
 

 
Abstract— Effective and efficient supplier selection and 

order allocation are essential for a manufacturer to ensure 
stable material flows in a highly flexible and competitive supply 
chain. This paper attempts to solve the problem of optimal 
supplier selection and order allocation for multi-period 
multi-product manufacturing when customer flexibility exists. 
A new mathematical model in the form of a mixed integer 
programming (MIP) model is developed to describe the 
characteristics of the problem. The objective is to maximize the 
manufacturer’s profit subject to the various operating 
constraints of the supply chain. In addition, a new hybrid 
algorithm based on the strengths of constraint programming 
(CP) and simulated annealing (SA) is developed to solve this 
complex combinatorial optimization problem which is NP-hard. 
The developed algorithm is applied to solve a set of randomly 
generated test problems to evaluate its performance. 
Comparison of the computational results obtained with those 
obtained by using the commercial software ILOG OPL clearly 
shows that the methodology developed in this paper is an 
effective and efficient approach to assist the manufacturer in 
formulating optimal supplier selection and order allocation 
decisions.   
 

Index Terms—Constraint programming, customer flexibility, 
simulated annealing, supplier selection 
 

I. INTRODUCTION 

With increasing product variety and escalating demand 
volatility, maintaining an efficient and flexible supply chain 
has become more critical for most manufacturers. In addition, 
it has been observed that customers are often indifferent to 
certain product specifications and are often willing to accept 
less desirable products given certain price discounts [11]. 
Mak and Cui [9] pointed out that this flexible customer 
behavior brings additional degree of freedom for 
manufacturers in handling customer orders and deploying 
available production resources. Indeed, the purpose of 
achieving high customer service level and low manufacturing 
cost in such a dynamic supply chain environment imposes a 
major challenge to manufacturers in selecting their suppliers 
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and allocating orders to the selected suppliers.   
Intuitively, customer flexibility provides a way for 

manufacturers to improve profit by making better utilization 
of manufacturing and supply resources as a result of the extra 
degree of flexibility in meeting customer specifications.  
Hence, it is important for manufacturers to exploit the 
advantages of customer flexibility to the full in selecting their 
suppliers and allocating orders to the selected suppliers. 
However, the challenging problem of developing 
methodologies for assisting manufacturers to make optimal 
decisions concerning supplier selection and order allocation 
incorporating customer flexibility has received very little 
attention in the research community. Kim et al. [8] have 
considered the supply network of a manufacturer which 
produces different types of products using a common set of 
inputs (e.g., raw materials and component parts). A 
mathematical model and an iterative algorithm have been 
developed to solve the configuration problem faced by the 
manufacturer. However, the study does not consider 
customer flexibility. Che and Wang [4] have developed an 
optimization model for integrated supplier selection and 
quantity allocation of common and non-common parts under 
a multiple products manufacturing environment. The model 
assumes that each product has a unique BOM structure. 
However, it ignores the impact of product families and 
customer flexibility.  

In this connection, this paper explores the challenge from a 
new perspective by aiming to incorporate customer flexibility 
in tackling the problem of supplier selection and order 
allocation for a multi-product supply chain. The objective is 
to: 

1) Determine the production quantity of each product 
variant 

2)  Select the most suitable suppliers based on the 
selection criteria and their capacity and split the orders 
among these suppliers  

3)  Maximize the manufacturer’s profit. 
A new mathematical model in the form of a mixed integer 

programming (MIP) model is firstly developed to represent 
the basic characteristics of the integrated supplier selection 
and order allocation problem. The problem is NP-hard, and 
thus could not be solved optimally in polynomial-bound time. 
In this research, a novel hybrid algorithm based on the 
strengths of both constraint programming technique and the 
simulated annealing algorithm is developed to solve the 
problem. 

Constraint programming (CP) [2] is a powerful technique 
for solving large combinatorial problems. Its success has 
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been demonstrated in solving large scale problems such as 
job shop scheduling problems, graph coloring problems. By 
efficient propagation and backtracking methods [13], the 
search space can be drastically reduced and feasible solutions 
can be obtained very quickly. However, the capability of CP 
in locating the global optimal solutions is inferior as 
compared to other meta-heuristics, such as simulated 
annealing, genetic algorithms [14], etc.  

