
  
Abstract— This paper deals with an introduction of a 

numerical model to simulate bond-slip behavior in composite 
beams. The slip behavior is implemented into a finite element 
formulation and an adoption of the introduced numerical 
model makes it possible to take into account the slip behavior 
even in a beam element whose configuration is defined by both 
end nodes only. Correlation studies for bond-slip effect 
between numerical results were conducted, and a cyclic load-
displacement relation of a composite beam is then evaluated to 
verify the validity of the proposed model. 
 

Index Terms—Composite beams, Bond-slip, Non-linear 
analysis, Cyclic loads, Shear connectors 
 

I. INTRODUCTION 
omposite bridges are constructed by placing a slab of 
concrete on a steel girder or a pre-cast concrete girder 

with shear connectors. The two components act as an 
integrated structure in spite of their very different physical 
and mechanical behaviors. In the design of composite beams, 
a very stiff shear connection between the beam and slab was 
provided usually. However, in partially composite beams 
having flexible shear connectors, the structural behavior 
becomes different greatly, as the slip between the beam and 
the slab accompanies a reduction of the strength and 
increase in the deflection. 

To consider the slip behaviors described above, many 
studies have been carried out concerning partial shear 
connections. Some of previous methods [1], [2], [4], [5] give 
an exact solution for analyzing partially composite beams. 
However, only symmetric structures with zero slip at the 
midspan can be analyzed. To overcome these limitations, a 
few numerical models have been proposed. One study 
proposed a double node to represent the relative slip 
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between the steel beam and concrete slab [3]. The double 
node concept have been widely used and improved by many 
researchers. However, this method leads to an increase in 
the number of degrees of freedom and greater complexity in 
the mesh definition.  

This paper, accordingly, introduces a finite element (FE) 
model which can include the bond-slip deformation in a 
beam element whose deformation is defined by two end 
nodes, without taking the double nodes along the interface 
between the concrete slab and beam. The reliability for the 
proposed model is verified by comparing the analytical 
predictions with results from previous analytical studies for 
bond-slip effects and by load-deflection curves of partially 
bonded and fully connected composite beams under cyclic 
loadings. 

  

II. MATERIAL PROPERTIES 

A. Concrete 
Among the numerous mathematical models currently 

used in the analysis of RC structures, the monotonic envelop 
curve introduced by Kent and Park [7] and later extended by 
Scott et al. [13] is adopted in this paper because of its 
simplicity and computational efficiency for compressive 
region. More details related to the model can be found in [7] 
and [13]. On the other hand, it is assumed that concrete is 
linearly elastic in the tension region.  

In case of hysteretic behavior, simplified model by 
Karsan and Jirsa [6] shown in Fig. 1 is adopted. 
 

 
Fig. 1. Hysteretic stress-strain relation of concrete: 

(a) compressive region; (b) tensile region 
 
When unloading arises in the compressive area, the path 
passes through the point εt defined in Eq. (1) until it reaches 
the tensile strength. 
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Reaching the tensile strength, it drops to zero stress and 
keep unloading along the strain axis. When the path is 
reloaded before it reaches the tensile strength, it goes back 
along the unloading path. However, the path skips the 
wedge after it is reloaded after it reaches the tensile strength. 
The unloading pattern in the tensile area is similar with that 
in the compressive area except that it includes the tension 
stiffening effect. So every unloading stiffness value is 
different from each other by the point where unloading 
arises. For the simplicity, εcr is assumed to be same with ε0 
in this research. 

B. Steel 
The monotonic envelope of stress-strain relationship of 

steel was idealized as elasto-plastic behavior and the shape 
of the curve is assumed to be identical in the both of 
compressive and tensile area. At load reversals, as shown in 
Fig. 2, the unloading stiffness is assumed to be the same as 
the initial stiffness.  

 
Fig. 2. Hysteretic stress-strain curve of steel 

 
When loading continues in the opposite direction, the stress–
strain curve exhibits the Bauschinger effect. This causes a 
non-linear stress–strain relation and a reduction in stiffness 
of the stress–strain curve before the stress reaches the yield 
stress in the opposite direction. Among a number of models 
developed to describe the cyclic stress–strain curve of 
reinforcing steel, the most commonly used approach is the 
Menegotto–Pinto model, introduced by Menegotto and Pinto. 
The model is also adopted in this paper and more details 
related to the model can be found in [10]. 
 

