Engineering Letters, 19:4, EL._ 19 4 03

Improved Vision-based Robot Navigation
Using a SDM and Sliding Window Search

Mateus Mendes*, A. Paulo Coimbra*, and Manuel M. Criséstomo*

Abstract—Robust and fast vision-based robot
navigation is a long sought goal, which requires
comparing the robot’s current view with a database
of visual memories. The technique described in the
present paper uses a Sparse Distributed Memory
(SDM) to store paths described by sequences of
images, and a sliding window to narrow the search
space for real-time operation. The use of the sliding
window greatly reduces the processing time and the
number of prediction errors. The use of a short-term
memory confers on the robot the ability to still
solve the kidnapped robot problem. The Sparse
Distributed Memory is a kind of associative memory
suitable to work with high-dimensional binary vec-
tors, thus being appropriate to store long sequences

of images.

Index Terms—Robot Navigation, View-based Nav-
igation, Sliding Window, SDM, Sparse Distributed
Memory

1 Introduction

Among all the techniques that may be used for robot lo-
calisation, vision-based approaches are probably the most
cherished, for they are biologically inspired. Humans
strongly depend on visual memories: approximately 80%
of the sensorial information processed by an average per-
son is visual [1]. Additionally, the sensors required for
vision-based robot navigation are inexpensive. An aver-
age quality video camera may be enough for the simpler
applications.

The main drawback of vision-based approaches is that
the processing power needed is huge. Every single image
is usually described by several hundreds or thousands of
pixels, and every path that the robot learns is described
by tens, hundreds or even thousands of images, depend-
ing on the path length and frame rate used. That makes
the technique less appealing, because real-time operation
may be compromised for large databases, due to increas-
ing needs of processing power and error probability. As
the robot learns more and more paths, the number of

*ISR - Institute of Systems and Robotics, Dept. of Electrical and
Computer Engineering, University of Coimbra, Portugal. E-mail:
acoimbra@deec.uc.pt, meris@isr.uc.pt. TESTGOH, Polytechnic In-
stitute of Coimbra, Portugal. E-mail: mmendes@estgoh.ipc.pt.

images it has to store grows continually. The memory
requirements and the processing time increase in propor-
tion to the database size. It should be noted, however,
that modern evidence indicates that the human brain
functions in a similar manner: it is a huge amount of
memory, used to store sequences of events that will lead
future analysis and actions [2, 3].

The images alone are a means for instantaneous locali-
sation. View-based navigation is almost always based on
the same idea: during a learning stage the robot learns a
sequence of views and motor commands that, if followed
with minimum drift, will lead it to a target location. The
robot is later able to follow the learnt path by following
the sequence of commands, possibly correcting the small
drifts that may occur.

In previous work the authors presented a system to navi-
gate a robot using images stored into a Sparse Distributed
Memory (SDM) [4]. The SDM is a kind of associa-
tive memory based on the properties of high-dimensional
boolean spaces, and thus suitable to work with large bi-
nary vectors such as images [3]. The method was efficient
even under difficult conditions [5], but the processing re-
quirements were very demanding. The present paper,
which is an extended version of [6], describes an improve-
ment to the system, in which a search sliding window
truncates the search space and thus considerably reduces
the time and processing requirements, as well as the num-
ber of robot localisation errors.

Section 2 reviews some popular navigation techniques and
explains navigation based on view sequences in more de-
tail. Section 3 briefly describes how the SDM works. In
Section 4 the experimental platform used is described.
Section 5 explains the problems encountered with the
original navigation method, and how the application of a
sliding window contributes to solve many of them. Sec-
tion 6 shows and discusses the results obtained, and Sec-
tion 8 draws some conclusions.

2 Robot Navigation

There are many different approaches for robot navigation.
Vision-based approaches have been extensively used, al-
though other techniques may be better for some types of
common environments.

(Advance online publication: 12 November 2011)

Engineering Letters, 19:4, EL._ 19 4 03

2.1 Popular techniques

Besides vision-based techniques, many different ap-
proaches have been tried to localise and navigate robots
in a safe and robust way. Some of those approaches work
only in structured environments, since they are based
on the recognition of artificial landmarks, beacons, in-
door/outdoor GPS or similar strategies [7]. Those strate-
gies greatly improve the accuracy of the system. They
trim the complexity of the environment and narrow the
robot search space. The problem of robot localisation
becomes much simpler, for the robot only has to look for
selected signals and cut off all the remaining data that
is unnecessary. The disadvantages, however, are obvious:
such approaches are suitable only for structured environ-
ments. They are not a general solution to the problem of
robot localisation.