On the other hand, simulated annealing [9,10], a generic 
probabilistic meta-heuristic based on the manner in which 
liquids freeze or metals re-crystallize in the process of 
annealing, has been widely accepted and employed for global 
optimization problems due to its solution quality.  The major 
hurdle of simulated annealing, however, is a large 
computation time due to lack of good initial solutions and its 
sequential nature of slow annealing process within the large 
solution space.  

The strengths of both constraint programming and 
simulated annealing encourage the development of new 
efficient hybrid algorithms for solving large combinatorial 
optimization problems that are NP-hard and therefore 
intractable due to the size of a complete search tree. In the 
hybrid algorithm developed in this paper, a good feasible 
solution is firstly obtained quickly by constraint 
programming. Then simulated annealing is used to guide the 
search path to find the optimal solution. Unlike the traditional 
SA, in which the neighborhood solutions are obtained using 
local search methods, in the newly hybrid algorithm, the 
neighborhood solutions are obtained using the constraint 
programming approach. The performance of algorithm is 
further improved by memorizing the useful information 
which causes the infeasible solutions, thus can reduce the 
solution space drastically.  

The remainder of the paper is organized as follows. 
Section 2 describes the problem scenario under investigation 
and presents the formulation of the mathematical model. The 
newly developed hybrid CP-SA algorithm is then detailed in 
Section 3. Extensive computation results on a set of randomly 
generated test problems are presented and the efficiency of 
the proposed algorithm is demonstrated in Section 4. Finally, 
Section 5 concludes this research.  

 

II. PROBLEM SCENARIO AND MODEL FORMULATION 

A. Problem Scenario 

Figure 1 shows the supply chain network under 
consideration. A manufacturer aims to meet different needs 
of customers by producing multiple families of products, 
with multiple product variants in each family. These product 
families share common and non-common modules, such as 
raw materials and component parts. With limited capacity of 
suppliers, it is important to determine the supply quota to be 
allocated to different supplier groups to support the 
production of multiple products. The problem is further 
complicated by the multiple selection criteria for suppliers 
such as: price, quality, on-time delivery [5, 6] and trust [15].  

 
 

 
 

Fig.1 Supply chain network 

B. Model Formulation 

This part presents the development of a new mixed integer 
programming mathematical model describing the 
characteristics of the research problem. A manufacturer aims 
to provide n high variety products utilizing K OR modules 
and L AND modules provided by m  capacity-constrained 
suppliers over a planning horizon with multiple time periods.  
Each product family has nI product variants and these 
product variants cater for different customer requirements. 
To characterize the product structure, a 
genetic-bill-of-material (GBOM) method (see [7]) is 
adopted.  

 
To facilitate the presentation, the notations are firstly listed 

as follows.  
Indices:  

k OR module  

kS  number of options for OR module k  

ks option s of module k  
l AND module 
n product family 

nI  number of product variants in family n  
ni product variant i of family n  
m supplier 
 time period 
T number of all time periods  

 
Parameters:  

niksz 1 if ks  is used for product ni , 0 otherwise 
'
nlz  1 if l is used for product ni ,0 otherwise 

mksV  capacity of supplier m  for ks  in period  

mlG  capacity of supplier m  for l in period   

mks
  supplier m ’s selling price for ks  in period 

  

mlb   Supplier m ’s selling price for l  in period   
nQ   market demand for family n in period  

BOMnk  units of k needed to produce one unit of  final 
product variant in family n  

'BOMnl  units of l needed to produce one unit of final 
product variant in family n  

