
 

 
Abstract— This paper presents an active control logic for 

vibration suppression in flexible structures. This control logic, 
called Active Modal Tuned Mass Damper, is based on an active 
realization of the passive mechanical Tuned Mass Damper. 
Starting from the traditional TMD theory, a closed loop 
formulation is proposed to calculate the active control force. 
The possibility to describe every linear mechanical system or 
civil structure with a set of modal coordinates allows to act 
independently on each d.o.f. The technique is compared with 
different solutions already proposed in literature, such as the 
Independent Modal Space Control and the Positive Position 
Feedback. Numerical simulations, based on a FEM linear 
model, are carried out to investigate the pro and con of each 
logic. Finally an experimental campaign has been performed in 
order to validate the proposed control logic. 
 

Index Terms— Active modal TMD, resonant control, 
vibration suppression 
 

I. INTRODUCTION 

The necessity to reduce the vibrations in structures has 
always played a fundamental role not only in mechanics but 
also in many civil/architectonic applications. The stresses 
associated to the dynamic amplifications acting on these 
structures, in particular when they are forced in nearly 
resonance conditions, can affect their performances and 
integrity. These considerations assume even more 
importance when the same stresses lead to a component 
lifetime reduction and, as a consequence, to implications 
about the safety of persons and things in close contact with 
the structures under investigation. 

For these reasons, the designers generally operated 
adopting passive devices able to reduce the vibrations level. 
The most intuitive solution is to apply viscous dampers for 
the energy dissipation. Anyway this approach implies some 
limits mainly due to the necessity of defining a fixed point 
to set to the ground the viscous forces. Moreover, the same 
fixed point becomes a critical element in the optimization 
procedure of damper parameters, since it actually modifies 
the dynamic response of the system. An alternative solution 
has been reached with the introduction of the mass damper 
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theory. Thanks to its simplicity, although well known for 
many years, this passive device is still widely adopted in 
many civil and mechanical systems [1-4]. The working 
principle, based on the synchronization between the natural 
frequency of an auxiliary single d.o.f. coupled system and 
the one of the original structure (from which the name 
“Tuned Mass Damper”, TMD), involves that it operates 
applying an inertial force 90 degrees out of phase with 
respect to the displacement. The main limit of this device is 
the ability to protect the system within a given range of 
frequencies, while the others are practically uncontrolled. 
During the years, to improve their performances multiple 
resonances TMD have been created, as e.g. the Stockbridge 
[5], for the vibrations suppression in the cables of high 
voltage energy transmission lines, able to operate in a wider 
frequency range. 

Anyway during the last decades, thanks to the 
improvements and the cost reduction of calculators and 
actuators systems, the active solutions have assumed more 
and more importance. In dynamic applications the solutions 
classified as active modal controls, able to independently act 
on each generic structure vibration mode, are particularly 
interesting. In this sense each vibration mode of the system 
under investigation can be analyzed as a single d.o.f. 
system. In general all the active control logics for vibrations 
suppression are based on several steps, summarizing as: 

- Identification of the system vibratory state by means of 
modal filters or observers [6,7]; 

- Definition of the control law that, starting from the 
vibration level, returns the damping force[8]; 

- Actuation of the control forces through a suitable 
actuators system (piezoelectric, magneto-strictive, 
inertial electromechanical,…) [9]; 

- Evaluation of possible undesired effects associated to 
the implementation of the logic on a real system (for 
example spillover) [7,10]. 

The aim of present work is to investigate the second 
point, comparing different control logics and evaluating pro 
and con. Firstly two known-in-literature logics, the 
Independent Modal Space Control (IMSC) [11-14] and the 
Positive Position Feedback (PPF) [15-17], are briefly 
presented. Then an active TMD logic is proposed. Starting 
from the traditional TMD theory, it adopts a modal 
approach to calculate the control force, overcoming some of 
the TMD typical limits such as the imposed ratio between 
the system and the auxiliary masses, the static deflection due 
to the auxiliary mass,… In the following, the Active Modal 
TMD is tested on a numerical model of a clamped beam and 
compared with IMSC and PPF. Finally experimental tests 
are presented, showing the performances of the proposed 
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control logic on a real system. 

