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wire delays. The signal values in NCL are directly used for
Abstract— Due to a number of existing limiting factors in representing the data arrival, and they monotonically transit
synchronous circuit design, the semiconductor industry gives petween ‘complete data’ and ‘all NULL (no data)’. NCL
renewed interest to the application of asynchronous technology. paradigm is attractive since it has the merit of asynchronous
NCL (NULL Conventional Logic) is a Delay-Insensitive (DI) circuits with considerably less design cost and risk.

clockless paradigm convenient for implementing asynchronous
circuits. Efficient analysis methods and tools are proposed to ~ Many language based approaches have already been

specify and verify such DI systems. Based on DISP (Delay Proposed for asynchronous circuit synthesis. In [2], several
Insensitive sequential Process) specification, this paper basic Delay Insensitive Sequential Process (DISP) [3]

exemplifies application of formal methods by applying Process constructs have been successfully mapped to NCL and that
Analysis Toolkit (PAT) to model and verify behavior of NCL  ghows a step towards an alternative synthesis path for NCL

circuits. A few useful constructs, such as Boolean logic gates, . _ .
binary half adder and pipeline ring, are successfully modeled circuits. However, these DISP constructs lack of formal

and verified by using PAT. The flexibility and simplicity of  Verification support.
modeling, simulation and verification show the usefulness and ~ Communicating Sequential Programs (CSP#) (presented
applicability of PAT for NCL circuit design and verification. in the toolkit PAT [5]) is a programming language that can be
used for both modeling and verifying the behavior of variety
_ In(_jex Terms—NCL circuits, CSP#, specification, integrated of concurrent systems. This paper seeks the way of mapping
cireutts. NCL circuits to CSP# constructs, which allows the use of the
Process Analysis Toolkit (PAT) [5] to model and verify the
| INTRODUCTION behavior of NCL circuits through CSP# constructs. The
' operator of CSP# are based on the classic CSP process
SYNCHRONOUS and clocked architectures haV%Igebra [4]
dominated digital design for many years. With the Thijs paper has been organized in the following way. The
development of manufacturing technology, tens of billions gfext section gives an overview of NCL circuits. Section Il
transistors can be integrated on to a single chip. At the Saf|gs out the DISP language syntax, and presents how to
time, however, concerns have been raised due to maghvert DISP into CSP#. The methodology of verification in
limiting factors of the synchronous design, includingpAT is then described in the last part of Section IIl. Through
increasing clock frequency, decreasing chip size, ar@veral case studies, Section IV presents the synthesis,
increasing power consumption. It seems that the clock dparacterization and verification of several NCL circuit

getting harder and harder to manage and the increasigdels using PAT. Finally, we draw conclusions in Section
difficulties of synchronous design have renewed the interegt

in asynchronous digital design, which is thought to be a
potential solution for many inherent defects of clocked II. OVERVIEW OENCL
system.

NULL Conventional Logic (NCL) integrates the Since Boolean functions determine the output values based

: . .~ on only the input value, and since the speed of different signal
expression of data transformation and the expression O : . . : : o

. . - . . aths is varied, a series of intermediate result transitions may
control into a single symbolically determined expression [1].

. . . delivered ahead of valid stable transitions. It is hard to
It is one of the promising methods that can design an . . I .
. - - . express the boundaries of instantiation and resolution by
implement of asynchronous circuits. Unlike Boolean logi

NCL circuits perform complete function independent of th%iglgc;rr]lallogt;(r:ne-dependent and symbolic-value-dependent
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at the input. Similarly, NULL value will be asserted to theasserted along with input B, C or both. Then the gate can be
output only when there is ‘all NULL' at the input. Therepresented by a logical equation Z=AB+AC.

completeness of input criteria is a significant feature of DI

circuits. Consider the combinational expression in Fig. 1., Input 1
circles denote the logic operators and A, B, C and D are the e
logical boundaries for the presentation of a signal. The
symbols crossing D cannot be valid until all of the symbols
crossing C are complete data, and so on.

Output

Inputn

Fig. 2. A THmn NCL threshold gate.