More generic strategies that work in unstructured envi-
ronments include mapping and localisation using laser
range finders, as well as sonars or cameras for vision-
based approaches. In this case the robot is equipped and
programmed in such a way that it is expected to be able
to succeed in localising itself in a wide range of environ-
ments, and those environments do not have to be inten-
tionally structured in order for the robot to succeed. It
should be able to map the environment, regardless of its
characteristics, and later use that map to localise itself
autonomously.

Popular sensors used for robot localisation are sonars,
infrared and laser range finders. Sonars are cheap but in
general offer poor precision. Infrared sensors offer better
precision, but they hardly work on clear daylight. Lasers
are expensive and may also have problems working in
daylight. On the other hand, an average quality video-
camera is nowadays cheap and can work in a wide range
of environments with different illumination levels [8].

2.2 Navigation using view sequences

There are two popular approaches for vision-based nav-
igation: one that uses plain images [9], the other that
uses omnidirectional images [10]. Omnidirectional im-
ages offer a 360° view, which is richer than a plain front
or rear view. However, that richness comes at the cost
of even additional processing power requirements. Some
authors have also proposed techniques to speed up pro-
cessing and/or reduce memory needs. Matsumoto [11]
used images as small as 32x32 pixels. Ishiguro replaced
the images by their Fourier transforms [12]. Winters com-
pressed the images using Principal Component Analysis
[13].

In the present work, the approach followed to navigate
the robot is based on using visual memories stored into
a Sparse Distributed Memory, as described in [4]. It re-
quires a supervised learning stage, in which the robot is

manually guided. While being guided, the robot mem-
orises a sequence of views automatically. It stores a se-
quence of views for each path. Images that are very sim-
ilar to previously stored images are discarded, because
they would, with high probability, not add any relevant
information to the known information. They might even
disturb important information already stored into the
SDM, as explained further in Section 3.

While running autonomously, the robot performs auto-
matic image-based localisation and obstacle detection.
Localisation is estimated based on the similarity of two
views: one stored during the supervised learning stage
and another grabbed in real-time. To minimise possible
drifts to the left or to the right, the robot tries to find
matching areas between those two images and calculates
the horizontal distance between them in order to infer
how far it is from the correct path, being able to reduce
the drift iteratively over time. There is no need to process
the vertical distance, since the camera is fixed and verti-
cal shifts are not expected. The technique is described in
more detail in [4].

3 Sparse Distributed Memories

The Sparse Distributed Memory is an associative memory
model proposed by Kanerva in the 1980s [3]. It is suit-
able to work with high-dimensional binary vectors. In
the proposed approach, an image is regarded as a high-
dimensional vector, and the SDM is used simultaneously
as a sophisticated storage and retrieval mechanism and a
pattern recognition tool.

3.1 Previous use of the SDM for robot nav-
igation

The concept of the SDM is very attractive for robot nav-
igation. It confers on the robot the ability to learn and
follow paths the same way humans do. Some researchers
have already explored the idea to some extent. Rao and
Fuentes [14] simulated the use of a SDM to store position
information from optical sensors, associated with motor
controls, during a learning stage. Using that informa-
tion, the robot was later able to follow the same paths.
The authors presented only simulation results. Watan-
abe et al. [15] used a SDM for the task of scene recog-
nition in a factory environment, where the robots had
to move autonomously from one place to another. The
SDM, however, was just used as an auxiliary method of
scene recognition. It was not used for robot navigation
purposes.