II. STATE OF THE ART SOLUTIONS 

Consider a generic linear mechanical system 
 

      c d   M x R x K x f f   (1) 

 
where 
- x  is the vector containing the n  independent 

coordinates 
-  M  and  K  respectively represent the inertial and 

elastic matrices; 
-  R  is the damping matrix, assumed to be proportional 

to the elastic and inertial ones (Rayleigh assumption); 
- cf  is the vector containing the control contribution, 

while df  represents the generic disturbance forces applied 

to the system. 
For a complex system (such as beam, plate, etc.), these 

matrices come from a discretization of the structure, for 
example using the Finite Element Method (FEM). For this 
reason they can be very large and un-useful for the synthesis 
of the control law. In this sense modal approach is very 
attractive, because it allows to describe the system through a 
limited set of modal coordinates. In fact, higher modes are 
typically very damped and difficult to excite and can be 
neglected in the control formulation. Defining  totΦ  the 

n n  eigenvector matrix of    1
M K , the following 

coordinate change can be performed 
 

 tot tot
x Φ q  (2) 

 
where 

tot
q  is an n  vector containing all the system modal 

coordinates. Considering only the first m  modes, the (2) 
becomes 

 

 x Φ q  (3) 

 
where  Φ  is an n m  matrix containing only the 

considered modal shapes. Substituting the (3) in the (1), a 
series of decoupled modal equations can be obtained as 

 

, ,i i i i i i c i d im q r q k q u f      (4) 

 
where the subscript "i" indicates the i-th modal equation. 
Therefore, through the (4), it is possible to define the 

control law ,c iu  independently for each mode. For this 

reason, in the following, a single-mode system is considered 
to describe the different control laws proposed. The effects 
of the control laws on the other modes will be discussed 
later. 

In this section a brief overview of some important control 
theories developed in the last decades and based on the 
modal approach is presented. Two strategies, Independent 
Modal Space Control (IMSC) and Positive Position 

Feedback (PPF) are investigated. 
 

A. Independent Modal Space Control 

Considering the (4), the aim of the IMSC is to 
independently modify the dynamic behaviour (natural 
frequency and damping) of each controlled mode, without 
changing the parameters of the uncontrolled ones. The 
modal control force ,c iu  is defined as 

 

, , ,c i v i i p i iu g q g q    (5) 

 
and the closed loop equation of motion becomes 
 

   , , ,i i i v i i i p i i d im q r g q k g q f       (6) 

 
The two parameters ,p ig  and ,v ig  allow to set 

respectively the natural frequency and the damping ratio of 
the i-th controlled mode. In mechanical field, especially 
considering a vibration control problem, the position gain 

,p ig  is often set to zero in order to avoid higher control 

forces and mechanical stress of the structure. 
 

B. Positive Position Feedback 

 
Another control strategy is the Positive Position Feedback 

(PPF), introduced by Goh and Caughey in 1985. In this 
method, the feedback control force is provided by a 2nd 
order compensator (fig. 1). 

 

Mechanical
system

2° order
compensator

quc
fd

+Gain

 
Fig. 1.  Scheme of PPF controller for a single mode 

 
Dividing the (4) by im  

 
2

, ,2 c ii i i i i i d iq q q u f        (7) 

 
the control law can be defined as 
 

2
,c i i f iu g    (8) 

 
where i  is calculated through the 2nd order 

compensator defined by 
 

2 22i f f i f i f iq           (9) 

 
In this formulation i  and i  represent the damping ratio 

and natural frequency of the i-th mode, while f  and f  
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are those of the compensator. Combining the (7), (8) and 
(9), the equation of the closed loop system can be obtained 
as 

 

2 2

,
2 2

2 0

0 2

0

i ii i

f fi i

ii i f d i

if f

q q

qg f

 
  

 
 

    
    

    
                     

 
 

 (10) 

 
The closed-loop system is stable if the stiffness matrix is 

positive-definite. This condition is verified if and only if 
 

2

2
i

i
f

g



  (11) 

III. ACTIVE TUNED MASS DAMPER 

In this paper, a control formulation combining the 
benefits in controlling independently the system modes with 
the know-how of the tuned mass damper theory is proposed. 
For this reason, for the sake of completeness, the traditional 
TMD for a mechanical system is presented. Subsequently 
this formulation is extended to a generic multi-modal case, 
considering an independent modal TMD control force. 

A. Traditional TMD 

Considering a generic single degree of freedom system, 
the classical tuned mass damper (TMD) consists of a mass-
spring-damper system connected to the original one (fig. 2). 

 
 

m
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rk

rckc

y

q
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Fig. 2.  A single degree of freedom system with TMD 

 
Calling cm , cr  and ck  the mass, damping and stiffness of 

the TMD, the equation of motion of the complete system (2 
d.o.f.) becomes 

 

,

0

0

0

c c

c c c

c c d i

c c

m r r rq q

m r ry y

k k k q f

k k y

       
            

      
          

 
 

 (12) 

 
Usually cm  is chosen between 5% and 10% of the system 

mass m  to limit the “charge effect”, while ck  is tuned so 

that c ck m k m  and cr  is dimensioned in order to 

maximize the damping effect around the system resonance. 