A logic that includes a NULL value and recognizes A
completeness relationships in the primitive logic operators . 3& ,
will be referred to as a NCL [1]. NCL circuits have no time . f

relationships and are insensitive to the propagation time of

. Fig. 3. A TH33w2 threshold gate: Z=AB+AC.
symbols among their components.

A B c D An asynchronous cycle path normally consists of the
R completeness detection path, the acknowledge path and the
/>@§\?@~» data path which may include asynchronous combinational

circuits. Fig. 4 shows a structure for the basic NCL pipeline.

o (
>@< SN

5 — >¥@ﬂ» E Asynchronous combinational circuits are involved between
z 5 >()< 3 two NCL registers, which control the request and
O <\5 acknowledge signals. The input request signal (Ki) is from

) i i W* i the completion detection path of the next cycle. The output
Fig. 1. Presentation boundaries for a combinational expression. . .
acknowledge signal (Ko), however, will not be generated by

TABLE Il the current acknowledge path until the current computation

i

DUAL -RAIL ENCODING cycle is complete. If the previous cycle does not receive the
Loic val Encoding acknowledge signal, the data will be blocked and the
egie value B; B subsequent process cannot continue.
Datal 0 1
Data0 1 0 /E\\ 25 //E\ 9w ,/a\ 9% ,/a\
Null 0 0 INESANIENEANIENEANIEINES
Invalid 1 1 o & EEEE) & piiiin) 2 i) 2
\ © SE° "\ g/ SeE° "\ g/ SeE° "\ g/
\ 2 gs N Zs \ Z Zs \ 2
o w1 oyt -1 o th

2NCL[1] is a kind of NCL logic that obtains only one data
value, which indicates that the signal path can transit betweer
“DATA” and “NULL” without intermediate values. Multiple
mutually exclusive values are normally expressed by lll.  LANGUAGE BASEDSYNTHESIS
multiple signal paths. In a binary system, a dual-rail signal B, pSp pased synthesis
which is transmitted by two mutually exclusive wires énd

D,), is used to express True and False. As seen in TABLE Hig;f tizrr?:)?r:i?y (Ijr;s;tra;;ﬂgrecﬁliI)olsegztrilgrrla:g l;rr]glee rSs;occ))fdth;
Boolean logic 0 and 1 are equivalent to the Datag=QD P g P 9

D,;=1) and Datal (B1, Dv=0) respectively. NULL state wire delays. DI-Algebra is an algebra used for describing the

X ; . rocesses that communicate in terms of DI, and it has been
comes only when both the inputs receive logic 0 and the state . ; . .
_ _i . applied in the design, as well as decomposition and
Do=1, D;=1 is not permitted.

The basic logic elements of 2NCL are threshold gate\é?”f'catlon of Dl circuits [10, 11, 12, 16, 17].

THmn gate, shown in Fig. 2, is a primary type of threshold

Fig. 4. Basic NCL pipeline.

Input al
gates. It has n input terminals with threshold m, whegenl Ipt . 3&

nput a. Output ¢
<n, i.e. it becomes activated if at least m of n isparte f ’
active. et

. oo . Fig.5. A 3-0f-3 C-el t.
Since 2NCL circuits follow the input-completeness 9 © elemen

criterion [1], the output will be asserted only if all the inputs . .
- . DISP, however, provides a much more simple way to

are asserted DATA and the output will not transit fromS ecify the asvnchronous circuits and is supported b

DATA to NULL until all inputs have transited from DATA to pecity Y PP y

: - . Computer Aided Design (CAD) tools like di2pn [13] and
NULL. Weighted threshold gate is another widely used typ‘:F"etrify [5] for specification and verification. DISP is similar

When wR ((wR<m) denotes the weight of inputR< to the handshaking behavior but obtains uniform treatment to
R<n), a threshold gate can be represented @fnais Behaviors of 2NCL circuits are DI and thus they can
THMnWw1w2:--wR, where wl, w2~ WR are integer pe expressed by processes in DISP. The concrete syntax of
weights of inputl, input2;-- inputR respectively and they DISP is defined as follows:

should be larger than 1. Fig.3 shows a TH33w2 threshold

gate that has 3 inputs with 3 thresholds. The weight of input ¢ .- = stop | skip | errorbjurst | selectchoiceend |

A'is 2, which implies the output cannot be asserted until A }§;aver do proc end | proc ; proc | proc par proc
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choice::= burst [then proc] [alt choice] inputal
burst::= siglist/siglist Input a2 .

