is required. The other binary variables related to setups are
ijk J : .

If these two operations are processed directly one after ﬁ%‘é‘” equal to 0:

other,d;(j 1)k takc_as the value.O automatically _(set_a figure 3). k=0 Y ik andj#1. (15)

As long as there is an operation of any other job in between,

the right side of the corresponding inequation equals 1, whidforeover, only the sequence of jobs is relevant. Binary
forcesd;j+1)x to be 1 (see figure 4). Therefore, constraintgariables Y;;; ;- can thus be simplified agj;x, which

(10) ensure that all the consecutively scheduled sublots of significantly reduces the complexity of the formulation. The

Extensions
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modified constraints concerninlf;;;, are summarized as Paper [10] contains similar constraints to solve lot streaming

follows: flow shop problems. The function of these constraints in a
titg > tirsk 4 Tirk - Oirek + Py - Xirs — H - Yig, complex job shop environment will be discussed in the next
> i !
tirtk > tisk + ik - Oisk + iy, - Xis — H - Yirgp section.

}/ii’k + }/i’ik - 1 Vl,k‘ a.nd i/ # Z
(16) [1l. COMPUTATIONAL RESULTS
In order to prevent overlapping on machines, we can tal(eThe integer programming formulation addressed in the

advantage of the attribute _Of the non-.ldllng case and o evious section was implemented in the optimization soft-
need to compare the start time of the first sublot of a cert Nre Lingo 9.0 on a personal computer (Athlon 64 X2

Job with the completion time of the last sublot of anotheﬁ800+, 2450MHZ). In this section an illustrative example

JO% Non-interminale: Anoth tuati il .composed of 3 jobs and 3 machines is first discussed. The
) on-intermingie. Another stiuation especially asTSOC_"computationaI results focusing on various aspects are then
ated with the lot streaming problem is the non-interminglin

. . . . . resented in detail.
setting. This case requires that no interruption from any other

job is allowed while processing a particular job. Therefore,

constraints (14) are the sufficient but not necessary condi- An illustrative example

tions, whereas (15) and (16) must be fulfilled. First, we consider an example with 3 jobs and 3 machines.
4) Special constraints:According to the sublot prece- All jobs consist of 3 operations and each of them is to be

dence constraints (6), operatidh. ;. should be scheduled processed on a unique machine. Unit processing times and

prior to operatior0;, . . Figure 5 illustrates all possible demands, as well as flow patterns of machines are shown in

positions of a third operatio@;;.. The corresponding valuestables 11l and IV. The setup times of operations are set to

of the binary variabled’;; ;.. are listed in table I. be 50% of their unit processing times. Moreover, the total

number of sublots is given as 3.

Machine " . .
Position 1 Position 2 Position 3

\‘ TABLE Il
DEMANDS AND UNIT PROCESSING TIMES OF THE ILLUSTRATIVE
=
O
L

[ [ r -
", o, ’—‘O o, "—‘Omﬂ) ‘ EXAMPLE
| ! I I ! L Demand Unit processing time

T time
D; k=1 k=2 k=3

Fig. 5. lllustration of condition (17) i ; % ;i gg gg gg
i=3 36 30 40 10
TABLE |
ILLUSTRATION OF CONDITION(17)
TABLE IV

Position 1 Position 2 Position 3 FLOW PATTERNS OF MACHINES

Yijirjrk 1 0 0 7 Flow pattern

Yijir (i 4 1)k 1 1 0 i =; ]\]\/4[1 ]\]\/4[2 ]\]\/4[3
1= 2 3 1
1 =3 M2 M, M3

The following constraints describe these attributes of
}/,L. il . . . . . .
ae ik This 33 problem was first solved without the application
Yijiryk < Yijugrevre Visg,j' <s andi’ #i.  (17) of the lot streaming strategy. The associated schedule with

. ) . _the makespan of 3420 is shown in figure 7.
According to figure 6 and table Il, the other constraints . .
9 9 The problem is then solved taking account of lot stream-

Machine ing. With regard to attached setups, the optimal sublot sizes

Position 1 Position 2 Position 3

obtained are :
e |

!’””\’—‘F””\’—‘F””\ X1 =3 X12=5 X3 =4
M : o\’]' : Oij : Ol‘]‘ : Oi(j+1) : OI'J' : ) X21 = 10 X22 = 7 X23 - 7
‘ me X1 =17 X3 =13 X33 = 6.
Fig. 6. lllustration of condition (18) The corresponding schedule with the makespan of 2435 is

illustrated in figure 8. In the case of detached setup times,
the optimal sublot sizes are as follows:

v

TABLE Il
ILLUSTRATION OF CONDITION(18) X1 =4 X12=5 Xi13=3
Position 1 Position 2 Position 3 X3 =17 X30 =13 X33 = 6.
Y ik 0 1 1
YiG+1)i 'k 0 0 1 The associated optimal schedule is depicted in figure 9.