Fni  fixed cost for marking down the less 

desirable product ni  

niC   production cost for one unit of product ni  

niS  setup cost for one unit of product variant ni  

mB  supplier m ’s minimum budget in period   
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mT    supplier m ’s trust level in period   

mO  transaction cost of supplier m in period  

1np  retail price for the ideal variant of family n in 
period  

nip  retail price for the product ni  in period   

ksH  inventory holding cost for ks  
'
lH  inventory holding cost for l  

niHH  inventory holding cost for product ni  

md  late delivery days of m  in period   

niTP  unit tardiness penalty for product ni  per day 

QP  quality penalty for one unit of the modules 
per percent below 100% 

mksQL  quality level of ks  procured from m  in 
period   

'
mlQL  quality level of l  procured from m  in period 

  

mks
  1if m  is capable of providing ks  in period , 

0 otherwise 
'
ml
  1if m  is capable of providing l  in period , 

0 otherwise 
 
Continuous variables: 

niQ  quantity of product ni produced in period   

niA  quantity of product ni sold in period  

mksx  order quantity of ks from m  in period  
'
mlx   order quantity of l from m  in period   

ksI         inventory level of ks in period  
'
lI   inventory level of l in period  

niII   inventory level of product ni in period  

 
Binary variables: 

mksy  1 if ks  is procured from supplier m  in period 
 , 0 otherwise 

'
mly   1 if l  is procured from supplier m  in period 

 , 0 otherwise 

mY   1 if supplier m  is selected in period  , 0 
otherwise 

ni
  1 if product ni  is produced in period  , 0 

otherwise 

ni
  1 if product ni  is sold in period  , 0 otherwise 

 
Mathematical model:  
 
Objective: 
Maximize:  Total profit = Total revenue - Total cost 

Total Revenue = 
1 1 1

nT N I

ni ni ni
n i

A p  




  
  

Total cost=
9

1

Costc
c
  

Cost1:   
Total purchasing cost of modules= 

1 1 1 1 1 1 1

kSM K T M L

mks mks ml ml
m k s m l

x x b   

 




      

   

Cost2:   

Total transaction cost with both the module suppliers = 

1 1

M

m m
m

O Y 





 
  

Cost3:   
Cost incurred by the efforts in promotion, advertising, to lure 

the customer to buy the products = 
1 1 1

nN I

ni ni ni
n i

Q F 






  
  

Cost4:   

Total quality penalty= 1 1 1 1

1 1 1

(1 )

(1 )

kSM K

mks mks
m k s

T M L

ml ml
m l

QP QL x

QP QL x

 



 





   

  

 

  




 

Cost5:   

Total tardiness penalty= 
1 1 1

nN I

ni ni
n i

TP PD






  

  , 

where 

   'max arg max ,arg max
m m

niks mks m nl ml m
d d

PD z y d z y d
 

    
     

 
 

Cost6:   
Total inventory holding cost for the modules = 

' '

1 1 1 1 1

kSK T L

ks ks l l
k s l

I H I H 

 



    

   

Cost7: 
Total inventory holding cost for the final products= 

1 1 1

nN I

ni ni
n i

II HH





  
  

Cost 8: 

Total production cost = 
1 1 1

nT N I

ni ni ni
n i

Q C 




  
  

Cost 9: 

Total production setup cost= 
1 1 1

nT N I

ni ni
n i

S




  
  

Subject to: (Constraints)  
0 ,   , , ,mks mksx V m k s                                                      (1) 

0 ,   , ,t t
ml mlx G m l t                                                           (2) 

1 1 1

, , , , ,
kSK L

mks mks ml ml m
k s l

x x b B m k s l     
  

                      

(3) 

1

1 1 1

,

, , , , , ,

nM N I

ks mks niks ni ni nk
m n i

I x z Q BOM

m k s n i

   

 



  

 

  

                               (4) 

1

1 1 1

, , , , ,
nM N I

ks mks niks ni ni nk
m n i

I x z Q BOM m k s n i   

  

    (5)

'( 1) ' ' '

1 1 1

,

, , , , ,

n

nl

M N I

l ml nl ni ni
m n i

I x z Q BOM

m l n i

   

 



  

 

  

  (6)

'( 1) ' ' '

1 1 1

, , , ,
nM N I

l ml nl ni ni nl
m n i

I x z Q BOM m l n i   

  

    (7) 

1

, , ,
nI

n
ni ni

i

A Q n i   


                                                            (8) 
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1 , , ,ni ni niQ II A n i                                                               (9) 

1 1 1 1 1

, , ,
n nT I T I T

n
ni ni ni ni

i i

Q A Q n i    

  

