
 

  

Abstract—The Fast Fourier Transform (FFT) is still a 

widely-used tool for analyzing and measuring both stationary 

and transient signals in power system harmonics. However, the 

misapplications of FFT can lead to incorrect results caused by 

some problems such as aliasing effect, spectral leakage and 

picket-fence effect. A strategy of iterative Group-harmonic 

Energy Distribution Minimizing (GEDM) algorithm is 

developed for system-wide harmonic/inter-harmonic evaluation 

in power systems. The proposed algorithm can restore the 

dispersing spectral leakage energy caused by the FFT, and 

regain its harmonic/inter-harmonic magnitude and respective 

frequency. Every iteration loop for harmonic/interharmonic 

evaluation can guarantee to be convergent. Consequently, not 

only high-precision in integer harmonic measurement can be 

retained, but also the inter-harmonics can be identified 

accurately, particularly under system frequency drift. The 

numerical example is presented to verify the proposed algorithm 

in term of robust, fast and precise performance. 

 

Index Terms— harmonics, inter-harmonics, group-harmonics, 

DFT, FFT 

I. INTRODUCTION 

ITH increasing use of power electronic systems and 

time-variant non-linear loads in industry, the generated 

power harmonics and interharmonics have resulted in 

serious power line pollution. Power supply quality is 

therefore aggravated. Traditional harmonics may cause 

negative effects such as signal interference, overvoltage, data 

loss, equipment malfunction, equipment heating and damage, 

etc. The noise on data transmission line is also related with 

harmonics. At some special systems, harmonic current 

components may cause effect of carrier signals, and thus 

interfere other carrier signals. As a result, some facilities may 

be affected. Once harmonics source enter computer 

instruments, the data stored in the computer may be lost up to 

ten times. Moreover, harmonics may also cause transformer 

and capacitor over heating, thus reducing their working life. 

The resulting rotor heating and pulsating output torque will 

decrease the driver’s efficiency [1-8]. 
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The presence of power system interharmonics has not only 

brought many problems as harmonics but produced additional 

problems. For instance, there are thermal effects, low 

frequency oscillation of mechanical system, light and CRT 

flicker, interference of control and protection signals, high 

frequency overload of passive parallel filter, 

telecommunication interference, acoustic disturbance, 

saturation of current transformer, subsynchronous 

oscillatoions, voltage fluctuations, malfunctioning of remote 

control system, erroneous firing of thyristor apparatus, and 

the loss of useful life of induction motors, etc. These 

phenomenons may even happen under low amplitude [1-4]. 

Conventionally, Discrete Fourier transform (DFT) method 

is efficient for signal spectrum evaluation because of the 

simplicity and easy implementation. The use of the FFT can 

reduce the computational time required for DFT by several 

orders of magnitude. An improper use of DFT (or FFT) based 

algorithms can, however, lead to multiple interpretations of 

spectrum [4-6]. For example, if the periodicity of DFT data 

set does not match the periodicity of signal waveforms, the 

spectral leakage and picket-fence effect will occur. Since the 

power system frequency is subject to small random deviations, 

some degree of spectral leakage can not be avoided. A 

number of algorithms, e.g., short time Fourier Transform [7], 

least-square approach [8-10], Kalman filtering [11-12], 

artificial neural networks [6,13], have been proposed to 

extract harmonics. The approaches may either suffer from low 

solution accuracy or less computational efficiency. None is 

reported to perform well in interharmonic identification under 

system frequency variations though each demonstrates its 

specific advantages. 

The presence of interharmonics strongly poses difficulties 

in modeling and measuring the distorted waveforms. This is 

mainly due to: 1) very low values of interests of 

interharmonics (about one order of quantity less than for 

harmonics), 2) the variability of their frequencies and 

amplitudes, 3) the variability of the waveform periodicity, and 

4) the great sensitivity to the spectral leakage phenomenon. In 

recent years, the effect caused by interharmonics is being 

worsened apparently. Therefore, now the development of 

accurate interharmonics measurement has attracted great 

attention both industry and academics. This point of view is 

fully supported by exploring a number of publications 

(2007-2011) related to this field [14-36]. However, the 

published outcome may still suffer from low accuracy, long 

computational time, complexity or measurement limitation, 

etc. Accordingly, it is still an essential research issue to be 

carried on in this field.  

