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Abstract—This paper’s aim is to present a tuning approach
for full Two-Degree-of-Freedom (2-DoF) PI and PID controllers
for First-Order-Plus-Dead-Time (FOPDT) and Second-Order-
Plus-Dead-Time (SOPDT) controlled processes. The tuning
relations provide the value of the typical parameters for a
PID controller plus the set-point weighting factor, being these
relations driven by just one single design parameter to be
selected by the user. This fact makes the approach easier to
apply. The design procedure also considers the control-loop
robustness by means of the maximum sensitivity requirements,
allowing the designer to deal with the performance-robustness
trade-off.

Index Terms—PID control, Two-Degrees-of-Freedom, Ro-
bustness, Process Control

I. I NTRODUCTION

Most of the single-loop controllers used in practice are
found under the form of a PI/PID controller. Effectively,
since their introduction in 1940 [1], [2] commercial
Proportional - Integrative - Derivative(PID) controllers
have been with no doubt the most extensive option found on
industrial control applications. Their success is mainly due
to its simple structure and meaning of the corresponding
three parameters. This fact makes PID control easier
to understand by the control engineers than other most
advanced control techniques. This fact has motivated a
continuous research effort to find alternative tuning and
design approaches to improve PI/PID based control system’s
performance.

With regard to the design and tuning of PID controllers,
there are many methods that can be found in the literature
over the last sixty years. Special attention is made of
the IFAC workshop PID’00 Past, Present and Future of
PID Control held in Terrassa, Spain, in April of 2000,
where a glimpse of the state-of-the-art on PID control was
provided. It can be seen that most of them are concerned
with feedback controllers which are tuned either with a
view to the rejection of disturbances [3], [4], [5] or for a
well-damped fast response to a step change in the controller
set-point [6], [7], [8]. O’Dwyer [9] presents a collection of
tuning rules for PI and PID controllers, which show their
abundance.

Recently, tuning methods based on optimization
approaches with the aim of ensuring good stability
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robustness have received attention in the literature [10],
[11]. Also, great advances on optimal methods based on
stabilizing PID solutions have been achieved [12], [13].
However these methods, although effective, use to rely
on somewhat complex numerical optimization procedures
and do not provide tuning rules. Instead, the tuning of the
controller is defined as the solution of the optimization
problem.

Among the different approaches, the direct or analytical
synthesis constitutes a quite straightforward approach to
PID controller tuning. The controller synthesis presented by
Martin [6] made use of zero-pole cancellation techniques.
Similar relations were obtained by Riveraet. al. [7], [14],
applying the IMC concepts of Garcia and Morari [15]
to tuning PID controllers for low-order process models.
A combination of analytical procedures and the IMC
tuning can be found in [16], [17], [18]. With this respect,
the usual approach is to specify the desired closed-loop
transfer function and to solve analytically for the feedback
controller. In cases where the process model is of simple
structure, the resulting controller has the PI/PID structure.
Most of the analytically developed tuning rules are related
with the servo-control problem while the consideration
of the load-disturbance specifications has received not
so much attention. It is worth to mention the notable
work of Chen and Seborg [19], where the importance of
emphasizing disturbance rejection as the starting point
for design is discussed. However it is well known that
if we optimize the closed-loop transfer function for a
step-response specification, the performance with respect
to load-disturbance attenuation can be very poor [20]. This
is indeed the situation, for example, for IMC controllers
that are designed in order to attain a desired set-point to
output transfer function presenting a sluggish response to
the disturbance [18].

The need to deal with both kind of properties and the
recognition that a control system is, inherently, a system with
Two Degrees-of-Freedom (2-DoF) - two closed-loop transfer
functions can be adjusted independently -, motivated the
introduction of 2-DoF PI/PID controllers [21]. The 2-DoF
formulation is aimed at trying to met both objectives, say
good regulation and tracking properties. This second degree
of freedom is aimed at providing additional flexibility to
the control system design. See for example [22], [23], [24]
and its characteristics revised and summarized in [25], [26]
and [27], as well as different tuning methods that have been
formulated over the last years [25], [28], [29], [30], [31],
[32], [33], [34], [35]. There have also been some particular
applications of the 2-DoF formulation based on advanced
optimization algorithms (see for example [36], [37], [38],
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[39]). The point is that, with a few exceptions such as
the AMIGO [34] and Kappa-Tau;κ − τ ; [40] methods,
no analytical expressions are provided for all controller
parameters (feedback and reference part) and, at the same
time, ensure a certain robustness degree for the resulting
closed-loop. To provide simple tuning expressions and, at
the same time, guarantee some degree of robustness are
the main contributions of the paper.This second degree of
freedom is found on the presented literature as well as in
commercial PID controllers under the form of the well
known set-point weighting factor (usually calledβ) that
ranges within0 ≤ β ≤ 1.0, being the main purpose of this
parameter to avoid excessive proportional control action
when a reference change takes place. Therefore the use of
just a fractionof the reference.