  
    

                           (10) 

1 , , ,ni ni ni niII II Q A n i                                                     (11) 
0 0, 0, ,T
ni niII II n i                                                           (12) 

1 ( )ni n nip p u                                                                   (13) 

min(1, ), , , ,mks mksy x m k s                                                       (14) 
' 'min(1, ), , ,ml mly x m l                                                        (15) 

'min(1, ), , , , ,m mks mlY y y m k s l                                                  

(16)                                            
min(1, ), , ,ni niQ n i                                                         (17) 

min(1, ), , ,ni niA n i                                                       (18) 

0 , , , ,mks mksx M m k s                                                (19) 
' '0 , , ,ml mlx M m l                                                      (20) 

 
The objective function is to maximize the manufacturer’s 
total profit which equals to total revenue minus total cost. 
The total cost includes purchasing cost, transaction cost, 
discounting cost, quality penalty, tardiness penalty, inventory 
holding cost, production cost and production setup cost. 
Constraints (1) and (2) indicate that the suppliers have 
limited capacity for the OR and AND modules. Constraint (3) 
represents the lowest purchasing amount required by the 
suppliers. Constraints (4)-(7) imply the relationship between 
available resources and the production quantity of the final 
products over the planning horizon, i.e., GBOM constraints. 
The demand satisfaction requirement and the relationship 
between the production and sale quantity of the final products 
are governed by constraints (8)-(10). By constraints (11) and 
(12), the inventory balances of the final products are ensured. 
Price discounts for the less desirable product variants with 
customer flexibility considerations is given in equation (13), 
where 1

t
np  is the retail price for the ideal product variant, 

 and   refer to price elasticity and utility elasticity, 

respectively. Constraints (14)-(18) govern that 
, , , ,t t t t t

mks ml m ni niy y Y    are 0,1  integer variables. Constraints 

(19) and (20) govern the procurement of modules from 
suppliers, where M is a large positive number.  
 

C. An Illustrative Example 

A simple numerical example is presented to illustrate how 
the proposed integrated supplier selection and order 
allocation problem can be formulated and applied in a 
multi-product supply chain.   
Consider a manufacturer who aims to produce two families 

of products to meet different customer needs. The customers 
have specifications regarding the shape, color and material 

used for the products. 

AND modules OR modules

Denotation:

Options of modules

PF1

L1

PF2

L1 K3K1 K2

K11

K12

K21

K22

K23

K2K1

K11

K12

K21

K22

K23

K31

K32

1 2

1

12

1
1

2111

 
 
Fig.2 GBOM for Two Product Families 

 
As shown in figure 2, a three-level GBOM is used to depict 

the product structure of the product families. The maximum 
number of the OR modules in the lowest level is set to 3, as 
indexed by 1, 2, 3K K K . These modules embody the shape, 
color and material requirements of the specific modules, 
respectively. There is only one AND module ( 1L ) in the 
lowest level. The details of the three OR modules are given as 
below.  

 
Module 1K  Module 2K  Module 3K  

11:K rectangular 21:K green 31:K plastics 
12 :K circular 22 :K yello

w 
32 :K steel 

 23 :K white  
 
   Hence, the total numbers of variants in each product family 
can be calculated as 2 3 , 2 3 2   respectively.  The detailed 
mapping relationships between all product variants and the 
raw materials (in terms of the AND module and the OR 
modules) are presented below.  
 

 P11 P12 P13 P14 P15 P16 

K11 1 1 1 0 0 0 

K12 0 0 0 1 1 1 

K21 1 0 0 1 0 0 

K22 0 1 0 0 1 0 

K23 0 0 1 0 0 1 

K31 0 0 0 0 0 0 

K32 0 0 0 0 0 0 

L1 1 1 1 1 1 1 

 
 

 P21 P22 P23 P24 P25 P26 

K11 1 1 1 1 1 1 

K12 0 0 0 0 0 0 

K21 1 1 0 0 0 0 

K22 0 0 1 1 0 0 

K23 0 0 0 0 1 1 

K31 1 0 1 0 1 0 

K32 0 1 0 1 0 1 

L1 1 1 1 1 1 1 
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 P27 P28 P29 P210 P211 P212 

K11 0 0 0 0 0 0 

K12 1 1 1 1 1 1 

K21 1 1 0 0 0 0 

K22 0 0 1 1 0 0 

K23 0 0 0 0 1 1 

K31 1 0 1 0 1 0 

K32 0 1 0 1 0 1 

L1 1 1 1 1 1 1 

 
Note that here “1” represents the raw materials are used for a 
certain product variant, “0” otherwise.  
 