IEC 61000-4-7 established a well disciplined measurement 

method for harmonics/interharmonics. This standard recently 
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has been revised to add methodology for measuring 

inter-harmonics [37]. The key to the measurement of both 

harmonics and inter-harmonics in the standard is the 

utilization of a 10 or 12 cycle sample window upon which to 

perform the Fourier transform. However, the spectrum 

resolution with 5 Hz is not sufficiently precise to reflect the 

practical inter-harmonic locations for both 50 Hz and 60 Hz 

systems. This paper presents harmonic/inter-harmonic 

identification using FFT-based GEDM approach which 

retains the merits of FFT analysis and extends to 

inter-harmonic identification under system frequency 

variation environments. This paper is organized as follows. 

Section II gives a background of the concept of system 

harmonic/interharmonic measurement. Section III presents 

the proposed GEDM algorithm. In Section IV, the model 

validation with a numerical example is demonstrated. 

Performance results under system frequency drift is included 

and discussed. Conclusions are given in Section V.  

II. BACKGROUND OF SYSTEM HARMONIC/INTERHARMONIC 

MEASUREMENT  

The measurement of inter-harmonics is difficult with 

results depending on many factors. Based on the so-called 

“group” suggested by IEC 61000-4-7, the concept of 

group-harmonic is introduced as follows [32]. 

By the Parseval relation in its discrete form, the power of 

the waveform, P, can be expressed as 
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Both positive and negative values of spectral components 

are considered to transform the frequency dominant sampled 

signal into a periodic time dominant signal. Therefore, actual 

signals spectral components relevant to symmetrical 

frequencies are complex conjugates each other. However, 

most real-world frequency analysis instruments display only 

the positive half of the frequency spectrum because the 

spectrum of a real-world signal is symmetrical around DC. 

Thus, the negative frequency information is redundant.  

For this reason, the power at the discrete frequency 
kf  can 

be expressed as 
222

][2][][][ kIkNIkIfP sssk =−+=                                 (2) 

where k=0,1, 2,…,N/2-1. 

The RMS value of the harmonic amplitude at the discrete 

frequency kf  is  

][2][][ kIfPfI skkh ==                                                    (3) 

The power of the harmonic at 
kf  may disperse over a 

frequency band around the 
kf  due to the spectral leakage. 

Hence, the total power of harmonics within the adjacent 

frequencies around 
kf  can be restored into a “group power” 

[5]. Each “group power”, i.e., ][*

kfP , can be collected 

between kkf
∆−

 and kkf
∆+

 as follows.  
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where τ  is an integer number and denotes the group 

bandwidth. 

Consequently, each harmonic amplitude can be estimated 

as  

][][ **

kks fPfI =                                                                   (5) 

An interesting way to view this phenomenon is to observe 

the FFT implementation, shown in Fig.1. Most leakages can 

be collected into one group and are considered as though they 

were all at the dominant harmonic frequency. The amplitude 

of inter-harmonics (and/or sub-harmonics) can be thus 

identified.  

 
Fig. 1 IEC subgrouping of “bins” for both harmonics and 

interharmonics (graph reproduced from [3]) 

III. THE PROPOSED ITERATIVE GROUP-HARMONIC ENERGY 

DISTRIBUTION MINIMIZING ALGORITHM 

The power line waveform )(ts  (voltage/current) is 

sampled using the sampling rate )1(
s

s T
f = , which has the 

fundamental frequency 
df , as follows.  

 

1,....,2,1,0,)()( −==
=
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                                         (6) 

where N is the sampled point of Fourier fundamental period 

fT . 

In general, the distorted signal can be composed of three 

parts, as follows.  

)()()()( nsnsnsns ihd ++=                                                     (7) 

where )(nsd
 is the fundamental component, )(nsh

 is the 

harmonic components, and )(nsi
 represents the 

interharmonic components. 