III. FORMULATION OF SLIP BEHAVIOR 

A. Load-slip Relation 
Since composite beams are equipped with shear 

connectors between a concrete slab and girder to unify the 
behavior of the total structure, the flexural and slip behavior 
of these composite beams are greatly influenced by the shear 
connectors characterized by their ductility and stiffness. 
Usually, the static behavior of shear connectors which 
govern the slip behavior at the interface can be explained 
through the shear stiffness in the elastic region, and the 
ultimate shear strength and the corresponding ultimate slip 
are measured by a push-out test. 

In this research, a load-slip model by Salari and Spacone, 
as shown in Fig. 3, is adopted for the monotonic envelope. 
The monotonic envelope is divided into ascending and 
descending branches at the strength V1 and more details can 
be found in [12] 
 

 
Fig. 3. Cyclic load-slip relation of a shear-stud 

 
In case of unloading and reloading branch, not original 

complicated exponential model by Salari and Spacone but 
simplified by-linear formation is adopted in this research. 
When unloading arises, the loading path drops with its 
initial stiffness E0 until it meets frictional resistant Vf and 
moves to monotonic envelope in the other side. Reloading 
path is assumed that it goes back in the same path of 
unloading path and reduced envelope by damage is not 
considered in this research. 

And, if shear connectors are assumed to be installed 
under the uniform spacing Ls. the slip S can be represented 
by the following Eq. (2), where q(x) is the shear force 
transmitted per unit length of the beam. This is known as the 
shear flow( q(x) = dF/dx ) F is horizontal force at the 
interface between two materials in coordinate x. which will 
be mentioned in the next chapter. 

 
( )( ) s

s s

q x LV xS
K K

= =                              (2) 

 

B. Governing Equation for Slip Behavior 
Fig. 4 shows the strain and corresponding stress 

distribution across the section of a composite beam with 
partial interaction. However, it will still be assumed that 
there is no separation between the two elements, which 
means the curvatures of two elements are identical. 

The axial forces F and moments M act through the 
centroid of the concrete slab at a distance hs from the slab–
beam interface, as shown in Fig. 4(c), and at the centroid of 
the beam at a distance hb from the interface. The elastic 
strains εs,b at the bottom of the concrete slab and εb,t at the 
top of the beam, as shown in Fig. 4(b), can be given from 
the beam theory by 
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Fig. 4. Slip behavior in patially composite beam: (a) composite beam, (b) strains and curvature, (c) stresses and internal forces

where As and Ab are the areas of the concrete slab and beam 
respectively, while Is and Ib are the moments of inertia of the 
cross-sectional area of each component with respect to their 
centroidal axes. Additionally, since there is no external 
longitudinal force being applied such as occurs in post-
tensioning, horizontal force equilibrium requires that ΣF = 
0 which implies that Fs = Fb = Fhorz. 

As mentioned above, when the composite section is 
subjected to the bending moment, the relative movement 
across the interface that is induced by the sliding action is 
referred to as the slip of S = ub - us, and the derivative of 
this relation with respect to the longitudinal distance x gives 
the slip strain of εslip = dS/dx = εb,t – εs,b. Hence, from Eqs. 
(2) and (3), the following differential equation represented 
by the material constants and section dimensions can be 
obtained. 

 
2

2

1 1.
.

s horz s s b b
horz

s s s b b s s b b

L d F M h M h
F
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     (4) 

 
From rotational equilibrium of the internal moment, the total 
moment M(x) at the section being considered in Fig. 4(c) 
can be expressed by 
 

( ) ( ) ( ) ( ) ( )s b horz . s bM x M x M x F x h h= + + +             (5) 
 
Since the shear connection is required to prevent separation 
between the beam and slab, the curvature κ in the slab and 
beam are the same, as shown in Fig. 4(b), so that 
 

1s
s ,t s ,b

s s c

M
E I d

κ ε ε= = − −⎡ ⎤⎣ ⎦
                       (6) 

 
where dc means the thickness of the concrete slab. 