Using the proposed hybrid algorithm, the solutions to this 
example can be obtained as follows.  
 
Production quantity of product variants:  
In product family 1, only two product variants are produced, 
i.e., 

1 1
11 1485, 48Q Q  , 

The product variants produced in family 2 are: 
1 1
22 2540, 57Q Q  . 

The production quantities of all the other product variants are 
zero.  
 
Selection of suppliers:  
All three suppliers are selected.  
 
Order quantity of OR and AND modules: 

 Supplier
1 

Supplier
2 

Supplier
3 

K11 267 0 0 
K12 0 96 0 
K21 73 100 0 
K22 0 0 0 
K23 0 0 57 
K31 0 54 50 
K32 0 0 80 
L1 200 0 63 

III. HYBRID ALGORITHM  

The proposed mathematical model describes a planning 
problem which is NP-hard and needs to be solved by an 
efficient method. To this end, this section focuses on the 
development of a new hybrid algorithm based on the 
strengths of both constraint programming and simulated 
annealing.  
 

A. Notations  

The following notations are listed to facilitate the 
presentation of the algorithm. 

 
t  temperature iteration index  

( 0,1,..., _t max t ) 

dN  set of indices for all the product variants 

d  index for the product variants, dd N  

eN  eN is the set of indices for all the feasible 

solutions in an iteration.  

eN is also the Markov chain length of  

simulated annealing 
e index for a complete feasible solution, ee N  

_E Best  optimal solution among all the feasible 

sequences within an iteration (local optimum) 

_T Best  optimal solution among all the iterations 

 (global optimum) 

 

B. Elements of the Hybrid CP-SA  

Formulation of the production planning problem as a 

constraint network 

It is not easy to generate the feasible solutions that satisfy 
all the relevant constraints, especially when the solution 
space is very large. Hence, this paper tackles this challenge 
by firstly formulating the problem as a constraint satisfaction 
problem [13]. 

,1
11

t
eQ

,1
12

t
eQ

,1
21

t
eQ

,1
22

t
eQ

 
Fig. 3 Constraint network for a simple example 

 
Figure 3 illustrates a detailed formulation of a constraint 

network for a simple numerical example over a planning 
horizon which comprises of only one time period. In this 
example, two product families are considered, and each 
family has two product variants, with their production 
quantities denoted by: 1

t
eQ , 2

t
eQ , 3

t
eQ and 4

t
eQ .  

 
Components of the simulated annealing algorithm  
 

The simulated annealing algorithm includes some basic 
components (see [3]): 
 
(1) Configuration: A solution to the problem. 

(2) Energy function: A measure of how good a solution is.  

(3) Neighborhood move: A transition from one configuration 

to another that results in a neighboring solution. 

(4) Acceptance-rejection of a solution: The neighborhood  

solution is either accepted or rejected with probability 

according to the following acceptance probability: 

b a
(Profit Profit ) /

b a

1 if Profit Profit
Pac

if Profit Profitb a Teme 


  
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where Tem  is the control parameter known as temperature, 

“a” (current solution) and “b” (neighboring solution) are two 

solutions with profits Profita and Profitb . 

(5) Termination criterion: The algorithm terminates if the 

pre-determined parameters (e.g. maximum number of 

iterations) are reached. 

(6) Cooling schedule (see [1]): The initial temperature, the  

rule for decreasing the value of temperatures, the number of 

transitions at each temperature, and the time at which 

annealing should be stopped are referred to as the cooling 

schedule. The efficiency and effectiveness of the algorithm 

depends on the cooling schedule. In this research, the cooling 

schedule proposed by [12] is adopted which has the 

following form: 1t tTem Tem  .  