 

III.1 The Group-Harmonic Bin Power Algorithm 

The length of the sampled window for FFT analysis plays 

the critical point to determinate if the spectrum can be 

achieved accurately. Based on the empirical observation 

using FFT, the second stronger amplitude is found to be 

located at the right side of the dominant component, 

i.e., ][][ 11 −+
> khkh fIfI , in case of  overlong 

truncated-window. On the contrary, the second stronger 

amplitude is located at the left side of the dominant 

component, i.e., ][][ 11 −+
< khkh fIfI , the truncated-window 

length is insufficient for FFT analysis. Accordingly, the 

proposed GEDM approach is to develop the mechanism for 

correcting the window length according to the situation on the 

dispersed energy. This proposed GEDM method in deed 

extends the “group” concept that has been mentioned by IEC 

61000-4-7 and some papers [3, 5, 20, 36-37].  
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Fig. 2 Amplitude distribution around the dominant 

component 

 

Based on the above concept, the Group-Harmonic Bin 

Power (GBP) algorithm is proposed and described as follows. 

'

df

][][ 11 −+
> khkh fIfI

][][ 1-1 khkh fIfI <
+

min

** ][ PfP k ≤

'

dA

)(ts

1000 kHz, == Nf s 5

Fig. 3 The flowchart of the proposed GBP Algorithm 

 

(1) Set kHz5=sf ，N=1000 for sampling the power line 

signal. 

(2) Implement FFT. 

(3) If ][][ 11 −+
> khkh fIfI , N=N-1. Otherwise, go to next 

step. 

(4) If ][][ 11 −+
< khkh fIfI , N=N+1. Otherwise, go to next 

step. 

(5) Check if 
min

** ][ PfP k ≤ . If yes, the iteration loop stops 

and determine 'NN = . The fundamental frequency 
'

df  

and  amplitude '

dA  can be obtained. Otherwise, go back 

to Step (2) to repeat the procedure until 
min

** ][ PfP k ≤ . 

Note that 
minP  is a predefined minima power value. 

 

III.2 The proposed GEDM Algorithm 

The proposed Iterative Group-harmonic Energy 

Distribution Minimizing (GEDM) algorithm that integrated 

with the GBP algorithm is demonstrated as follows. 

'
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'
f∆

'
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'
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Fig. 4 Flowchart of the proposed GEDM algorithm  

 

(1) Determine the new 
'

s

N

f
f =∆

'  using the GBP method and 

find the correct fundamental frequency '

df  and its 

respective amplitude '

dA . Accordingly, the fundamental 

frequency signal )(' nsd
 and its harmonic signals )(' nsh

 

can be obtained, as follows. 
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           (8)  

(2) Reconstruct the )('
nsd  and )('

nsh  and form a 

composed waveform. Therefore, the new waveform that 

only contains interharmonic components without )(' nsd
 

and )('
nsh

 can be obtained as follows. 
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nsnsnsns hdi +=                                              (9) 

(3) Assume the major interharmonic component (biggest 

amplitude) as the fundamental component.   

(4) Repeat steps (1) to (3) until all major interharmonics are 

regained.  

IV. MODEL VALIDATION WITH A NUMERICAL EXAMPLE 

The proposed GEDM algorithm has been tested by the 

synthesized line signal (voltage/current) to verify the 

effectiveness of harmonic/inter-harmonic analysis. The 

following example is used to illustrate the harmonic analysis 

of a distorted waveform.  
)tfsin(.)tfsin(.)tfsin()t(s

ddd
°+⋅⋅⋅+°⋅⋅⋅+°= 485225051-323035-2 πππ

)tsin()tsin(.)tsin(. ⋅⋅+°⋅⋅+°+⋅⋅+ 51320.175-213.5252012311220 πππ

                                                                                          (10) 

where 2960.fd = Hz is the fundamental frequency. 

Generally, the system frequency drift is a concern in power 

systems because it may vary slightly from time to time due to 

the change of system loads. This effect, in deed, influences the 

traditional FFT spectrum analysis. As above, the line signal 

has a fundamental frequency, i.e., 60.29 Hz, with 0.29 Hz 

drift and a scaled amplitude of 1V. The 3
rd

  and 5
th

 harmonic 

components are included in the synthesized waveform to 

present a possible distorted waveform situation. Non-integer 

components, i.e., interharmonic, such as 131 Hz, 213.5 Hz, 

and 351 Hz are to be considered, reflecting a possible 

polluted line case. Note that above harmonics/interharmonics 

are assigned different magnitudes and phases. 

According to the equation (10), we set 5=sf kHz, 

1000=N , i.e., 5=∆f Hz, and the waveform is shown in Fig. 

5.  As can be seen in Fig. 6, a considerable spectrum leakage 

occurs using FFT so that the result is unable to represent its 

actual spectrum.  