Output ¢
Input a3

The entitysiglist is a list of signal names. The simplest
process is a burst (input/output burst), where all signals in the™9- 8- Fragmented C-element3.
output burst will not happen until all the signals in the input It is worth pointing out that a DISP program always uses
burst are absorbed. Theurst can be straightforwardly signals in a consistent way, either for input from the
translated to the burst behavior of a THmn threshold gate. Fenvironment or for output to the environment, or for local
instance, C-element [6] is a kind of THmn gates whossommunication in a parallel composition [3]. A case in point
threshold number is equivalent to the number of inpu¢ the decomposed expression of C-element3, which is
terminals. By using burst construct and an infinite repetitiorlescribed by a/b par b/c rather than a/b;b/c. Furthermore,
which is usually represented by forever-do-end construct,sharing input or output signals is not permitted in the parallel
C-element3 (as seen in Fig. 5) can be mapped easily asnposition.

foll :
ofows B. Mapping between DISP and CSP#

C-element3 = forever do al, a2, a3/c end Though DISP can be applied to specify the 2NCL
asynchronous circuits in a simple manner, as far as we are
(a1, a2, a3) are inputs signals while ¢ is output sign@Wware, there is a lack of tools for DISP verification.
Output ¢ will be generated only after al, a2 and a3 becomeCSP# is a modeling language, which integrates high-level
valid. The select-end process delimits a process fromnPdeling operators with low-level procedural codes, for the
choice, which is restricted to a number of guarded processedrpose of efficient mechanical system verification [10].
Together with infinite repetition, a single select-end procesynce most of the CSP# syntax can match with the syntax of
is applied to describe the behavior of a TH1k(® 2NCL DISP, it is easy to convert DISP to CSP#. For a detail of

gate as seen in Fig. 6. Its DISP specification is expressed @PPing between DISP and CSP# at the semantical level will
follows: be subjected to future work. The target CSP# codes can be

conveniently modeled and verified by PAT.
d The following is BNF [11] description of the CSP#

TH1k = forever do select al/c alt a2/c alt ... alt ak/c en )
expressions.

end
Input al P= Stop | Sklp | @{'Og} ->P
Input a2 | P! Q |P [] Q I
o [P IPIIQIPIIQ]I
Input ak
Fig. 6. A TH1k threshold gate. P and Q are processes. e is an event name and the

sequential progranprog is optional. b states a Boolean
Processes can also be composed either sequentiallyespression here.
concurrently. Fig. 7 shows a block and internal diagrams for Stop is a deadlock process that does absolutely nothing.
Sequencer element. The second burst ¢/d cannot be proce$s@ipared to Stop, Skip processes a special terminating event
until the first burst a/b is completed. In the following DISFirst, and then behaves exactly the same as Stop. Event

expression, sequential behavior is stated by a semicolon. prefixing e->P performs event e first and then behaves as
process P.
Sequencer = forever do a/b; c/d end The expression of sequential composition in DISP is the
same as that in CSP#: the process (P; Q) starts P first and Q
starts only when P has been terminated. A general choice can

nputa putputd be stated by []. For instance, P [] Q describes either P or Q
may be processed. The symbol || is used to denote parallel
composition, which synchronizes common events in the

Input ¢ outputd alphabets of P and Q. Interleaving, however, runs all

processes independently. In a guarded process [b]P, P will
not be executed until condition b is satisfied. Recursion in
CSP# can be expressed by process referencing. The

The process proc par proc is used to express the pargfifowing process gives a simple example of mutual
composition of two processes. The behavior of a C-eleme{Z. rsion.

can be decomposed into two parallel processes as given in the

Fig. 7. A TH1k threshold gate.