3.2 The original model

The underlying idea behind the SDM is the mapping of
a huge binary memory onto a smaller set of physical lo-
cations, called hard locations. That way it is possible
to mimic the existence of a much larger space, taking ad-

(Advance online publication: 12 November 2011)

Engineering Letters, 19:4, EL._ 19 4 03

Address Radius Data Input
[oo1T0011] [8] [0 1T 1 0 0 1 1 1]
Distance ‘
C p[00111111 | > | 2 |w|d]of1jo]1]of1l1]
£ $|10001100| »| 7 0jojofojoj0j0]0|s &
S 511110010 | > | 3 »[a]2]o0]2]0]2[1[1]|8 2
-
<|10110100 | > | 4 0lofofojolofo]o] ©
Average [-1[1]0.5[-1J0.5[1[1]1]

ThresholdatOandoutput [0 1 1 0 1 1 1 1]

Figure 1: One model of a SDM, using bit counters. The
address bits highlighted are different in the address vec-
tor, compared to the corresponding bits in the input ad-
dress.

vantage of its inherent properties. As a general guideline,
those hard locations should be uniformely distributed in
the virtual space, to mimic the existence of the larger vir-
tual space as accurately as possible. Every datum may be
stored into various hard locations. Storage is performed
into a set of hard locations that exist within a given ra-
dius. Retrieval is performed by averaging those locations
and comparing the result to a given threshold. Figure
1 shows a model of a SDM. The main modules are an
array of addresses, an array of bit counters, a third mod-
ule that computes the average of the bits of the active
addresses, and a thresholder. “Address” is the reference
address where the datum is to be stored or read from. It
will activate all the hard locations within a given access
radius, which is predefined. Kanerva proposes that the
Hamming distance, that is the number of bits in which
two binary vectors are different, be used as the measure
of distance between the addresses. All the locations that
differ less than a predefined number of bits from the input
address are selected for the read or write operation.

Data are stored in arrays of counters, one counter for
every bit of every location. Writing is done by incre-
menting or decrementing the bit counters at the selected
addresses. To store 0 at a given position, the correspond-
ing counter is decremented. To store 1, it is incremented.
Reading is done by averaging the values of all the coun-
ters columnwise and thresholding at a predefined value.
If the value of the sum is below the threshold, the bit
is zero, otherwise it is one. Initially, all the bit counters
must be set to zero, for the memory stores no data. The
bits of the address locations should be set randomly, so
that the addresses would be uniformely distributed in the
addressing space.

Such a memory exhibits the properties of a large boolean
space. It is proven mathematically that those proper-
ties include, among others, high tolerance to noisy data,
ability to deal with incomplete data, natural forgetting
over time and ability to process sequential information.
Hence, a robot equipped with such a memory at its helm

must be able to succeed in a wide range of difficult situa-
tions which are typical in robot navigation, such as partial
occlusion, illumination changes and memory overflow. A
number of experiments have been carried out to prove
that assumption, and the results are described in [8].

Another interesting characteristic of the SDM model is
that the same set of vectors can be used simultaneously
to store the addresses and the data, as long as any given
datum (is always stored at address (. A practical con-
sequence of this is that one of the arrays can be dis-
carded, cutting the memory size down to about one half
its original size. Such a memory, comprising only one
array, where datum (is stored at address (, is called
auto-associative.

3.3 The models used

The original SDM model has been subject to various
improvements and alternative implementations. In the
present work, four variations have been studied: the
arithmetic mode, the bitwise mode using the natural bi-
nary code, the bitwise mode using an optimised code,
and the bitwise mode using a sum-code. Those models
are described in [5].

All the models used are auto-associative and use the Ran-
domised Reallocation (RR) algorithm [16]. Using the RR,
the system starts with an empty memory and allocates
new hard locations when there is a new datum which can-
not be stored into enough existing locations. The new
locations are placed randomly in the neighbourhood of
the new datum address.

3.3.1 Bitwise SDM

The bitwise implementation is very similar to the original
model. The difference is that it stores only one bit per
input vector bit, thus dropping the bit counters, as shown
in Figure 2. Writting in such a model consists in just
replacing the old datum. The advantages are that the
capacity of storing data is improved, and reading and
writing is much faster. The model was inspired by Furber
et al.’s approach [17].