C. Basic Steps of the Hybrid CP-SA 

The basic procedures of the hybrid CP-SA algorithm are 
then outlined as follows.  
Step 1: Set t =0, set the initial temperature of simulated 

annealing as min max
0

0

Cost Cost

ln 
Tem

Pac


 , here 

minCost and maxcost are the minimum and maximum bounds 

of problem complexity. The initial acceptance probability 

0Pac is set very close to 1. The resulting high initial 

temperature provides a high degree of randomness and most 
of the movements are accepted in the initial stage. Set 0e  .  
 
Step 2: Select an input node d  (product variant index) for 
constraint programming based on the retail price, 
i.e., * arg max  (Price )

d
d

d N
d


 , set * 1d  . Generate the value of 

1
t
eQ  within the feasible range bounded by demand, capacity 

of raw materials. 
 
Step 3: Search for a complete feasible solution  
a) if dd N , then let 1d d  , use constraint 

programming algorithm to generate the value for t
edQ , reduce 

the search space.  
b) else if dd N , then one complete feasible solution 

 1 2, ,...,
d

t t t t
e e e eNq Q Q Q has been found. Initialize this solution 

as the current optimal solution. _ t
eE Best q , 1e e  .  

 
Step 4: Generate a neighborhood solution starts from 

1d d   using the constraint programming algorithm. 

 
Step 5: Compare the two solutions using the proposed SA 
algorithm.  
a) if the neighborhood solution replaces the current optimal 

solution, i.e.,
exp( ( ) ( _ ))t

e

t

Fitness q Fitness E Best

Tem


 
 , 

where  is a real number randomly generated between 0 and 

1, then 1d d  ,generate another neighborhood solution 
starting from d using constraint programming approach, 

1e e  ; 
b) else if the neighborhood solution doesn’t replace the 
current optimal solution,  
then 1d d  , generate another neighborhood solution 
starting from d using constraint programming approach, 

1e e  . 
 
Step 6: If ee N , then repeat Step 5 until ee N , then let  

1t t  , update _T Best , then go to step 7.  

 
Step 7: Calculate the temperature of the new iteration, i.e., 

1t tTem Tem  , set  0e  . Here  is the cooling rate of the 

proposed simulated annealing algorithm, which belongs to 
(0,1). The cooling rate   is dependent on the variance 

(
1tTemVar ) of the objective function values provided by the 

feasible solutions at the temperature 1tTem  . The mean value 

and variance (
1tTemVar ) of the objective function values is 

calculated as follows:  

1

1
( )

| |t

t
Tem e

e Ne

Mean Fitness q
Ne

 

                    

1 1

21
( ( ) )

| |t t

t
Tem e Tem

e Ne

Var Fitness q Mean
Ne 

 

   

The definition of [8] for cooling rate   is then applied: 

11

1

1 [( ln(1 )) / 3 ]
tt TemTem Var







  

                                           

where  is a control rate and experimentally determined as 
0.01.  
 
Step 8: Repeat steps 2-5 until ee N .  

 

D. Flowchart of the Hybrid CP-SA 

Figure 4 presents the flowchart of the hybrid algorithm. 
It can be noted that the hybrid algorithm has two loops -- an 
inner loop which is a serial simulated annealing process and 
an outer loop where the temperature of the system 
decreases gradually.   

IV. TEST PROBLEMS AND COMPUTATION RESULTS 

A. Test Problems 

The effectiveness of the proposed hybrid CP-SA 
algorithm is demonstrated by applying the algorithm to 
solve a set of randomly generated test problems. The 
computational results obtained are compared with those 
obtained by using ILOG OPL.  

In these test problems, the number of product families 
considered ranges from 4 to 8. Each product family has a 
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unique product structure depicted in its GBOM. The 
number of suppliers are randomly generated within the 
ranges [2,6]. The number of time periods is randomly 
generated within the range [1,6]. A set of small scale test 
problems and several medium to large scale test problems 
are used in the experiments.  

In each experiments, CP-SA runs 50 iterations, and the 
value for eN is experimentally determined as 60. The 

algorithm is programmed in C++ and implemented on a 
Pentium IV 3.2 GHz computer with 512M Ram.  