following expression: PO =a->Q();
C-element3=f do al, a2, a3/c end Q00> P
-element3=forever do al, a2, a3/c en System() = P() || Q0);

=forever do al,a2/d end par forever do d,a3/c

As seen in TABLE lll, basic 2NCL behavior described in
the previous section can be easily translated at the syntactical
level to the equivalent CSP# expression.
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TABLE Il
DISPAND CSP#EXPRESSION FORBASIC PROCESS

IV. CASESTUDIES

A. 2NCL expression mappings for basic Boolean logic gates

Process DISP CSP# . . .
Though Boolean function cannot avoid the expressional
P1() = al ->c ->Skip; shortcomings, it is a convenient expression to specify the
P2() = a2 ->c ->Skip; . .
C-element3 folrevgr d<3)/ P3() = a3 ->c ->Skip: qutput results of an electronu_: system by Boolean_functlons
al,az,asit  psny = p10)IP20)|IP30):; first and then map these functions to 2NCL expressions. Thus
0 0lIP201IP30);
FQ = P40:F0; it is necessary to seek a way that can effectively transfer
forever do P1() = al -> ¢ -> Skip; Boolean functions to its corresponding 2NCL combinational
select 0 P
allc alt P2() = a2 -> ¢ -> Skip; expressions.
TH1k az/c alt P3() = a3 -> ¢ -> Skip; TABLE IV
threshold gate - ‘F;;<() - ak ¢ -> Skip: EXPRESSIONMAPPINGS FORBASIC BOOLEAN LOGIC GATES
ah ae P4(=P100P201..-Pk(); e o AND XOR
end FQO = P40;F0; Functions Z=A+B Z=AB Z=AB+CD
P1() =a->b -> Skip; 2NCL | z=A;A+B;Bo+ Z:=A:B, _
Sequencer 23;)6\1:% % P2() = ¢ ->d -> Skip; Expressio | AiBotAB+ABy | Z=AiA+BiBot ?;ﬁogliﬁlgo
q end P3() = P1();P2(); n Z=AsBo ABo+BiAG+AB, | T OCOTEL
FQ = P3(;FQ:
P1()=a2->al->d->Skip; o
forever do PZ()fa1'>32->d_->Sk|p; 2NCL 40 AL Al ;
P3()=P100P20); i )
al,a2/d . Schematic| A w0
Fragmented end P4()=d->a3->f->Skip; Views o L
P5()=a3->d->f->Skip; 80 u| B 0 ;
C-element3  par _ . B 50
forever do P60=P40UP5():
d a3lc F10=P3();(F200F10);
' F2()=P6();(F100F2()); f;;g\clfr do forever do forever do
system()=F1()||F2(); 70.BO/Z0 select oot
' A1,B1/71 sclec
alt alt A1,A0/Z0 A0B1/z1
deli d verificati | DIsp | ALAO/ZL alt B1BO/Z0 alt A1,B0/Z1
C. Modeling and verification too alt B1,B0/21 alt AL BO/ZO alt
. . . - It A1,B0/Z1 ! A0,B0/Z0
PAT is a generic and extensible framework for supportir o B1.A0/ZL a:: /Ii(l),/Bkggg alt AL.B1/Z0
composing, simulating and reasoning of concurrent, real-tir] altdAl,Bl/Zl o eng
systems and other possible domains [14]. It implements sﬂd end en
number of different model checking techniques catering f
different properties such as deadlock freeneg | prgearszsskp: | PLO=A0->Z1->Skip;
divergence-freeness, reachability, and complete Ling b o o, P20=B171>Sk: P o e,
i ¢ P3()=A1->Z1->Skip; r o et | P4()=B1->Z1->Skip;
Temporal Logic (ITTL) [15] prop_ernes. Furthermore, PAT| PA(=B1.57155ki. E;‘g;,‘iéziégzit;pr PSO=ALSZ0Skip,
supports customized semantics and stage reduct P5(=A0->20>Skip; | peo0—p 72 7 okPt | Pe(=B1->20->Skip;
. . . ; P6()=B0->Z0->Skip; (=B0->Z0->SKip; | p7()_p0->70->Skip:
techniques; and has a friendly graphic user interface. T CSP# 200=(P30IPSQ)I(P4| PEO-BO->Z0->Skip:
main modeling language supported in PAT is CSP# procg PO TN 0IPSOIIPOIPSON | 00-p701Ps0yIPE
i i - aQIP10)IP3QIP4Q); | KDAOIPSONPSOIP | P50,
algebra which has high level modeling operators, paral 200-po0pege | 60y A0PI0IP20)IES
composition, interleaving, channels, etc. FO'= @O000NF0: | s adbeas o | OlIPAO:
. e ] TV RO = (2200200)F0;
Assertion-based verification is a methodology that hg