From Eqs. (5) and (6), the curvature κ at a section 
located at distance x from the far end support can be 
expressed by κ = {M(x) – F(x)horz.(hs + hb)}/ΣEI, where ΣEI 
= EsIs + EbIb. In advance, Eq. (4) yields the following 
ordinary linear differential equation for F(x)horz. 
 

2

2
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where 1 1 1
*

s s b bEA E A E A
= + , ( )2* *

s bEI EI EA h h= + +∑ . 

C. Numerical Slip Model 
For computational convenience, the differential equation 

in Eq. (7) can be rewritten in the form of F ’’(x) – P2F(x) = – 
QM(x), and the general solution of Eq. (7) representing F(x) 
is obtained by summing a particular solution to the 
associated homogeneous solution, and the corresponding 
distribution of slip S(x) is also obtained from the first 
derivation of the horizontal force. These lead to 

 

2( ) ( ) ( ) ( )h p
QF x F F cosh Px sinh Px M x
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2
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where D(x) (= dM(x)/dx) means the slope of the moment 
distribution and gives a constant value if the distribution of 
moment M(x) is assumed to be linear at each element, α and 
β are constants to be determined by substituting the 
boundary conditions at nodal points of each subdivided 
element. 

In advance, the horizontal force F(x) and the slip S(x) at 
the interface of the concrete slab and beam, mentioned in 
Eqs. (8) and (9), can be represented in the ith element as the 
following matrix form: 
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Where Ti = (Ls,i/Ks,i)·Pi and li = the element length 

Since the horizontal force and slip must maintain 
continuity along the entire span, those values at the common 
node i of the (i-1)th and ith element must be the same, which 
means Fi = Fi-1(li-1/2) = Fi(-li/2), Si = Si-1(li-1/2) = Si (-li/2) 
where Fi and Si mean the horizontal force and corresponding 
sip at node i. Namely, the superscript i is assigned to all the 
parameters related to the node i. Substitution of above 
compatibility conditions and then rearrangement for the 
constant α and β, which will finally be determined, yield  
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Since Eq. (11) refers to the vector of the solution 
coefficients of element i-1 and element i, successive 
application of this equation from the first element 1 to the 
last element n produces a generalized transfer matrix 
relationship, that express the relationship between the first 
element 1 and the element n, as 
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Two boundary conditions are required to solve Eq. (13). 
Since a multi-span continuous bridge usually has the simply 
supported boundary conditions at both far end points, which 
imply that the horizontal force and moment value are zero, 
the following boundary values can be introduced: 
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In advance, substituting these boundary conditions into Eq. 
(10), the following relationships are obtained: 
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The substitution of Eqs. (17) and (18) into Eq. (13) 

produces the following system Eq. (19) related to the slip 
behavior at the interface of the slab and beam, and this 
equation can also be represented by matrix form of Eq. (20) 
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In the matrix formulation of Eq. (20), the only unknowns are 
the slip values at the two far ends (S1 and Sn+1) because all 
othecr values can be calculated from the coefficients of the 
governing equation and the nodal moment values. When the 
numerical model is applied to the non-linear problem, where 
stiffness of stud (Ks) is changed according to slip value, all 
the equations and expressions are changed into incremental 
form and all the values of variables in consideration should 
be evaluated by accommodating increments for any step, 
which is adopted in this research for the cyclic structural 
analysis. 

 

IV. INTEGRATION WITH FE ANALYSIS 
Numerical procedures of the bond-slip model mentioned 

at the previous chapter need to be modified appropriately to 
be unity with the discrete element system of a finite element 
analysis. Then, they can be implemented in a non-linear 
finite element method that uses Timoshenko beam elements 
[11] and the two analysis parts operate as one integrated 
analysis system. The evaluation procedures of the main 
variables of the bond-slip model are summarized as follows.  
 
1) Coefficients of the governing equation (Pi, Qi and Mi(x)) 

are computed.  
2) The slip value S1 at node 1 is computed. 
3) Solution coefficients αi and βi of each element are 

computed. 
4) The horizontal force Fhorz and slip S of each element are 

computed. 
5) The strain and stress distributions of the section of each 

element are determined, which become discontinuous 
due to the slip behavior. 

6) The convergence is checked and iteration performed. 
 