Since the setup for operatians;; starts earlier, it can be
processed immediately after the completion of its previous
operationOs15. The same applies to operation; s andOs;3
Yijije = Yigeniye Vi,j',j<s andi’'#4 (18) as well. Consequently, the makespan is further improved

concerningY;;y -, can be expressed as:

(Advance online publication: 24 May 2011)
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Machine

8 J - *
_ I » time

3420

Fig. 7. Solution to the example (without lot streaming)

Machine

M, 21 22 31 32 33 I 1] 12 |13
|
|

_ time

2435

Fig. 8. Solution to the example (with lot streaming and attdcbetups)

Machine

) ' - - c m ” ” >

|

L

M [
i = 22 ‘ 31 32 33 W 12 |13

I

[

I
M 8 l ” 2 s e
_ ] » time

Fig. 9. Solution to the example (with lot streaming and detdcbetups)

by 5 units due to an additional reduction of idling time ofublots of the same job tend to be scheduled successively,
machine 3. In comparison to the schedule obtained withe that no additional setup is required. Along with the effect
out the consideration of lot streaming, the improvement of operation overlapping at different stages, the makespan is
makespan is 28.80% concerning attached setups and 28.98%arkably improved. This result suggests that lot streaming
in the case of detached setups. With the application of tigestill advantageous in spite of the existence of extreme setup
lot streaming strategy, the machine utilization becomes mutimes.

more consistent. Therefore, the makespan is improved to a

considerable extend.

Figures 10 and 11 show the optimal schedules subj
to no-wait and no-idling assumption, respectively. We can By the implementation of Lingo 9.0, however, only small
clearly see that, due to the specific requirements, the resultjRgtances of job shop problems can be solved optimally.
schedules are adjusted accordingly, which leard to long@hile solving a 22 problem with 4 sublots requires less

&t Benefit of lot streaming

makespan. than 2 seconds, the optimal solution for & problem with
In order to investigate the influence of setup times on tifesublots cannot be obtained within 6 hours.
performance of lot streaming techniques, thi8 groblem In our study 96 instances of job shop problems, which

with different setup times is solved. It is first assumed thabnsist of 2 to 3 jobs and 2 to 6 machines, are tested. Each of
all setup times are negligible. All setup times are then set tioe instances with 2 jobs is solved by adopting 1 to 4 sublots.

be very large (1000). As shown in figure 12, in the absendde instances containing 3 jobs are solved employing 1 to 3

of setup times, intermingling among the sublots of differersublots. The mean improvement of makespan is summarised
jobs becomes more frequent. As setup times increase, thaable V.

(Advance online publication: 24 May 2011)
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Machine

31 32 33

I 11 I 32! 33
|
I 11 31 32 B

v

2665 time
Fig. 10. Solution to the example (subject to no-wait requinetne
Machine
|
|
|
| | |
1 1 | :
|
T T I
|
| | | | |
il > time
2570
Fig. 11. Solution to the example (subject to no-idling requieat)
TABLE V
MEAN IMPROVEMENT OF MAKESPAN
job- machine 2 sublots 3 sublots 4 sublots
Improvement*  Percentage* Improvement Percentage Improvement Percentage
2.2 6.04% 100.00% 0.00% 0.00% 0.00% 0.00%
23 20.61% 71.03% 5.98% 20.84% 2.39% 8.13%
24 25.02% 63.54% 9.82% 25.00% 4.53% 11.46%
2.5 32.89% 69.45% 10.08% 21.28% 4.40% 9.26%
2.6 32.04% 67.06% 11.12% 23.26% 4.65% 9.69%
33 23.08% 77.88% 6.92% 22.12% - -
Mean 23.44% 74.83% 7.32% 18.75% 3,19% 7,71%

* Improvement and percentage are calculated (¥.az,s—1 — Cmaz,s) /Cmaz,1 @Nd (Craz,s—1 — Cmaz,s) / (Cmaz,1 — Cmaw,4),
respectively.Cr.qz,s represents the makespan obtained by applyisgblots.