been dormant for many years and is now widely applied =

hardware verification. Besides plenty of modeling features, a

As explained in Section Il, there must be two signal paths to

number of useful assertions are supported in PAT. Asserti
assist to capture the design intent. They monitor behavi
during simulation, detect and report errors. By means
assertions, verification can start in earlier design stage, b

can be detected and resolved easily, and design engineers
incorporate their intent into programs to minimize integratio

issues.
Given P() as a process, the basic assertions used
described as follows:

#assert P() deadlockfree: performs Depth-First-Search

Breath-First-Search algorithm to detect the states with
further transitions except successfully terminated states.

#assert P() divergencefree: checks if there is a procé S

performing transitions forever without useful events.

#assert P() deterministic: asks if there is no two out-goir}cg"1

O?{éclusively express the meaning of True and False in a 2NCL
&@ary system and therefore NULL function should be
8f<pressed in addition to desired data function. Take an OR

te as an example. As shown in TABLE IV, the Boolean

Qﬁtion of OR gate is Z=A+B, where Z, A and B can be either
H)glcal 1 or logical 0. The conventional OR gate implemented
using Boolean logic will deliver logical 1 at the output Z if one
%rreboth inputs of the gate are asserted logical 1. 2NCL
combinational expression, however, presents logical 1 and 0O
%¥ a dual-rail signal Z and has to be defined by two individual
r%quations.

Since the generic equation of Z1 is AB+AC+AD+BC+BD,
2NCL expression can be mapped to a TH34w22 gate.
imilarly, the Z1 equation, whose generic expression is AB,
n be mapped to a TH22 gate conveniently. In terms of the
nguage based synthesis technology discussed in section lll,

transitions with the same events leading to different states.

#assert P() nonterminating: Depth-First-Search épe behaviors of a 2NCL OR gate can be expressed by a series

Breath-First-Search algorithm is applied to detect the stafpselected constructs in DISP. CSP# expressions are easier to
with no further move, including successfully terminated>¢: Input and output behavior can be defined as process by a
states ' number of simple events. Then these processes can be
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organized either sequentially or in parallel manner.
PAT was applied to analyze the phases for such an OR g
model. In Fig. 9(a), a simulation run for the OR gate express

at®1()=input0->...->outO;
edP2()=inputl->...->outl;

as a transition graph is shown. Basic circuit properties wereF1()=P1()...P2();
also verified. Verification results show that OR gate is P3()=out0->...->outputO;

deadlock-free,
deterministic.

divergence-free,  nonterminating

1ol

T

\\V

R
70 BO, A0, BO . A0 A0 (B0 [B1 \AT-BT . AT—AT— Bl Z1
| 4 ' 4 RS 1] / / )
s [7 5] 3 [6) T 2 |

A0 /BO 81 A1\ BT BO A0

Fig. 9. (a) A simulation run of a 2NCL OR gate as transition graph
(simulated by PAT).
(b) A simulation run of a 2NCL AND gate as transition graph
(simulated by PAT).
(c) A simulation run of a 2NCL XOR gate as transition graph
(simulated by PAT).

2NCL AND and XOR gates can be implemented in
similar way. The Boolean function and 2NCL expressions ce
be seen in TABLE IV. Fig. 9 (b) and (c) show the simulatio
results.

Input0 P1()=in0->+**->0ut0; P3()=in0->+**->0ut0; Output0
Inputl P2()=in1->---->outl; P4()=in1->-+-->0ut1; Outputl
F(=P1()...P2(); F(); F()=P3()...P4(); F();

Fig. 10. Connection between modules.