However, performance with respect to load-disturbance
attenuation is just one of the drawbacks of the analytical
approaches to PI/PID controller design. In fact, the known
analytical approaches do not include any consideration on
the control system robustness. The usual approach is to
measure the robustness of the resulting design (usually
in terms of the peak value of the sensitivity function
Ms) instead of specifying a desired robustness level from
the very beginning. It is with this respect that this paper
provides its main contribution: a load-disturbance based
analytical design being theonly design parameter the desired
robustness level of the resulting control system. At this
point, the performance-robustness tradeoff arises and has to
be introduced into the design procedure. As for set-point
performance the desired closed-loop time constant is to
be chosen as fast as possible (robustness permitting) the
presented procedure characterizes, for each possible peak
value of the sensitivity function (within its usual [1.2 -
2.0] range), the lowest allowable time constant. This first
analysis conducts to a design approach that is divided in
two steps: first of all, an equation is provided that generates
the desired closed-loop time constant from the specified
robustness; on a second step this time-constant is introduced
on the parameterized controller parameters relations. It is
worth to stress that at this point the approach is presented
here just for PI controller design, being the full PID case
more involved and its full derivation is to be presented
separately.

As the design is based on a load-disturbance specification,
in order to improve the resulting step-response performance,
the available second degree of freedom under the form of
a set-point weighting factor will be fully included into the
design. While in [19] just some ad-hoc values are used that
show that better step response can be obtained, in this work
a selection rule is provided on the basis of a desired set-
point to output transfer function. Therefore providing the a
full tuning for a 2-DoF PI/PID controller.

Although the 2-DoF controller design approach presented
hereafter may seem simple and straightforward it has not
been fully detailed. Also, it is the authors opinion that this
idea has in its simplicity one of its main attractiveness
(as well as theλ-tuning method of Dahlin [41], the IMC
approach developed by Morari and coworkers [7], [14] or
the work by Gorez [42]) and this motivates the extension

presented in this work by providing full tuning rules that
also include the set-point processing components, then the
second Degree-of-Freedom, for PI and PID controllers. In
addition, the formulation was raised in order to obtain a
control system with a dynamic performance that would be
simultaneously considered optimum and robust.

Therefore, the work presented in this paper constitutes a
direct extension of the ideas initiated in [19], providing a
single-parameter driven Robust Tuning for 2-DOF PI and
PID controllers. Therefore called Analytical Robust Tuning
(ART2).

The organization of the paper is as follows. Next section
introduces the framework and notation related to the control
system as well as how the design problem is formulated.
Section III summarizes the early developedART2 method
for the PI2 case, whereas in section III there is thePID2

tuning rules. Section V presents application examples and,
finally, in section VI conclusions are conducted.

II. FRAMEWORK AND PROBLEM FORMULATION

This section will present the controller structure we will
work with as well as how the design problem is posed.
The basic design relations that will be used on following
sections will be obtained. Considerer theTwo-Degree-of-
Freedom(2-DoF) feedback control system of Fig. 1 where
P (s) is the controlled process transfer function,Cr(s) the
set-point controller transfer function,Cy(s) the feedback
controller transfer function, andr(s) the set-point,d(s) the
load-disturbance, andy(s) the controlled variable. The output
of the 2-DoF PI,PI2, controller is given by

u(s) = Cr(s)r(s) − Cy(s)y(s) (1)

For aPI2 controller [43] it is

u(s) = Kc

(

β +
1

Tis

)

r(s) −Kc

(

1 +
1

Tis
+ Tds

)

y(s)

(2)
where Kc is the controller gain, Ti the integral time
constant, Td the derivative time constant, and β the set-
point weighting factor(0 ≤ β ≤ 1).

Then, the controller’s transfer functions are

Cr(s) = Kc

(

β +
1

Tis

)

(3)

and

Cy(s) = Kc

(

1 +
1

Tis
+ Tds

)

(4)

The closed-loop control system response to a change in
any of its inputs, will be given by

y(s) =
Cr(s)P (s)

1 + Cy(s)P (s)
r(s) +

P (s)

1 + Cy(s)P (s)
d(s) (5)

or in a compact form by

y(s) = Myr(s)r(s) +Myd(s)d(s) (6)
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Fig. 1. 2-DoF Control System.

where Myr(s) is the transfer function from set-point to
process variable: theservo-control closed-loop transfer
function or complementary sensitivity functionT (s);
and Myd(s) is the one from load-disturbance to process
variable: theregulatory controlclosed-loop transfer function
or disturbance sensitivity functionSd(s).