 
Fig. 5 The distorted waveform 

 
Fig. 6 Spectrum of the distorted waveform using FFT 

 

The following steps are illustrated to find the true 

harmonics/interharmonics.  

Step (a): Measurement of fundamental and integer harmonics 

with a 0.29 Hz frequency drift 

In this case, the fundamental frequency component 

including  rd3 harmonic and th5 harmonic is considered to 

have a 0.29 Hz variation. The dispersed power of the 

harmonics over around the frequency band is significantly 

reduced from 0.0088 to about zero within only 6 iteration 

loops, shown in Fig. 7. Fig.8 indicates that each harmonic is 

approaching toward its true amplitude step by step. The 

amplitudes of fundamental, third and fifth component are thus 

obtained as 1.0, 0.3 and 0.24 at the sixth iteration loop from 

0.99, 0.28 and 0.22 at the first iteration loop, respectively. 

Also, the fundamental frequency is found as 60.29 Hz, 

matching the true one.  
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Fig. 7 Convergent curve of the dispersed power at the 

harmonic components 
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Fig. 8 Amplitude tracking curve of the harmonic components 

 

Step (b): Measurement of the interharmonic at 213.5 Hz 

    In this stage, all harmonic components acquired at Step (a) 

are excluded in the new waveform so that the interharmonic at 

213.5 Hz is assumed as the fundamental component. The 

dispersed power of the supposed fundamental band 

(interharmonic at 213.5 Hz) is considerably reduced from 

0.013 to almost zero within 8 iteration loops, shown in Fig. 9. 

Accordingly, its amplitude is obtained as 0.25 from 0.21 and 

the 213.5 Hz component is thus confirmed, shown in Fig. 10.      
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Fig. 9 Convergent curve of the dispersed power at the 213.5 

Hz interharmonic 
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Fig. 10 Amplitude tracking curve of the 213.5 Hz 

interharmonic 

 

Step (c): Measurement of the interharmonic at 131 Hz 

In this stage, all harmonics and 213.5 Hz interharmonic are 

excluded in the new waveform. Similarly, the dispersed 

power of the supposed fundamental band (interharmonic at 

131 Hz) is approaching toward to zero from 0.0039 within 9 

iteration loops, shown in Fig. 11. Accordingly, its amplitude 

is obtained as 0.2 from 0.19 and the 131 Hz component is 

therefore confirmed, shown in Fig. 12.      
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Fig. 11 Convergent curve of the dispersed power at the 131 

Hz interharmonic 
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Fig. 12 Amplitude tracking curve of the 131 Hz interharmonic 

 

Step (d): Measurement of the interharmonic at 351 Hz 

In the last stage, all harmonics, 213.5 Hz and 131 

interharmonic are excluded in the new waveform. Therefore, 

only 1 interharmonic (351 Hz) is remained. The dispersed 

power of the supposed fundamental band (interharmonic at 

351 Hz) is going down quickly to almost zero from 0.0088 

within only 4 iteration loops, shown in Fig. 13. As a result, its 

amplitude is obtained as 0.1 from 0.093 and the 351 Hz 

component is thus confirmed, shown in Fig. 14.      
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Fig. 13 Convergent curve of the dispersed power at the 351 

Hz interharmonic 
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Fig. 14 Amplitude tracking curve of the 351 Hz interharmonic 

V. CONCLUSIONS 

Although the DFT (or FFT) has certain limitations in the 

harmonic analysis, it is still widely used in industry today. The 

harmonic/inter-harmonic identification using FFT-based 

GEDM algorithm has been developed to be extracted 

accurately and efficiently. The test results confirm that the 

proposed GEDM method can guarantee the tracking of each 

harmonic/interharmonic amplitude to be convergent at every 
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iteration loop by the GBP algorithm. There is no theoretical 

restriction in the locations of inter-harmonic components 

while the group bandwidth ( τ ) of each 

harmonic/inter-harmonic should be chosen appropriately. 

Moreover, the GEDM methodology has been implemented 

successfully by a LabVIEW programming so that it can be 

easily extended to other software packages like 

microprocessor for on-line measurement. Additionally, the 

proposed GEDM can provide an advanced improvement for 

most measurement devices with some inherent errors because 

of the spectrum leakages caused by 

harmonics/inter-harmonics. 
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