The average improvement of makespan amounts ddditional setups. Although the size of setup times imposes
23.44% by applying 2 sublots. With regard to 3 sublots, thee negative influence on the reduction of makespan, lot
benefit of lot streaming is abruptly reduced to 7.32%. Istreaming is still unnegligibly efficient.
general, 74.83% of potential makespan reduction is already
achieved by the application of 2 sublots, whereas the pig- sojutions with equal-sized sublots
portion of 4 sublots is marginal. This observation suggests . . ) . .
employing merely 2 sublots, so that the most advantage o s mentioned in the first section, many researches in-

lot streaming can be obtained while saving computing tim (_)Ivgd examining the Performance of .e.qual-3|zed sublots.
n this respect, constraints (2) are modified as:

C. Impact of setup times Xij=Di/s Vi,j (19)

In order to analyze the relationship between setup tim&s comparison to solving the problem optimally, the sublot
and makespan reduction, we adopt the settings from [9]. Thiges are predetermined, which significantly reduces the
setup times are set to be 1%, 10%, 50%, 100%, 200% acwmplexity of the problem. As a result, Lingo program can
400% of the unit processing times. The computational resulie remarkably accelerated. In our study, the test instances
of 96 test instances are listed in table VI. are also solved by adopting equal-sized sublots. As presented

As plotted in figure 13, while the proportion between setuip table VII, the deviation of makespan is surprisingly only
times and processing times rises, the advantage of lot stre@®5% on average, while the necessary iterations to solve
ing declines in accordance. Nevertheless, the improvementadntical problems fall sharply. This valuable information
makespan with 2 sublots exceeds 20%. suggests that we can take advantage of the trade off be-

Evidently, there is a trade off between the time savddeen the reduction of computing time and the increment
by splitting into sublots and the extra time required due t@f makespan to solve larger instances of job shop problems.
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Fig. 12. Solutions of the example (with different setup times)

TABLE VI
PERFORMANCE OF LOT STREAMING WITH VARIOUS SETUP TIMES
Setup time 2 sublots 3 sublots 4 sublots
Improvement*  Percentage* Improvement Percentage Improvement Percentage
1% 24.49% 74.38% 7.61% 18.69% 3.56% 8.33%
10% 24.28% 74.17% 7.61% 18.74% 3.61% 8.51%
50% 23.61% 74.61% 7.38% 18.65% 3.38% 8.09%
100% 23.28% 74.79% 7.37% 18.99% 3.06% 7.47%
200% 22.75% 74.90% 7.03% 18.49% 3.20% 7.93%
400% 22.21% 76.10% 6.92% 18.95% 2.36% 5.93%

* Improvement and percentage are calculated (0¥.az,s—1 — Cmaz,s) /Cmaz,1 @Nd (Cmaz,s—1 — Cmaz,s) / (Cmaz,1 — Cmaz,4),
respectively.Cr.qz,s represents the makespan obtained by applyisgblots.

In consequence, satisfying solutions can be obtained wittddvantage becomes especially obvious when the problem size
realistic time. increases. The experiment confirms that our formulation is
not only straightforward but also more efficient in general.
) ) In our model constraints (17) and (18) are incorporated to

E. Evaluation of the formulation describe attributes of the binary variablg ;.. Constraints

One main difference of our formulation compared to theimilar to (17) are also considered in [10]. In terms of
model proposed in [17] is the successful removal of tHeeldmann and Biskup [10], the number of iterations required
operation index. In order to compare the efficiency of the¢e solve a flow shop problem could be reduced to 60%
two formulations, we implemented their model in Lingo 9.@ompared to the model without these restrictions. However,
as well (after necessary corrections, so that feasible solutidhe scheduling reality in a job shop environment is much
are generated). 45 instances were tested under identiv@re complicated. In order to investigate the function of
circumstances. these constraints, 60 instances were tested. The results are

As shown in table VIII, our formulation requires sig-depicted in figure 14, where the coefficient is calculated as

nificantly less iterations for most of the instances. This
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Makespan Improvement
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25%

20%

1%  10% 50% 100% 200% 400% " Setup time (%)