If β = 1, all parameters ofCr(s) are identical to
the ones ofCy(s). In such situation, it is impossible to
specify the dynamic performance of the control system
to set-point changes, independently of the performance to
load-disturbances changes. Otherwise, if the contrary,β < 1,
given a controlled processP (s), the feedback controller
Cy(s) can be selected to achieve a target performance for
the regulatory controlMyd(s), and then use the set-point
weighting factor in the set-point controllerCr(s), to modify
the servo-control performanceMyr(s).

On the other hand, the characteristic polynomial of the
closed-loop control system is

p(s) = 1 + Cy(s)P (s) (7)

from where it can be seen that the closed-loop poles
location; therefore the closed-loop stability; depends only
on theCy(s) parameters, hence not affected byβ.

The proposedAnalytic Robust Tuning of Two-Degree-of-
Freedom PI/PID controllers(ART2) [44], [28], is aimed at
producing a control system that responds fast and without
oscillations to a step load-disturbance, with a maximum
sensitivity lower than a specified value; in order to assure
robustness; and which will also show a fast non oscillating
response to a set-point step change, not requiring strong
or excessive control effort variations (smoothcontrol). Of
course, the fact of imposing a non-oscillatory response
introduces an additional constraint and may seem excessively
conservative. It is known that other approaches based on
minimizing some error based index (Integrated absolute error
for example) generate slightly oscillatory responses that may
be faster. However because one of the aims of the approach is
to be able to explicitly introduce the robustness-performance
tradeoff into the design relations, smooth signals are pre-
ferred. Therefore the use of non-oscillatory target responses.

A. Outline of Controller Design Procedure

The first step in the Two-Degree-of-Freedom controller
synthesis consists of obtaining the feedback controllerCy(s),
required to achieve a targetM t

yd(s) regulatory closed-loop

transfer function. From (5) and (6) the regulator control
closed-loop transfer function is given by

y(s)

d(s)
= Myd =

P (s)

1 + Cy(s)P (s)
(8)

and the one for servo-control is

y(s)

r(s)
= Myr(s) =

Cr(s)P (s)

1 + Cy(s)P (s)
(9)

which are related by

Myr(s) = Cr(s)Myd(s) (10)

From (8) once the controlled process is given and the target
regulatory transfer function,M t

yd(s), specified the required
feedback controller can be synthesized. The resulting feed-
back controller design equation is

Cy(s) =
P (s)−M t

yd(s)

P (s)M t
yd(s)

=
1

M t
yd(s)

− 1

P (s)
(11)

Once, as a first step, the feedback controllerCy(s), is
obtained from (11), on a second step, the set-point controller
Cr(s) free parameter (β) can be used in order to modify
the servo-control closed-loop transfer functionMyr(s) (10).

The outlined design approach is in fact like the direct
design as proposed within the IMC framework [7]. In IMC
however, the designer has to choose the well known IMC de-
sign parameter in order to satisfy the performance/robustness
tradeoff. What will be proposed in the formulation presented
here is to avoid such step, by an automatic selection of the
controller parameters in terms of the desired robustness. The
selection of the control system bandwidth is done in such a
way the closed-loop bandwith is as large as possible while
meeting the robustness constraint. It could therefore be inter-
preted as an IMC controller with robustness considerations
explicitly incorporated.

III. 2-D OF PI ROBUST TUNING FOR

FIRST-ORDER-PLUS-DEAD-TIME PROCESSES

Consider the First-Order-Plus-Dead-Time (FOPDT) con-
trolled process given by

P (s) =
Kpe

−Ls

Ts+ 1
(12)

where Kp is the process gain,T the time-constant, and
L its dead-time. From here and after,τo = L/T will be
referred as the controlled processnormalized dead-time. In
this work process models with normalized dead-timeτo ≤ 2
are considered. Processes with long dead-time will need
some kind of dead-time compensation scheme (a Smith
predictor, for example).

For the FOPDT process the specified regulatory and
closed-loop control target transfer functions are chosen as

M t
yd(s) =

Kse−Ls

(τcTs+ 1)2
(13)

and the closed-loop target function selected for the servo-
control as
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M t
yr(s) =

e−Ls

τcTs+ 1
(14)

whereτc will be thedimensionless design parameter. It is the
ratio of the closed-loop control system time constant (Tc) to
the controlled process time constant (T ). The specified target
closed-loop transfer functions (13) and (14) will provide non-
oscillating responses to step changes in both, the set-point
and the load-disturbance, with an adjustable speed.