B. Active Modal TMD 

As in the PPF technique (fig 1), it is possible to design a 
2nd order compensator providing on the system a force 
calculated with the TMD equation. Considering the equation 
of the generic i-th mode (4), the active modal TMD 
compensator (AMTMD) can be designed as 

 

   , , ,c i c i i i c i i iu k y q r y q      (13) 

 
where 
 

, , , , ,c i i c i i c i i c i i c i im y r y k y k q r q       (14) 

 
Under the assumption of knowing exactly the system 

modal coordinate iq , the closed-loop is stable for any value 

of the parameters ,c im , ,c ir  and ,c ik . Anyway, in order to 

achieve the best performances, their values should be 
chosen using the same approach, for each considered mode, 
of the single degree of freedom TMD, optimizing the phase 
between control force and displacement. 

C. Extension to a multi-modal system 

Until now, for every proposed method, the single modal 
coordinate has been considered under the assumption that it 
can be directly measured and controlled. The so-calculated 
forces ,c iu  represent the contributions of the actuator forces 

on the considered modes. In real cases, as said in the 
introduction paragraph, when a multi-mode system is 
considered, it becomes necessary to know the single modal 
contributions on system vibration and the actuator action on 
each mode. 

Under the assumption of distributed actuators and sensors 
(for example piezoelectric patches) it is possible to measure 
directly each considered mode and to act directly on it, 
applying the previously calculated modal forces [8]. In all 
the other cases instead it becomes necessary to link the real 
forces and measurements with the considered modal 
contributions. In this case, knowing the generic mn  

measurements vector μ , the modal coordinates can be 

calculated as 
 

    1

m


q Λ Φ μ  (15) 

 

where    mΛ Φ  is an mm n  matrix linking the modal 

coordinates with the measurements. This matrix must be 
invertible. It means that it must be square (the number of 
measurements must be equal to the number of considered 
modes) and nonsingular (the system must be observable). If 

mn m , modal observers [7] can be used to estimate the 

modal coordinates of the system. 
On the other hand, the actuator forces can be calculated 

as 
 

     1

act act

T T

c


F Φ Λ u  (16) 
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where actF  contains all the actuator forces, while cu  all 

the modal action calculated by (13). The actn m  matrix 

    act

T T
Φ Λ  must be invertible too. It means that the 

condition actn m  must be satisfied and the system must be 

controllable (matrix is non-singular). If the number of 
considered modes is greater than the number of actuators, 

Moore-Penrose pseudo-inverse of     act

T T
Φ Λ  can be 

used but, in this case, the control force will couple the 
system modes. 

IV. NUMERICAL RESULTS 

In this section, a numerical analysis is performed to 
compare the proposed control strategies. The FEM 
numerical model of a clamped beam is considered (Fig. 3). 

 
 

fd Fact1 Fact3Fact2

1 2 3

 
Fig. 3.  The beam model considered for the numerical simulations 

 
Table 1 resumes the main properties of the beam, while 

Table 2 shows the position of sensors and actuators. 
 

TABLE I 
CHARACTERISTICS OF THE CLAMPED BEAM 

Length 1 m 
Section 4E-4 m2 

J 3.3E-7 
E 70 GPa 

 
TABLE II 

POSITION OF SENSORS AND ACTUATORS WITH RESPECT TO THE CLAMP 

Actuator Position [m] Sensor Position [m] 
1 0.38 1 0.31 
2 0.63 2 0.50 
3 0.69 3 1.0 

 
At first a comparison between the performances of IMSC 

and PPF on this system will be presented. In order to control 
the system modes independently, a 3-modes controller is 
implemented. In this way, the matrices of the (15) and (16) 
can be inverted. The control strategies performances are 
evaluated through the frequency response function (FRF) 
between the beam tip displacement and a vertical 
disturbance force, applied at 0.125 m from the clamp (fig. 
3). 
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Fig. 4.  Comparison between the transfer function of the uncontrolled 
system with IMSC (a) and PPF (b) 

 
Figure 4 shows the comparison between IMSC and PPF. 

Considering only the modeled modes, the damping effect 
introduced by the IMSC should be greater than the damping 
effect of PPF because, from a theoretical point of view, 
under the assumption of ideal actuators, there is no limit to 
the damping increase introduced on the modeled modes. In 
this case instead it can be noticed that PPF, although it 
worsens the system response in the quasi-static range of 
frequencies (below the first system resonance), improves the 
performance in resonance conditions. 

Moreover the great advantage of PPF is that the feedback 
loop is represented by a low-pass filter. For this reason, as 
shown in the pole diagram in fig. 5, the spillover risk on 
higher modes is lower. In particular, for this application, 
IMSC causes an important spillover effect on the sixth mode 
(about 300 rad/s), while using PPF control this effect is 
greatly reduced. 