3.3.2 Use of an optimised code

As described in [5], the Hamming distance between two
binary numbers is not proportional to the arithmetic dis-
tance. For example, the Hamming distances hy(0111s,
11115) = ho(11104, 11113) = 1. That happens because
the Hamming distance does not take into account the po-
sitional values of the bits. However, the sensorial data is
encoded using the natural binary code, which takes into
account the positional values of the bits. Using arithmetic
distances, d; (01112, 11112) = 8 and d(11102, 11115) =

(Advance online publication: 12 November 2011)

Engineering Letters, 19:4, EL._ 19 4 03

Address Radius Data Input
[oo110011] [8] [0 1 1 0 0 1 1 1]
Distance ¢
[00111111 | » 2 |»lojoj1]oj0o|1]1]1
S @
£ $[10001100) * 7 0/0]0]0]0]0]0]0 |8 o
3 2
g ©|11110010| *| 3 [(™o0|1|1|0]0|0|1]|1 |6 =
o 1 -
<|10110100| ™| 4 ojojojofojojo0]|o0O
Average [0 Jo5[1J0Joo5[1]1]

Thresholdat0.5andoutput [0 1 1 0 0 1 1 1|

Figure 2: Bitwise SDM model, which contains single bits
instead of bit counters.

1. Hence, different criteria are used to encode the input
information and to process it inside the SDM according
to Kanerva’s original model. That difference causes a loss
of performance of the system, and to overcome the prob-
lem other memory models were implemented. The first
alternative encodes the data using an optimised code. In
that optimised code some bytes are sorted, in order to
minimise the effect of using different criteria to encode
the input data and to process it inside the SDM.

3.3.3 Use of a sum-code

In another model, the data is encoded using a sum-
code of 9 graylevels. In that code, each binary num-
ber is mapped into the range {00000000, 00000001,
00000011,..., 11111111}. That way the Hamming dis-
tance between any two binary numbers is proportional to
the arithmetic distance.

3.3.4 Arithmetic SDM

In the arithmetic implementation, the bits are grouped as
byte integers, as shown in Figure 3. Addressing is done
using an arithmetic distance, instead of the Hamming
distance. Learning is achieved updating each byte value
using the equation:

hf =hf 4+a-(z"—=hf), acRAO<a<1l (1)
In the equation, h¥ is the £*” number of the hard location,
at time ¢, ¥ is the corresponding number in the input
vector « and « is the learning rate. In the present im-
plementation a was set to 1, enforcing one shot learning.

4 Experimental platform

The robot used was a Surveyor! SRV-1, a small robot
with tank-style treads and differential drive via two pre-
cision DC gearmotors (Figure 4). Among other features,

1http://WWW.surveyor.corn.

Address Radius

Distance
115 50 | 90
20 |»| 13 | 32
103 38 | 90
10 > 21 | 14
s (3 %]

]

Average

Figure 3: Architecture of the auto-associative arithmetic
SDM, using integers instead of bit counters.

Figure 4: Robot used.

it has a built in digital video camera and a 802.15.4 radio
communication module. The robot was controlled in real
time from a laptop with a 1.8 GHz processor and 1 Gb
RAM. The overall software architecture is as shown in
Figure 5. It contains three basic modules:

1. The SDM, where the information is stored.

2. The Focus (following Kanerva’s terminology), where
the navigation algorithms are run.

3. An operational layer, responsible for interfacing the
hardware and some tasks such as motor control, col-
lision avoidance and image equalisation.

Navigation is based on vision, and has two modes: su-
pervised learning, in which the robot is manually guided
and captures images to store for future reference; and au-
tonomous running, in which it uses previous knowledge
to navigate autonomously, following any sequence previ-
ously learnt. The vectors stored in the SDM consist of
arrays of bytes, as summarised in Equation 2:

x; =< imy, seq_id, i, timestamp, motion > (2)

In the vector z;, im; is the image i, in PGM (Portable
Gray Map) format and 80x64 resolution. In PGM im-
ages, every pixel is represented by an 8-bit integer. 0
is black, 255 is white. seq_id is an auto-incremented,

(Advance online publication: 12 November 2011)

Engineering Letters, 19:4, EL._ 19 4 03

Software on the laptop

data/ prediction_

SDM Focus

i request / data

A

command| data

Y

Operational level
motors control, image processing,
collision avoidance

A
image

command
Y

Robot

Figure 5: Architecture of the implemented software.

4-byte integer, unique for each sequence. It is used to
identify which sequence the vector belongs to. i is an
auto-incremented, 4-byte integer, unique for every vector
in the sequence, used to quickly identify every image in
the sequence. timestamp is a 4-byte integer, storing Unix
timestamp. It is not being used so far for navigation pur-
poses. motion is a single character, identifying the type
of movement the robot performed after the image was
grabbed. The image alone uses 5120 bytes. The over-
head information comprises 13 additional bytes. Hence,
the input vector contains 5133 bytes.