A. Controller Parameters

In order to synthesize the 2-DoF PI controller for the
FOPDT process it is necessary to use a rational function
in s as an approximation of the controlled process dead-
time. This approximation will affect the closed-loop response
characteristics. Using the Maclaurin first order series for the
dead-time

e−Ls ≈ 1− Ls (15)

and 12 and 13 in 11, thePI2 controller tuning equations are
obtained as

κc = KcKp =
2τc − τ2c + τo
(τc + τo)2

(16)

τi =
Ti

T
=

2τc − τ2c + τo
1 + τo

(17)

whereκc andτi are the controllernormalized parameters.

In order to assure that the controller parameters (16) and
(17) have positive values, the design parameterτc must be
selected within the range

0 < τc ≤ 1 +
√
1 + τo (18)

The resulting regulatory control closed-loop transfer func-
tion is

Myd(s) =
Tise

−Ls

Kc(τcTs+ 1)2
(19)

The variation of the resulting PI controller normalized
parameters (16) and (17) is show in Fig. 2.

0 0.5 1 1.5 2
0

5

10

15

τ
c

κ c =
 K

c K
p

 

 

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
c

τ i =
 T

i/T

τ
o
= 0.10, 0.25, 0.50, 1.0

τ
o
=0.10

τ
o
=0.25

τ
o
=0.50

τ
o
=1.0

τ
o
=0.10

τ
0
=1.0

Fig. 2. PI Normalized Parameters.

B. Set-point Weighting Factor

As the closed-loop transfer functions are related by
Myr(s) = Cyr(s)Myr(s), by using controllerCr(s), Myr(s)
can be written as

Myr(s) =
Kc (βTis+ 1)

Tis
Myd(s) (20)

Introducing in (20) the regulatory control closed-loop
transfer function (19) and also the controller parameters (16)
and (17), the servo control transfer function then becomes

Myr(s) =
(βTis+ 1) e−Ls

(τcTs+ 1)2
(21)

As the servo-control target transfer function was specified
in (14), from (14), (20) and (21) in order to obtain a non-
oscillatory response, an adequate selection of the set-point
weighting factor would beβ = τcT/Ti, and then

β =
τcT

Ti

, 0 < τc ≤ 1 (22)

outside this range

β = 1, 1 < τc < 1 +
√
1 + τo (23)

Effectively, it can be verified thatτi ≤ 1. Therefore, if
τc > 1, as β = τc(T/Ti) we will have β = τc/τi > 1.
In addition if τc ≤ 1 τi is always larger thanτc therefore
assuringβ = τc/τi ≤ 1. The constraintβ ≤ 1 is introduced
because in commercial controllers the set-point weighting
factor (when available) is restricted to have a value lower
than one. This selection for the0 < τc ≤ 1 range, will
made the set-point controller zero to cancel one of the closed-
loop poles. This weighting factor also has influence in the
controller output when the set-point changes. Effectively,
the instantaneous change on the control signal caused by
a sudden change in the reference signal of magnitude∆r is
given by ∆ur = Kcβ∆e = Kcβ∆r therefore, when very
fast regulatory control responses are desired, high controller
gain values are required, and the controller instantaneous
output change when the set-point changes may be high. Then
the controller output will be limited to be not greater than the
total change on the set-point and then the set-point weighting
factor selection criteria becomes

β = min

{

1

Kc

,
τcT

Ti

, 1

}

(24)

C. Control System Robustness

The maximum sensitivity

Ms = max
ω

|S(jω)| = max
ω

∣

∣

∣

∣

1

1 + Cy(jω)P (jω)

∣

∣

∣

∣

(25)

will be used as an indication of the closed-loop control
system robustness.

The use of the maximum sensitivity as a robustness
measure, has the advantage that lower bounds to the gain
and phase margins [40] can be assured according to

Am >
Ms

Ms − 1
(26)
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φm > 2 sin−1

(

1

2Ms

)

(27)

A robustness analysis has been performed and shown in
Fig. 3. This analysis shows that the control system maximum
sensitivityMs depends of the model normalized dead time
τo and the design parameterτc.
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Fig. 3. Control System Robustness

In order to avoid the loss of robustness when a very low
τc is used, it is necessary to establish a lower limit to this
design parameter. This relative loss of stability is greater
when the normalized model dead timeτo is high.

Using the inverse function of Fig. 3; shown in Fig. 4, the
lower limits to the design parameter for a specific robustness
level can be obtained. These limits are shown in Fig. 5.
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Fig. 4. Robustness inverse function

From Fig. 5 the design parameter lower limit for a given
robustness level can be expressed in parameterized form as

τcmin = k1(Ms) + k2(Ms)τo (28)

where thek1 andk2 are show in Table I.