B. Convergence properties for the illustrative example  

   As shown in figure 5, for the illustrative example used in 
the previous section, the search process evolves as the 
temperature of the system cools down, and eventually 
converges to the “global optima” as it terminates.  

 

 
Fig.5 Convergence Behavior of the Hybrid Algorithm 

 

C.  Computation Results and Discussions 

Table 1 summarizes the best and the average of the best 
solutions obtained for the small scale test problems by 
running the proposed hybrid algorithm 5 times. The 
average computation times (in seconds) needed to achieve 
the best solutions are also included.   

 
Table 1 Computational Results for Small Scale problems  

 
No 
 

CP-SA ILOG 

avg best time solution time 
1 6230942 6253590 0.16 6297116 0.38 

2 865834 878028 0.27 878439 0.48 

3 811032 816235 0.35 821093 0.52 

4 1089033 1089037 0.45 1089733 0.82 

5 544283 544611 0.66 545163 1.04 

6 1198525 1204146 0.75 1216688 1.61 

7 1403233 1409490 0.95 1433080 1.82 

8 1422288 1426626 0.92 1481515 2.58 

9 592299 592369 1.10 597152 2.88 

10 2369706 2557677 1.25 2557999 3.09 

11 1352883 1353818 1.33 1380407 3.72 

12 17278360 17301138 5.35 17467460 13.9 

13 1352883 1380142 6.35 1389411 17.3 

14 1710104 1714143 8.00 1738481 24.3 

15 1531070 1542378 20.3 1558840 44.5 

 
   

The results in the above table clearly show that, the proposed 
hybrid CP-SA algorithm is able to locate near-optimal 
solutions with less computation efforts. For small scale 
problems, the differences are within 1% as compared to the 
optimal solutions obtained by ILOG OPL. 
 
   

Table 2 Results for Medium to Large Scale Cases 

 
No 
 

CP-SA ILOG 

avg best time solution time 
1 1259033 1300589 120.4 1147630* 163.3 

2 2499031 2589007 152.1 2376304* 92.9 

3 16352238 168020045 90.4 --- > 

4 130015486 134578902 111.3 --- > 

5 3522116 3895412 160.2 --- > 

6 8054113 8105263 254.1 --- > 

7 1519141 1588042 212.1 --- > 

8 2503264 2587032 216.3 --- > 

9 1654701 1689412 289.2 --- > 

10 3941028 3989745 321.4 --- > 

 
As shown in table 2, for medium to large scale cases, the 

hybrid algorithm can find better solutions (bold numbers) 
with less computation efforts. The --- indicates there is no 
solution found after running ILOG for more than 2000s 
(symbolized by “>”) listed in the table. This indicates the 
hybrid algorithm is superior to ILOG OPL in determining 
near optimal solutions when applied to more complex real 
problems.  
 

V. CONCLUSIONS 

This paper has studied an integrated supplier selection and 
order allocation problem for a supply chain manufacturing 
multiple products over a planning horizon with multiple time 
periods when customer flexibility exists. A novel mixed 
integer mathematical programming model has been 
developed to maximize the manufacturer’s profit by 
determining the production quantity of each product variant, 
and by selecting the most suitable suppliers based on the 
selection criteria and their capacity and splitting the orders 
among these suppliers. A new hybrid algorithm based on the 
strengths of both constraint programming and simulated 
annealing has also been developed for solving this complex 
NP-hard problem. In the hybrid algorithm, CP is used to 
generate the initial feasible solution and SA is used to guide 
the search path. Unlike traditional SA, CP is used to generate 
the neighborhood solutions for SA. Useful information 
obtained from CP helps to reduce the search space 
drastically. The efficiency of the proposed algorithm has 
been tested with a set of randomly generated test problems. 
Comparison of the results obtained from solving these test 
problems with those obtained by using ILOG OPL, a 
commercial software, clearly show that the methodology 
developed in this research is an efficient and effective 
optimization approach to solving the integrated supplier 
selection and order allocation problem for multi-period 
multi-product manufacturing when customer flexibility 
exists.   
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