Step (5) is skipped after the 1st load increment because 
the equilibrium of horizontal force induced by the slip effect 
is considered in the procedure of finding two neutral axis of 
each component. Fig. 5 shows detail analysis procedure.  
 

V. VERIFICATION 

A. Slip Effects under Monotonic Loads 
A total of three loading cases were tested. All beams are 

simply supported and have the same cross-sections and 
material properties. The first example was subjected to a 
uniformly distributed load of 25kN/m. The second example 
structure was subjected to a concentrated load of 9.8kN in 
the middle of the beam. The third example was also 
subjected to a concentrated load of 9.8kN, but the load was 
applied to the left quarter of the span (L/4). The length of the 
beam is 12m and the section dimensions are shown in Fig. 6. 
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Fig. 5. Flow diagram of total analysis

The other material properties are listed in Table 1. The 
concrete slab is assumed to behave linearly up to its 
compressive strength, which is the same status with the 
earlier study [9] compared with this research. 
 

 
Fig. 6. Section dimensions of the steel-concrete composite beam 

 
TABLE I 

MATERIAL PROPERTIES OF STEEL-CONCRETE COMPOSITE BEAMS 
KS/LS EC ES 

150.0MPA 33.3GPA 200.0GPA 
 
Fig. 7 shows the slip and horizontal force distributions of 

the structure, which was subjected to a few loading cases. 
The differences in all two types of curve between the model 
and the analytic calculation are scarcely noticeable even for 

the un-symmetric loading case, which show that the 
integrated model has no restriction in application to various 
structures subjected to arbitrary lateral loading.  
B. Load-deflection Curves under Cyclic Loads 

Non-linear F. E. analysis has been performed for the 
same steel composite beam, which is under cyclic load 
applied to midspan, and Table 2 includes material properties 
of shear studs used in the cyclic analysis. 

 
TABLE II 

MATERIAL PROPERTIES OF SHEAR STUDS 
Initial 
bond 

stiffness

Ultimate bond 
force and 

corresponding 
slip 

Bond-slip 
corresponding 
to F2 = 0.95 

F1 

Bond-slip 
corresponding 
to F3 = 1.05 

Ffu 

Frictional 
bond 

resistance

E0 = 
233000 
kg/cm 

F1 = 24000 kg
S1 = 0.225 cm

S2 = 0.35 cm S3 = 2.0 cm Ffu = 
2500 kg 
Ff = 400 

kg 

 
Fig. 8 shows the load-deflection curves under cyclic load 

and two kinds of curves are plotted. One is the analysis 
results by applying the proposed bond-slip model and the 
other is analysis results by assuming perfect bond at the 
interface.  
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Fig. 7. Slip and horizontal force distributions of steel-concrete composite beams

Two curves show the both of convex and concave parts 
in a one unloading or reloading path caused by the 
asymmetry section resisting capacity, which means that the 
girder is fully composed of steel but the slab is composed of 
only concrete without any reinforcing. The partial bond case 
undergoes more severe deflection and, thus, it shows more 
flexible structural behavior than the perfect bond case, 
which is a very important characteristic of composite beams 
considering bond-slip effect. The difference of deflection 
becomes larger by increasing loads and it is very clear when 
the path in under large deflection.  
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Fig. 8. Load versus mid-span deflection curves of a composite beam 

under cyclic loads 
 

VI. CONCLUSION 
In this paper, FE bond-slip model was introduced and it 

can perform structural analysis considering bond-slip effect 
with typical beam elements, which do not have to adopt   
double nodes. To establish the validity of the FE bond-slip 
model, a steel-concrete composite beam was used. The 
existing analysis results of the bond-slip model, as obtained 
from analytic calculation procedures, were compared with 
the analysis results of the FE bond-slip model and showed 
good agreement for the monotonic loading case for even an 

un-symmetric structure system. Verification was also 
extended for the cyclic loading conditions. Load-deflection 
curves obtained by the cyclic analysis shows the 
characteristics of bond-slip behavior in composite beams 
well. 
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(a) Slip distribution of the first example
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(d) Horz. force of the first example
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(b) Slip distribution of the second example
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(e) Horz. force of the second example
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(f) Horz. force of the third example
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(c) Slip distribution of the third example
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