TABLE I
EQUATION (28) CONSTANTS

Ms 1.2 1.4 1.6 1.8 2.0
k1 0.4836 0.4152 0.3441 0.3254 0.3042
k2 1.8982 0.9198 0.6659 0.4853 0.3822
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Fig. 5. Design Parameter Low Limits

The design parameter equations (28) can be expressed as
a single equation as

τcmin = k11(Ms) +

[

k21(Ms)

k22(Ms)

]

τo (29)

k11(Ms) = 1.384− 1.063Ms + 0.262M2
s

k21(Ms) = −1.915 + 1.415Ms − 0.077M2
s

k22(Ms) = 4.382− 7.396Ms + 3.0M2
s

Also from Fig. 3 it can be seen that; as usual; as the
system becomes slower its robustness increases but if very
slow responses are specified the system robustness starts to
decrease, therefore the upper limit of the design parameters
τc also needs to be constrained as it is shown in Fig. 4. By
combining the design parameter performance and robustness
constraints it may be selected within the range

max(0.50, τcmin) ≤ τc ≤ 1.50 + 0.3τo (30)

whereτcmin is given by (29).

D. Control System Performance

The control system response will be given then by the
equation

y(s) =
(βTis+ 1)e−Ls

(τcTs+ 1)2
r(s) +

Kse−Ls

(τcTs+ 1)2
d(s) (31)

with

K = Kp

[

τ2c T +
(2τc − τ2c τo)Tτo

1 + τo

]

(32)

which reduces to

y(s) =
e−Ls

τcTs+ 1
r(s) +

Kse−Ls

(τcTs+ 1)2
d(s) (33)

if β = τcT/Ti.
As it can be observed from (33) the obtained control

system output corresponds to the regulatory and servo-
control target closed-loop transfer functions specified in (13)
and (14). In this case, the system responses to a step change
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in both, the set-point and the load-disturbance, will be non-
oscillating. The performance (system speed) to robustness
(Ms) trade-off may be resolved by the designer selecting
the design parameterτc that guarantees a minimum desired
robustness by (29).

IV. 2-DOF PID ROBUST TUNING FOR

SECOND-ORDER-PLUS-DEAD-TIME PROCESSES

By using a similar procedure as the one presented in
previous section for the PI controller, we will start right now
with a Second-Order-Plus-Dead-Time (SOPDT) model of the
form

P (s) =
Kpe

−L
′′

s

(T ′′s+ 1)(aT ′′s+ 1)
, τo =

L′′

T ′′
(34)

0.1 ≤ τo ≤ 1.0, 0.15 ≤ a ≤ 1.0

In this situation, a third mode will need to be introduced
into the closed-loop system’s target responses. In this case,
the design parameterτc will denote the relation between the
desired closed-loop time constant andT ′′ (τc = Tc/T

′′).

The generated closed-loop relations will take the form:

y(s) =
(βTis+ 1) e−Ls

(τcT ′′s+ 1)2(Tcxs+ 1)
r(s)

+
Kse−Ls

(τcT ′′s+ 1)2(Tcxs+ 1)
d(s) (35)

where Tcx is the time constant of the third pole of the
closed-loop transfer function. This time constant was
selected asTcx = 0.1τcT

′′ to reduce its influence on the
control system dynamic behavior.

From (35), the regulatory control closed-loop transfer
function is

Myd(s) =
Kse−Ls

(τcT ′′s+ 1)2(Tcxs+ 1)
(36)

and the servo-control closed-loop transfer function is

Myr(s) =
(βTis+ 1) e−Ls

(τcT ′′s+ 1)2(Tcxs+ 1)
(37)

that are related by

Myr(s) =
Kc (βTis+ 1)

Tis
Myd(s) (38)

As well as in the PI controller case, for the PID controller
synthesis procedure was necessary to approximate the
dead-time with the MacLaurin first order series (15).

It is worth to remark that it would be also possible to get
a PID controller from a FOPDT model by approximating the
dead-time by using a first order Padé approximation instead
of the first order MacLaurin expansion. The derivation how-
ever is not included here but follows the same procedure.

A. Controller Parameters

The PID controller parameters are determined by the
following equations for processes with parameters in the
range0.1 ≤ τo ≤ 1.0 and0.15 ≤ a ≤ 1.0.

κc =
10τi

21τc + 10τo − 10τi
(39)

τi =
(21τc + 10τo)[(1 + a)τo + a]− τ2c (τc + 12τo)

10(1 + a)τo + 10a+ 10τ2o
(40)

τd =
12τ2c + 10τiτo − (1 + a)(21τc + 10τo − 10τi)

10τi
(41)

β = min

{

1

Kc

,
τcT

′′

Ti

, 1

}

(42)

The controller normalized parametersκc (KcKp), τi
(Ti/T ) and τd (Td/T ), and β depend on the model
normalized dead-timeτo and time constants ratioa, and on
the design parameterτc.