Since PAT well supports stage reduction, it is not hard
connect modules by redefining inputs and outputs even
duplicate event stages exist in expressions. Fig. 10 shows i
modules, where basic events and their relationship are defir
in the box. The two modules running in parallel can b
connected by means of sequential composition. Furtherma
the outputs of the first module should be defined as the inpi

and P4()=outl->...->outputl;

F2()=P3()...P3();
system()=(F1(||F2());system();

B. 2NCL binary half adder design

A half adder is a combinational logical circuit that can
perform an addition operation between two binary digits. The
result is either 0, 1 or 2 and therefore two bit output terminals
(SUM and CARRY) are required to represent the value. Their
Boolean function expressions and Karnaugh map are given in
TABLE VI and TABLE V respectively.

TABLE V
KARNAUGH -MAP FOR A BINARY HALF-ADDER
SUM Yo Y, CARRY Yo Y,
Xo Zo Zy Xo G G
X1 Zy Zy X1 Co C,
TABLE VI
A BINARY 2NCL HALF-ADDER
Boolean | Z=XxorY
Functions | C=Xand Y
Z0 = XoY o+ X1Y1
Z1 = X1Y0+XOY1:X1Y0+XOY1+XOX1+YOY1
2NCL = (XO+Y0)X1+(XU+Y0)Y1
EXpreSSiOn Co= XoY o+ XoY 1+X1Y 0=XoY o+ XoY 1+ XY o+ X1 Yo
= XQ+Y0
Cl= XiYq
S |
I G
2NCL * jﬁ@% “
Schematic
Views
" 2 34 a
TABLE VII
DISPAND CSPH#EXPRESSIONS FORA BINARY HALF-ADDER
DSIP CSP#
forever do P1()=X1->Y1->C1->Z->Skip;
select P2()=Y1->X1->C1->Z->Skip;
select P3()=P1()[JP2();//C1
X1,Y1/Z0 P4()=X0->Y0->C0->Z->Skip;
alt X0,Y0/z0 P5()=Y0->X0->C0->Z->Skip;
end P6()=X1->Y0->C0->Z->Skip;
alt P7()=Y0->X1->C0->Z->Skip;
select P8()=X0->Y1->C0->Z->Skip;
C0,X1/21 P9()=Y1->X0->C0->Z->Skip;
alt P10()=P4()IP500P6(P700P80OIP0);
C0,Y1/z1 /ICO
end P11()=Y0->X1->Z1->Z->Skip;
end P12()=X1->Y0->Z1->Z->Skip;
end P13()=X0->Y1->Z1->Z->Skip;
par P14()=Y1->X0->Z1->Z->Skip;
forever do P15()=P11()[JP12()[JP13()[]P14();
select 11Z1
X1,Y1/C1 P16()=X1->Y1->Z0->Z->Skip;
alt P17()=Y1->X1->Z0->Z->Skip;
select P18()=X0->Y0->Z0->Z->Skip;
X0/COo P19()=Y0->X0->Z0->Z->Skip;
alt P20()=P16()[JP18()[JP19();
YO/CO 11Z0
end F10=(P300P100):(FLO0F2();
end F2()=(P1500P20():(F200F10);
end system()=F1()||F2();

as follows.

circuit logic, there are two equations for the sum and two
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equations for the carry. With the aim of simplifying 2NCL Ko= - (D_a0 + D_al)- (D_b0 + D_b1)

circuits, mutually exclusive signals can be inserted to thehere - denotes the signal inversion.

2NCL expressions. For example, the original logic expression

of Z1is X1Y0+X0Y1, where a TH22 and a TH23w2 gates are In order to make processes convenient for expressing, the
required to deliver the correct result. In case that X0X1 athogic equation Ko can be re-expressed as -(D_a0
YOY1 are inserted, the logic expression can be mapped te-B_al+D_b0+D_b1l) according to the DeMorgan’s Law.
single TH34w2 gate. According to the dual-rail encoding, the TABLE VIl lists the DISP and CSP# expression for this
situation where ¥and X will not be asserted at the same timegegister construct while Fig. 13 shows a simulation run of the
and thus the operator will not respond to any combinations gégister as transition graph (simulated by PAT).