5 Use of a search window

The use of a search window, which truncates the search
space, greatly improves the speed and performance of the
method.

5.1 The problems

There are two weaknesses of the view-based navigation
approach described: i) processing time required to store
and retrieve one image and ii) prediction errors, when the
memory outputs a wrong image and motion command.

As for the processing time, it is proportional to the num-
ber of images stored in the memory. Each new image has
to be compared to all the hard locations that exist in the
memory. That may be a problem for real time operation,
specially if a single processor is used.

As for the second problem, it is due primarily to the exis-
tence of noise in the images, which is impossible to avoid.
When following a path, it is normal that the robot makes
some wrong predictions. It is difficult to count the exact
number of errors, but in this case we define the concept
of “Momentary Localisation Error” (MLE). A MLE oc-
curs when the system retrieves image im;_; after having
retrieved im;, for ¢,j > 0. That is a reasonable assump-

tion, since, under normal circumstances, the robot is not
expected to get back in the sequence. If at some point of
a path the prediction is #m;, and after that it is im;_j,
then it means that at least one of the predictions was
wrong. Those MLEs are not to worry when the robot
is performing the same movement in both the correct
and the wrongly retrieved image. That is often the case,
since there are only 4 possible motions (forward, back-
ward, turn left and turn right). But a prediction error
could compromise the robot’s ability to complete a path
if the correct motion and the motion associated with the
retrieved image are different.

5.2 Distribution of the Momentary Locali-
sation Errors

Table 1 shows the number of MLEs measured while fol-
lowing a typical path, described by a sequence of 130 im-
ages. The first row of the table indicates the distance of
the image predicted by the memory to the last predicted
image. The first column is the operation mode.

As the table shows, most of the MLEs occur with adjacent
images: the distance between the expected image and
the retrieved image is 1. More than 60% of the MLEs
are between adjacent images, regardless of the memory
operation mode. In the bitwise mode the MLEs are more
distributed in the range of distances [1-5] than in the
other modes. That makes sense, considering that the
bitwise mode is, in general, the weakest of all [5]. In the
example path no MLEs were detected at distances greater
than 5 images, and that is also a normal behaviour of the
system. Figure 6 shows an histogram of the distribution
of MLEs.

5.3 The use of a sliding window

The use of a sliding window helps improving both the
processing time and the number of MLEs. It works like
the use of a kind of context, in which the topic is nar-
rowed to a given subject. In the case of the SDM, that is
equivalent to segmenting the search space.

L. Jaeckel proposed a method of segmenting the space
by way of using only a limited set of coordinates, instead
of all the binary vector, to determine the set of active
locations [18]. The method implemented in the present
work has some similarities to Jaeckel’s approach. The
idea is narrowing the search field to a number of images
before and after the last predicted image, as illustrated
in Figure 7. For example, if the robot is following path
A and the last image retrieved is image 4, in the next
prediction it is expected to be still following path A and
retrieve either image i or image i+1. Since the length
of the step used in the autonomous run is 1/16" of that
used during the learning stage, it will see image i for
some time and that is no prediction error. The use of a
sliding window of width 2 x j 4+ 1 consists in narrowing

(Advance online publication: 12 November 2011)

Engineering Letters, 19:4, EL._ 19 4 03

Table 1: Distribution of the MLEs according to the operation mode, without search window, in a typical path

described by 130 images.

-5 -4 -3 -2 -1
Arithmetic 0 0 4 (36.4%) 0 7 (63.6%)
Bitwise 2 (38%) 3 (5.7%) 2 (3.8%) 9 (17.0%) 37 (69.8%)
Optimised code 0 4(7.3%) 3 (5.5%) 6 (10.9%) 42 (76.4%)
Sum-code 0 0 1(7.1%) 3 (21.4%) 10 (71.4%)

Distribution of MLEs by operation mode

Frequency
=}

0 .

l_4D L

3
Distance to the expected image

M bitwise

B arithm etic
@ optimised
Osum code

I

Figure 6: Distribution of the MLEs, in the four operation modes, without search window, in a typical path described

by 130 images.