To obtain positive controller parameters the design param-
eter upper value must be restricted to

τc ≤ 1.25 + 2.25a (43)

Besides, due that the use of the dead-time first order
MacLaurin series approximation made the system output to
deviate from the target one when very fast responses are
specified it is recommended to select the design parameter
such that

0.065(2− a+ 10τo + 10aτo) ≤ τc (44)

In addition to the performance of the resulting control
system its robustness was also investigated.

A minimum system robustness level is incorporated into
the design process estimating a recommended maximum
speed (τcmin) of the resulting closed-loop control system
parameterized in terms of the maximum sensitivity function
(Ms) by using

τcmin = k11(Ms) + k12(Ms)a
k13(Ms) (45)

k11(Ms) = 2.442− 2.219Ms + 0.515Ms
2

k12(Ms) = 10.518− 8.990Ms + 2.203Ms
2

k13(Ms) = 0.949− 0.197Ms

Combining the performance and robustness consideration
above the design parameter may be selected in the range

τcmin ≤ τc ≤ 1.25 + 2.25a (46)

The range limits for the design parameter selection (46)
then combine the necessary restriction so that all con-
troller parameters are positive and the accomplishment of
a specified maximum sensitivity, with the necessity that the
obtained response does not deviate too much away from the
desired response, due of the dead-time approximation used
in obtaining the tuning equations.
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Fig. 6. Design Parameter Constraints

B. Control System Robustness

In order to analyze the resulting closed-loop robustness,
the maximum sensitivityMs was determined forτc within
0.25 and 3.5 allowing establishing (45), in order to estimate
the lowerτc value.

The relations between the design parameterτc, the closed-
loop robustnessMs and the controlled process normalized
dead-timeτo and the time constant ratioa are shown in Fig.
6.

C. Control System Performance

Now the control system response is given by

y(s) =
(βTis+ 1) e−Ls

(τcT ′′s+ 1)2(0.1τcT ′′s+ 1)
r(s)

+
Kse−Ls

(τcT ′′s+ 1)2(0.1τcT ′′s+ 1)
d(s) (47)

with K given by

K =
KpT

′′[(21τc + 10τo)τ
2
o + τ2c (τc + 12τo)]

10[(1 + a)τo + a+ τ2o ]
(48)

and, as before,τc is the design parameter that expresses
the relation between the closed-loop control system time
constant and the controlled process dominant time constant.

If β = τcT/Ti (47) reduces to

y(s) =
e−Ls

(τcT ′′s+ 1)(0.1τcT ′′s+ 1)
r(s)

+
Kse−Ls

(τcT ′′s+ 1)2(0.1τcT ′′s+ 1)
d(s) (49)

obtaining in such case the first-order and second-order target
closed-loop transfer functions (13) and (14) (for PI case),
plus a fast additional pole that will have a neglected influence
over the system step responses.

V. A PPLICATION OF THEART2 TUNING METHOD

This section provides an example of application of the
presented tuning approach for a high order controlled
process. The example starts showing the proposed method
application in the case ofPI2 tuning from the process
FOPDT model approximation followed with thePID2

tuning from its SOPDT model, also a comparison of the
proposed approach for tuning PID controller with other
recognized tuning approaches is included.

In order to have simulation results more close to industrial
practice, in all the examples it is assumed that all variables
can vary in the 0 to 100% normalized range and that
in the normal operation point, the controlled variable, the
set-point and the control signal, have all values close to 70%.

The selected example will show, on one side, how the
proposedART2 method performs by using the desired
maximum sensitivity value as the system specification. On
the other side, comparison with other well known direct
synthesis methods such as the DS-d from [19] and SIMC
from [18] will be outlined.

The maximum sensitivity valueMs will be used as a
measure of the control system robustness. Recommended
values for Ms are typically within the range 1.2 - 2.0.
Although the DS-d method does not provide any relation be-
tween its design parameterTc and the obtained control-loop
robustness, for comparison purposes the design parameter for
this method will be selected in such a way to obtain similar
robustness levels. For the SIMC method its recommendation
for robust tuning of using a design parameter equal to the
model apparent dead-time will be followed.

Controlled Process:Considerer the fourth order system
with the transfer function

P (s) =
1

(s+ 1)(0.4s+ 1)(0.16s+ 1)(0.64s+ 1)
(50)

The FOPDT model approximation for this process is

P1(s) =
e−0.517s

1.149s+ 1
(51)

and the approximation with a SOPDT model

P2(s) =
e−0.147s

(0.856s+ 1)(0.603s+ 1)
(52)

Both models were obtained using a three-point
identification procedure [45].

Based on the previous approximations, a 2-DoF PI and a
2-DoF PID controller will be used respectively.