The AMTMD control is able to achieve the same 
performances of PPF in terms of effectiveness around the 
resonances and spillover rejection, but without causing the 
quasi-static amplification typical of the PPF. Figure 6 shows 
the FRF between tip displacement and disturbance force 
using AMTMD control (see, for comparison, fig. 4 and 5). 

Moreover, AMTMD control outperforms classical TMD 
passive control since it avoids the deformations due to static 
preloads and it can be effective even if the considered 
system modes are very closed one to each other. 
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Fig. 5.  Comparison between the poles of the uncontrolled system with 
IMSC (a) and PPF (b) 
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Fig. 6.  Transfer function (a) and poles diagram (b) of the system controlled 
with AMTMD 

V. EXPERIMENTAL SETUP 

A. The test rig 

The last part of the present work is dedicated to an 
experimental campaign carried out to verify the 
performances of the AMTMD on a real system. A clamped 
beam (figure 7), which main characteristics reproduce the 
ones of the beam considered for the numerical analysis 
(table 1), is considered. The measurement of the system 
vibration is performed using 3 piezoelectric accelerometers 
(Brüel&Kjær, mod. 5041), while 2 piezoelectric patches 
(MIDE, mod. QP20N) are considered for the control action 
application. A third piezoelectric patch applies a disturbance 
force on the beam. Actuators and sensors are not co-located, 
in order to consider the most generic case. Table 3 resumes 
the position of sensors and actuators with respect to the 
clamp origin. 

 

 
Fig. 7.  The experimental test rig 

 
TABLE III 

POSITION OF SENSORS AND ACTUATORS WITH RESPECT TO THE CLAMP 

Actuator Position [m] Sensor Position [m] 
Control 1 0.10 1 0.40 
Control 2 0.30 2 0.60 

Disturbanc
e 

0.50 3 0.95 

 
The first step of the experimental campaign is the 

validation of the numerical model considered in section 4. 
The importance of a good model is related to the tuning of 
the control parameters for the experimental tests. Since the 
control is defined using the modal approach, an 
identification of natural frequencies, damping ratios and 
modal shapes has been performed. Table 4 shows a 
comparison between the system numerical and estimated 
first natural frequencies and the corresponding estimated 
damping ratios. 

 
TABLE IV 

NUMERICAL AND EXPERIMENTAL NATURAL FREQUENCIES AND DAMPING 

RATIOS 

Mode 
Numerical 

frequency [Hz] 
Experimental 

frequency [Hz] 
Damping 
ratio [%] 

1 5.00 5.03 0.42 
2 30.84 30.93 0.16 
3 87.26 87.27 0.19 
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Figure 8 shows the comparison between the first three 

modes in terms of mode shapes. The continuous lines 
represent the numerical mode shapes, while the markers 
represent the same mode shape measured at the 
accelerometers location. 
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Fig. 8.  Modal shapes of the system: mode 1 (a), mode 2 (b), mode 3 (c) 

 
Figure 9 shows the frequency response functions (FRF) 

between the first actuator and the third sensor (Control 1 in 
table 3). It can be noticed that, while the phase is completely 
overlapped, the magnitude is shifted. In fact the numerical 
FRF represents the relationship between the actuator force 
(N) and the measurement, while the experimental one 
represents the relationship between the control board 
command (V) and the measurement. 

This result allows to define the FRF between the control 
board command (V) and the control force (N) which, in the 
frequency range under investigation, is simply a gain. 
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Fig. 9.  Numerical/experimental FRF between actuator 1 and sensor 3 

B. Experimental tests on AMTMD 

Since two control actuators are available, two system 
modes can be independently controlled (16). In this 
application, the first and second modes are considered, 
while the higher modes remain uncontrolled. Figure 10 
shows the result of a decay tests on the first (a) and the 
second (b) mode. In both cases the uncontrolled and 
controlled decays are compared, showing an increase in the 
damping ratio due to the AMTMD control. In particular the 
envelope analysis put in evidence an increase of the 
damping ratio of 3.5 times on the first mode and more than 
4.5 times on the second one. 
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Fig. 10.  Decay of the first (a) and second (b) mode with and without 
AMTMD control 
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VI. CONCLUSIONS 

The paper proposes a control strategy merging the 
independent control of system modes (as IMSC) and the 
know-how of the tuned mass dampers. The result is an 
active control method, that has been called "Active Modal 
Tuned Mass Damper (AMTMD)", that achieves the same 
performances of classical resonant control methods around 
the system resonances, but outperforms IMSC in terms of 
robustness to control spillover and PPF in terms of low-
frequency response. 

Numerical tests have been carried out in order to compare 
the AMTMD with state-of-the-art resonant control 
techniques. Finally an experimental campaign has been 
carried out considering a clamped beam with piezoelectric 
actuators and accelerometers, showing the damping increase 
on the controlled modes due to the AMTMD. 
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