Figure 7: Example of a sliding window of width 3. For
image j, search is first performed in the interval [j—1,j+
1].

the search field to sequence A and images in the interval
[im;_j, im;y;], for 4,7 > 0. The search algorithm of the
SDM was updated, so that it skips images that: i) do
not belong to sequence A, and ii) belong to sequence A
but are not in the range [im;_j, im;4;]. The images that
are within the sequence and the window are processed
normally.

6 Experiments and results

As Table 1 shows, more than 60% of the MLEs occur
between adjacent images (distance -1). The other MLEs
appear at absolute distances of 2, 3, 4 or 5 images. Al-
though those errors account for less than 40% of the total,
they are still undesirable.

In order to assess the performance of the system using
a sliding window, the navigation algorithm was updated

to narrow the search to the same sequence and a window
of three images, in the interval [im;_1, im;41]—i.e., for

» each image, perform the search by comparing just with

the last seen image, the image prior to that one in the
sequence and the next expected image in the sequence.

Table 2 shows the results obtained when following the
already presented example path, using a search window
of width 3 . One interesting conclusion is that the search
window cut more MLEs than those counted out of its
range, except for the arithmetic mode. That is explained
by the fact that some MLEs may actually be the rea-
son of other MLEs. For example, a MLE that causes a
wrong motion of the robot may cause drifts and addi-
tional MLEs in the future. The improvements are of 50%
or more, except for the arithmetic mode.

Figure 8 illustrates the data shown in Table 2, related to
the number of MLESs counted with and without using the
search window. The histogram clearly shows the impact
of the method, specially in the bitwise modes.

Figure 9 illustrates the differences in processing time, as
shown in Table 2. It is clear that there is an improvement
of about 93% in the processing time. That makes sense,
considering that the memory is loaded with a sequence
of 130 images. The use of the search window makes the

(Advance online publication: 12 November 2011)

Engineering Letters, 19:4, EL._ 19 4 03

Momentary Localisation Errors

B Without window
With window

Number of MLEs

Operation mode

Figure 8: Comparison of the number of MLEs with and
without search window, in a typical path described by
130 images.

Processing time

140000

120000

100000

80000

B without window
With window

60000

Time (microseconds)

40000

20000

0 — —
Bitwise m ode Optimised code
Operation mode

Aithm etic mode

Figure 9: Comparison of the processing time with and
without search window.

algorithm skip all but three images, and those three im-
ages represent only 2.31% of the whole sequence. Since
most of the time necessary to make a prediction is actu-
ally spent comparing images, an improvement of 93% is
coherent with the theory.

7 Discussion

As shown in Section 6, the use of a search window greatly
improves the performance of the system. In the example
path it reduced the number of momentary localisation
errors up to 67%, and the processing time up to 95%.
That improvements are possible at the cost of truncat-
ing the search space. Under normal circumstances, trun-
cating the search space should pose no problem to the
robot. However, the solution looses generality, because
it is strongly based on the robot’s short memory: the
algorithm is based on the assumption that the robot is
always close to its last position. Nonetheless, it may hap-
pen that the robot slips while moving, is manually moved
by a human to another location, etc. That is commonly
known as the as the “kidnapped robot” problem.

To achieve robust navigation, a robot must not rely
strictly on a search window, otherwise it will not solve

the kidnapped robot problem. Using a SDM that prob-
lem may be easily overcome. A general solution to the
problem is to use an algorithm that, for each new image:

1. Search within the sliding window. If the search re-
trieves one or more images within the SDM access ra-
dius (as explained in Section 3.2), then assume that
the prediction is correct.

2. If the search within the sliding window does not re-
trieve at least one image within the SDM access ra-
dius, then perform a global search in the SDM and
use the best prediction.

The algorithm as described still takes advantage of the
sliding window under normal circumstances, and is able
to solve the kidnapped robot problem.

8 Conclusions

Robot navigation based on visual memories is a long
sought goal. However, it requires heavy processing due
to the amount of information that has to be processed
in real time. The approach followed in the present work
is vision-based robot navigation using images stored into
a Sparse Distributed Memory. The speed of the process
can be largely improved with the use of a search window.
The search window truncates the search space, reducing
significantly the processing time as well as the number
of prediction errors, thus improving the real time perfor-
mance operation of the robot.

Acknowledgements

This work is supported in part by grant
SFRH/BD/44006,/2008 from Fundagao para a Ciéncia e
Tecnologia, Portugal.