A. Proportional-Integral (PI) Controller

From model (51) we haveKp = 1.0, T = 1.149,
L = 0.517 and τo = 0.450. Using (29) and (30) the
recommended range for the design parameter for this model
is max(0.50, τcmin) ≤ τc ≤ 1.635, where τcmin can be
computed using (29) on the basis of aMs specification.
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TABLE II
EXA MPLE - ART2 PI CONTROLLERPARAMETERS AND ROBUSTNESS

τdc Kc Ti β Mr
sm Mr

sp

0.50 1.330 0.951 0.604 1.854 1.704
0.60 1.170 1.022 0.674 1.667 1.542
0.80 0.902 1.117 0.823 1.439 1.394
1.00 0.690 1.149 1.0 1.315 1.286
1.20 0.518 1.117 1.0 1.231 1.219
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Fig. 7. Example -ART2 PI System Responses

The PI2 controller parameters and the control-loop
robustness obtained with a selected set of parameters are
shown in Table II. In this TableM r

sm is the predicted
robustness obtained using the model as the controlled plant
and M r

sp the one finally obtaining controlling the real
high order process. As seen the obtained robustness are all
slightly higher that ones predicted. Therefore confirming the
safe way of choosing the time constantτdc .

Fig. 7 shows the system responses to a20% change in
set-point followed by a10% change in load-disturbance with
three different design parameters.

The DS-d [19]PI1 controller tuning equations are, in this
case, the same as those ofART2 for aPI2 controller except
with β = 1.0 in all cases. The design parameter of this
method is the closed-loop time constantTc, then using for
designT d

c = τdc T same controller parameters are obtained.
Control systems will have same robustness and response
to a disturbance change but different response to a change
in set-point. As shown in Fig. 8 in this particular example
the controller parameters corresponding toTc = 0.575
(τc = 0.50) andTc = 0.689 (τc = 0.60) made the controller
output to exceed its upper limit and may not be applied
directly to a 1-DoF PI controller (β = 1.0). If a high speed
and low robustness system is desired a weighting factor
must be used (βmax = 0.50 and 0.60 for the two cases
indicated above) or the control system operator must restrict
the set-point changes to small increments to avoid controller
output saturation.

Fig. 9 shows the time responses comparison for a given
robustness level. In this caseMs ≈ 1.4. This is the value
we get if we apply the SIMC tuning. As it can be verified,
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the outputs are reasonably similar but the proposedART2

method has lower control energy usage.

B. Proportional-Integral-Derivative (PID) Controller

From model (52) we haveKp = 1.0, T1 = 0.856,
T2 = 0.603, L′′ = 0, 147, a = 0.704 and τ ′′o = 0.172.
Using (45) and (46) the recommended range for the design
parameter for this model isτcmin ≤ τc ≤ 2.834 where
τcmin can be computed using (45) on the basis of aMs

specification.

The PID2 controller parameters and the control-loop
robustness obtained with theART2 method and a selected
set of design parameters are shown in Table III.

The PID1 controller parameters and the control-loop
robustness obtained with the DS-d method and a selected
set of design parameters are shown in Table IV.
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TABLE III
EXA MPLE - ART2 PID CONTROLLERPARAMETERS AND ROBUSTNESS

τdc Kc Ti Td β Mr
sm Mr

sp

1.2 4.028 1.846 0.471 0.248 1.887 1.801
1.4 3.144 2.021 0.536 0.318 1.728 1.666
1.6 2.478 2.154 0.604 0.403 1.592 1.554
1.8 1.964 2.242 0.675 0.509 1.488 1.453
2.0 1.558 2.279 0.754 0.642 1.416 1.396
2.2 1.231 2.263 0.843 0.813 1.352 1.326
2.4 0.963 2.189 0.947 0.939 1.297 1.273
2.6 0.742 2.053 1.076 1.0 1.249 1.235
2.8 0.556 1.852 1.248 1.0 1.201 1.200

TABLE IV
EXA MPLE - DS-D PID CONTROLLERPARAMETERS AND ROBUSTNESS

T d
c Kc Ti Td β Mr

sm Mr
sp

0.35 6.335 1.034 0.272 1.0 1.934 2.045
0.40 5.191 1.129 0.291 1.0 1.737 1.820
0.45 4.293 1.214 0.307 1.0 1.593 1.635
0.50 3.574 1.287 0.322 1.0 1.484 1.507
0.55 2.992 1.347 0.333 1.0 1.398 1.432
0.60 2.514 1.393 0.342 1.0 1.326 1.356
0.65 2.116 1.424 0.348 1.0 1.269 1.295
0.70 1.782 1.439 0.350 1.0 1.221 1.243

As shown in Table III and IV the system robustness
obtained with theART2 tuning are slightly higher than the
ones predicted with the SOPDT model while the robustness
obtained with the DS-d tuning are slightly lower than the
ones expected. Considering the control system robustness
theART2 tuning is safer than the DS-d tuning.