Fig. 13. Makespan improvement with different setup times

TABLE VIl
PERFORMANCE OF EQUAL-SIZED SUBLOTS

job- machine 2 sublots 3 sublots 4 sublots Percentage *

2.3 411% 4.75% 4.40% 16,68%
24 3.40% 4.37% 4.44% 18,11%
25 5.78% 7.41% 7.48% 3,65%
2:6 3.09% 4.11% 4.76% 2,50%
33 1.91% 2.41% - 4,94%
Mean 3.05% 3.84% 4.21% 8,19%

iteration required applying equal sublots

*  Percentage- - . - - -
g iteration required applying consistent sublots

5,50

5,00 ﬂ
4,50 /\
4,00 /\

T :

g T |

CO I A 7:

g0 T ] I I i
T X A N S I N AT A
A ] ERTWAVAN S B
LI N VAL L S N A VA SRV A VAV S )

T T T T T
123456 78 9101112131415161718192021222324252627282930 313233 34353637 38 394041424344 454647 4849 5051525354 555657 5859 60

instance

Fig. 14. Performance of (17) and (18)

follows: developed to fulfil the requirements of special production

Iterations required without (17) and (18)  SysStems. _ .
Iterations required employing (17) and (18) Computational results confirm that the makespan can be

. ) ] ] considerably improved, when lot streaming techniques are
By employing these constraints, the necessary iterations fﬂfplied to the standard job shop problem. Furthermore,

some instances, on the one hand, can be reduced to less Hi&Biled analysis is conducted to reveal the relation be-
50%. On the other hand, solving some instances with thagfeen setup times and makespan reduction. Although the

constraints demands exceedingly more iterations. Unlike jiprovement of makespan declines as setup times increase,
a flow shop environment, no conclusive behaviour pattern gj streaming is still advantageous.
these constraints was recognizable.

coefficient =

In comparison to the model established in [17], our for-
mulation is not only straightforward but also more efficient
IV. CONCLUSION in general.
. . . . However he implementation of th imization-
This paper addresses the lot streaming problem in a job OWever, by the implementat ono the opt atp based
; : . oftware Lingo 9.0, only small instances of the job shop
shop environment, where setup times are included. The ; - o
. . : o roblem can be optimally solved within a realistic time span.
proposed integer programming formulation sufficiently de: . o
. . . Lo hus, the development of effective heuristics to solve large
scribes the processing dynamics of individual sublots and . .
. L instances of the problem is desirable for future study. For
enables the simultaneous determination of schedules .on . . o .
) : . . ._instance, the implementation of metaheuristic is advisable.
machines and sublot sizes. In view of setup times, various

types of setups are incorporated. The model is then further

(Advance online publication: 24 May 2011)
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(1]
[2]

(3]

(4]

(5]

(6]
[7]
(8]

9]

TABLE VIl
COMPARISON OF THE PERFORMANCE OF TWO FORMULATIONS
Problem size (a) lter. (our model)  (b) lter. (model of Low et al)Percentage (a/b)
332 1 339311 1661149 20,43%
2 10587 10821 97,84%
3 14750 28919 51,00%
4 27910 56208 49,65%
5 18304 31785 57,59%
6 15267 49228 31,01%
7 18750 42579 44,04%
8 11069 11349 97,53%
9 11169 11494 97,17%
10 5494 4707 116,72%
11 17313 24313 71,21%
12 12117 15198 79,73%
13 14312 20909 68,45%
14 18616 20183 92,24%
15 37712 24313 155,11%
16 21315 27663 77,05%
17 21678 14775 146,72%
18 21778 43153 50,47%
19 19988 33179 60,24%
— T77,06%
2.2.4 20 16485 45645 36,12%
21 9829 13330 73,74%
22 36019 52291 68,88%
23 18457 34088 54,15%
24 31726 72561 43,72%
25 33657 37683 89,32%
26 17932 18015 99,54%
27 19652 24281 80,94%
28 16574 30150 54,97%
29 5412 9431 57,39%
30 4680 10576 44,25%
31 14248 22067 64,57%
32 16422 17778 92,37%
33 2512 5477 45,86%
34 3361 17367 19,35%
61,68%
333 35 763827 950003 80,40%
36 2301475 5993093 38,40%
37 5255761 12591491 41,74%
38 3162333 8806108 35,91%
39 2229550 9719360 22,94%
40 769311 4785587 16,08%
41 1033909 1615861 63,99%
42 739141 2404653 30,74%
43 656268 1410262 46,54%
44 173255 2248802 7,70%
45 80564 131995 61,04%
40,50%
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