References

[1] Steven Johnson. Mind wide open. Scribner, New
York, 2004.

Jeff Hawkins and Sandra Blakeslee. On Intelligence.
Times Books, New York, 2004.

Pentti Kanerva. Sparse Distributed Memory. MIT
Press, Cambridge, 1988.

Mateus Mendes, Manuel M. Criséstomo, and
A. Paulo Coimbra. Robot navigation using a sparse
distributed memory. In Proceedings of the 2008
IEFEE International Conference on Robotics and Au-
tomation, Pasadena, California, USA, May 2008.

Mateus Mendes, Manuel M. Criséstomo, and
A. Paulo Coimbra. Assessing a sparse distributed
memory using different encoding methods. In Pro-
ceedings of the World Congress on Engineering 2009,
WCE 2009, London, UK, July 2009.

(Advance online publication: 12 November 2011)

Engineering Letters, 19:4, EL._ 19 4 03

Table 2: MLEs and processing time without using search window and with search window of size 3, in a typical path
described by 130 images.

[6]

[10]

[11]

[15]

Arithmetic mode Bitwise mode Optimised code Sum-code
Without search window 11 53 55 14
MLE With search window 7 19 18 7
Improvement 36% 64% 67% 50%
Without search window 15 511.38 14 567.16 16 269.21 116 846.54
Time (us) With search window 1011.14 088.44 1 000.95 5 539.48
Improvement 93% 93% 94% 95%

Mateus Mendes, A. Paulo Coimbra, and Manuel M.
Cris6stomo. Robot navigation using view sequences
and sliding window search. In Lecture Notes in En-
gineering and Computer Science: Proceedings of the
World Congress on Engineering 2011, WCE 2011,
London, UK, July 2011.

Christopher Rasmussen and Gregory D. Hager.
Robot navigation using image sequences. In In Proc.
AAAI pages 938-943, 1996.

Mateus Mendes, A. Paulo Coimbra, and Manuel M.
Cris6stomo. Intelligent robot navigation using view
sequences and a sparse distributed memory. Paladyn
Journal of Behavioural Robotics, 1(4), 2011.

Yoshio Matsumoto, Kazunori Ikeda, Masayuki In-
aba, and Hirochika Inoue. Exploration and map ac-
quisition for view-based navigation in corridor envi-
ronment. In Proc. of the Int. Conference on Field
and Service Robotics, pages 341-346, 1999.

Yoshio Matsumoto, Masayuki Inaba, and Hirochika
Inoue. View-based navigation using an omniview se-
quence in a corridor environment. In Machine Vision
and Applications, 2003.

Yoshio Matsumoto, Masayuki Inaba, and Hirochika
Inoue. View-based approach to robot navigation. In
Proc. of 2000 IEEE/RSJ Int. Conference on Intelli-
gent Robots and Systems (IROS 2000), 2000.

Hiroshi Ishiguro and Saburo Tsuji. Image-based
memory of environment. In én Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, 1996.

Niall Winters and José Santos-Victor. Mobile robot
navigation using omni-directional vision. In In

Proc. 3rd Irish Machine Vision and Image Process-
ing Conference (IMVIP’99), pages 151-166, 1999.

Rajesh P.N. Rao and Olac Fuentes. Hierarchical
learning of navigational behaviors in an autonomous
robot using a predictive sparse distributed memory.
Machine Learning, 31(1-3):87-113, April 1998.

Michiko Watanabe, Masashi Furukawa, and Yuki-
nori Kakazu. Intelligent agv driving toward an
autonomous decentralized manufacturing system.

Robotics and computer-integrated manufacturing,
17(1-2):57-64, February-April 2001.

Bohdana Ratitch and Doina Precup. Sparse dis-
tributed memories for on-line value-based reinforce-
ment learning. In ECML, 2004.

Stephen B. Furber, John Bainbridge, J. Mike Cump-
stey, and Steve Temple. Sparse distributed memory
using n-of-m codes. Neural Networks, 17(10):1437—
1451, 2004.

Louis A. Jaeckel. An alternative design for a sparse
distributed memory. Technical report, Research
Institute for Advanced Computer Science, NASA
Ames Research Center, July 1989.

(Advance online publication: 12 November 2011)