The recommended SIMC tuning for aPID1 controller
applied to this example provides a robustness level of
Ms ≈ 1.8 and will not be included in the comparison as
higher robustness level are asked for.

For comparison purposes theART2 and DS-d tuning
parameters,τc and Tc respectively, where adjusted in such
a way to obtain same target robustnessM t

s in the range
1.2 to 2.0. The required controller parameters to do this
are shown in Tables V and VI. With the DS-d tuning
method there is no way to relate the tuning parameterTc

used with the resulting control system robustness (only the
closed-loop speed is considered). On the other handART2

recommended maximum speed for a target robustnessτcmin

(45) gives a safe estimation of the minimum value of the
design parameterτc to use.

Fig. 10 and 11 show the time responses of both tuning

TABLE V
EXAMPLE - ART2 PID CONTROLLERPARAMETERS

M t
s τc Kc Ti Td β

2.0 1.00 5.243 1.633 0.407 0.191
1.6 1.51 2.756 2.100 0.573 0.363
1.2 2.80 0.556 1.852 1.248 1.0

TABLE VI
EXA MPLE - DS-D PID CONTROLLER PARAMETERS

M t
s Tc Kc Ti Td β

2.0 0.360 6.082 1.054 0.276 1.0
1.6 0.465 4.060 1.237 0.312 1.0
1.2 0.750 1.498 1.438 0.347 1.0
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approaches. While the proposed method ensures the control
variable do not exceed the 100%, as shown in Fig. 11 the
PID1 DS-d controller output to a20% set-point change
exceed its upper limit in all cases. For example for the
Ms = 2.0 case the controller goes up to202% (a change of
132%) and in theMs = 1.8 case goes up to180% (a 110%
change) that are not physically possible in a real world
application.

Fig. 12 shows a comparison of the system output for the
Ms = 2.0 and 1.6 cases withART2 (PID2) and DS-d
(PID1) settings.

VI. CONCLUSIONS

This paper has presented an analytically obtained
method,ART2, developed for Two-Degree-of-Freedom PID
controllers. The method allows to obtain a control system
that exhibits fast response to a load-disturbance step change
yielding at the same time a desired minimum level of
robustness. Selecting the design parameterτc the designer
establishes the desired control system response speed (as the
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ratio between the closed-loop and model time constants). As
the τc value becomes lower, the system response becomes
faster, but its robustness decreases.

In order to establish the required control system
robustness, given by the maximum sensitivityMs, equations
are provided for estimation of the minimumτc allowed.

The control system performance to a set-point step
change can be modified by an adequate selection of the
Two-Degree-of-Freedom controller set-point weighting
factor β. The use ofβ ≤ 1 values allows to decrease the
servo-control response maximum overshot when very fast
responses have been specified for the regulator control.

The examples presented show the advantages of theART2

tuning procedure. It is worth to mention the flexibility that
allows the designer to take into consideration the regulatory
control desired speed of response, control loop minimum
required level of robustness and the resulting servo-control
response characteristics.
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[34] T. Hägglund and K.Åström, “Revisiting the Ziegler-Nichols tuning
rules for PI control,”Asian Journal of Control, vol. 4(4), pp. 364–
380, 2002.

[35] R. Vilanova, V. M. Alfaro, and O. Arrieta, “Ms based approach
for simple robust pi controller tuning design,” inLecture Notes in
Engineering and Computer Science: Proceedings of The International
MultiConference of Engineers and Computer Scientists 2011, 16-18
March, 2011, Hong Kong, 2011, pp. 767–771.

[36] D. H. Kim, “Tuning of 2-DOF PID controller by immune algorithm,”
in Congress on Evolutionary Computation (CEC’02), May 12-17,
Honolulu, HI-USA, 2002, pp. 675–680.

[37] ——, The Comparison of Characteristics of 2-DOF PID Controllers
and Intelligent Tuning for a Gas Turbine Generating Plant. Springer
Berlin / Heidelberg, Lecture Notes in Computer Science, 2004.

[38] M. Sugiura, S. Yamamoto, J. Sawaki, and K. Matsuse, “The basic
characteristics of two-degree-of-freedom PID position controller us-
ing a simple design method for linear servo motor drives,” in4th
International Workshop on Advanced Motion Control (AMC’96-MIE),
March 18-21, Mie-Japan, 1996, pp. 59–64.

[39] J.-G. Zhang, Z.-Y. Liu, and R. Pei, “Two degree-of-freedom PID con-
trol with fuzzy logic compensation,” inFirst International conference
on Machine Learning and Cybernetics, November 4-5, Beijing-China,
2002, pp. 1498–1501.
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