X without Y. The schematic view of the optimized 2NCL

logic can be seen in TABLE VI. TABLE VIl provides the register completion detection

corresponding DISP and CSP# expressions for the binary hall a0
adder. A dummy state Z indicates the completeness of the
process because the transition graph is complicated and har
to read. Since the logic with mutually exclusive expressions is

2

G ]
a ( Zk/ D a1
redundant, only the relevant behavior for the half adder is
specified. b
p ik ’ gZK/ D bo
W] /k :ﬁ}%
z N | bo
i R “ ) | 422( D mn
- j‘ /| | \ D ‘ | 2
| YW\“ [ || | ‘\><| ‘HYW fo ko ki
| || \.,«l'“ | | |\ U ko \
fr s xd 0,1 %o v0, e X 30/ x1/v0/ 1 [x0f  xq voxa ka w0 o ‘YW‘\“ o “V“zo:‘ Fig. 12. Schematic view of a 2-bit 2NCL register asampletiot
: VA LN e > ‘ AT detection circuits
| Y Y 2 . “‘ ; AR TABLE VIII
‘ \ T | ) LY K-MAP FOR A2-BIT 2NCL REGISTER ANDCOMPLETION DETECTION
[ e N\ \?o'fj}'ﬁcxd“ o Yo X} ?m'o':fﬁwga ‘1 ) / CIRCUITS.
a7 \“:‘ 6| ‘g ~fig) ‘17\ ~i3 1104 2 / DISP CSP#
A ;G - g YO\W.; " forever do
Fig. 11. A simulation run of a 2NCL binary half adder transition graf :?)Iici}Dao P1()=a0->Da0->Skip;
(simulated by PAT). alt al,Ki/Dal P2()=al->Dal->Skip;
. . . e alt bO.Ki/DbO P3()=b0->Db0->Skip;

The simulation (see Fig. 11) and verification results (refer alt b1 Ki/Db1 Eé?ﬁfﬁifgﬁolfsskki'p"f
to deadlock-free, divergence-free, nonterminating and 222 P6()=Ki->DaL->Skip:
deterministic) show the correctness of the 2NCL half adder par E;Siﬁ!iigﬁﬁiiﬂﬁ
construct. forever do POO=(PLOIPSOIP20IPSOIPSOIPONP

. P8();
C. 2NCL asynchronous register with completion detection aD,f‘([’,’g‘l",mv
circuits alt Db0/inv P100=Da0->inv->Ko->Skip;
o o . . alt Db/inv P11()=Dal->inv->Ko->Skip;

Pipeline is widely applied in a variety of digital systems. end Eiggfgggz::xzigzgﬁp
A'syn.chronous rggisters, as well as completipn de.tection ggg p14():(P10()[]P110[]p12(;)|jp13());
circuits, are basic components of 2NCL pipeline. Fig. 12 forever do FO=(PEOIIP140)FO:
shows a 2-bit dual-rail encoded 2NCL register with inv/Ko e

. . . . . end
completion detection. Ki and Ko are handshaking signals.
When the subsequent cycle finishes computation, the registe
will be informed by a Ki signal to store the data from a0, al,
b0 and bl. As soon as the output D_a0, D_al, D_b0, D_b1
receives the data, the completion detection circuits will m,
generate a Ko signal to acknowledge the completeness of thi: f 4
cycle. As seen in Fig. 12, the register is implemented by 0N
TH22 gates, which has the same function as Boolean AND
gates. The 2-bit output results are: L

D_a0= A K; "

D_al=A - K;

D_b0=B - K;

D _bl=B - K; ’_;Ko

[13
The completion detection circuits are |m|l:)lemen.ted by one Fig. 13. A simulation runs of a 2-bitNZL register and completi
TH22 gate and two TH12 gates, and their function can be getection circuits as transition graph (simulated by PAT).

expressed by the following equations:

(Advance online publication: 24 August 2011)
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D. 2NCL pipeline ring Block 3: F3, R41, D4|, R3|, F3|, R4|, D41, R31, F3t

A complex structure normally contains several basic Block 4: F4, R11, D1|, R4, F4|, R, D11, R41, F4
pipeline structures and a pipeline structure is composed of a
few of cycles. The term pipeline ring comes to be used tde corresponding CSP# expression is as follows and its
refer to the pipeline whose outputs are connected to fronfigPendency graph given by PAT is shown in Fig.17.
continuous ring of cycles. Fig. 14 shows a simple ring with
three processes. Process | begins by sending a signal R t&H)=D2f->R1{->F1f->R2f->D2r->R1r->F1r->R2r->Skip;
As soon as Process B receives signal R, Process B will beE%‘Plo’(FlODFZO)’

- . o =F2r->R3r->D3f->R2f->F2f->R3f->D3r->R2r->Skip;
and will then inform Process A to start after it is Comp|9tec|':-2()=P2()-(F2()[]F3())-

In a similar way, signal F will be sent by Process A to initiat®3()=F3r->R4r->D4f->R3f->F3f->R4f->D4r->R3r->Skip;
Process | again. The three processes I, B and A can H8%)=P3();(F3([F4();

expressed as follows: P4()=F4r->R1r->D1f->R4f->F4f->R1f->D1r->R4r->Skip;
F4()=P4(),(FA0IF10);
Process I: F, Rf, F|, R| system()=(F10IIF201IF30I[F4();system();

Process B: §, F1, S|, F|
Process A: R, St, R|, S|

Where up arrow {) indicates active and down arrow) (
indicates passive. By defining a series of active and passive
events, the behavior of the simple ring can be expressed ir
CSP# easily as follows.

P1()=Fa->Ra->Ff->Rf->Skip;
FL)=P10;(F100F2());
P2()=Sa->Fa->Sf->Ff->Skip;
F2(=P2();(F200F30);

P3()=Ra->Sa->Rf->Sf->Skip; D3r R3f
F3(0=P3();(F20[IF10); Rar
system()=(FL1()||IF20)|IF3()); system(); Far

D4f

Rar

m@
@

il
@
i

-

F2f

Ininint

Fig. 14. A simple ring with three processes.

Sf

sa _ Fa
Ff Rf
Ra a Fa Ra 3 @ Sa
Rf Fa
S

Fa Sa

Fig. 15 A simulation run of a simple ring &snsition graph (simulat:

by PAT).
Fig. 15 shows the dependency graph for the three proces: Rof
ring. The event Fa denotes that the signal F is active while Ff o g5

denotes that the signal F is passive, and so forth. The o )
verification has proven that the construct is deadlock free. ~ F'9- 17- Dependency graph of the 2NCL pipeline ring (given by PAT).

A 2NCL pipeline ring usually consists of 2NCL registers,
completion detect circuits and combinational circuits. A
4-cycle 2NCL pipeline ring can be seen in Fig. 16, where R
refers to register, F refers to combinational function block for
a single stage and D refers to completion detection We have shown that our formal models developed for
component. The half adder described in Section IV.B can Bghdamental NCL/2NCL circuits, including logic gates,
used as a combinational function block. The pipeline consigi@mbinational circuits and pipeline structures, can be
of 4 functional blocks (e.g. R1, D1 and F1 form Block 1 irgenerally simulated and verified using PAT. All these inspire
Fig. 16). The behavior of each block is described as belowts to keep working on this direction to verify more complex

formal NCL electronic systems.
Block 1: F}f, R21, D2|, R1], F1], R2|, D21, R11, F1t However, the formal models of NCL/2NCL circuits
Block 2: F2, R31, D3|, R2|, F2|, R3|, D3, R41, F4 presented in this paper are simple and the mappings between

V. CONCLUSION

(Advance online publication: 24 August 2011)
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DISP and CSP# are currently limited at the syntactical levBi]
only. So, we aim at developing more formal models of NCL
circuits including complex systems (e.g. MIPS-basegdy)
systems-on-a-chip) as well as defining formal translation
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