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Abstract—This study analyses the seller’s (wholesaler’s) deci-
sion to offer quantity discounts to the buyer (retailer). The seller
purchases products from an upper-leveled supplier (manufac-
turer) and then sells them to the buyer who faces her customers’
demand. The seller attempts to increase her profit by controlling
the buyer’s order quantity through a quantity discount strategy.
The buyer tries to maximize her profit considering the seller’s
proposal. We formulate the above problem for deteriorating
items as a Stackelberg game between the seller and buyer to
analyze the existence of the seller’s optimal quantity discount
pricing policy which maximizes her total profit per unit of time.
The same problem is also formulated as a cooperative game.
Numerical examples are presented to illustrate the theoretical
underpinnings of the proposed formulation.

Index Terms—quantity discounts, deteriorating items, total
profit, Stackelberg game, cooperative game.

I. I NTRODUCTION

T His paper presents a model for determining optimal all-
unit quantity discount strategies in a channel of one

seller (wholesaler) and one buyer (retailer). Many researchers
have developed models to study the effectiveness of quan-
tity discounts. Quantity discounts are widely used by the
seller with the objective of inducing the buyer to order
larger quantities in order to reduce their total transaction
costs associated with ordering, shipment and inventorying.
Monahan[1] formulated the transaction between the seller
and the buyer (see also [2], [3]), and proposed a method
for determining an optimal all-unit quantity discount policy
with a fixed demand. Lee and Rosenblatt[4] generalized
Monahan’s model to obtain the ”exact” discount rate offered
by the seller, and to relax the implicit assumption of a lot-for-
lot policy adopted by the seller. Parlar and Wang[5] proposed
a model using a game theoretical approach to analyze the
quantity discount problem as a perfect information game. For
more work: see also Sarmah et al.[6]. These models assumed
that both the seller’s and the buyer’s inventory policies can
be described by classical economic order quantity (EOQ)
models. The classical EOQ model is a cost-minimization
inventory model with a constant demand rate. It is one of
the most successful models in all the inventory theories due
to its simplicity and easiness.

In many real-life situations, retailers deal with perishable
products such as fresh fruits, food-stuffs and vegetables. The
inventory of these products is depleted not only by demand
but also deterioration. Yang[7] has developed the model to
determine an optimal pricing and a ordering policy for dete-
riorating items with quantity discount which is offered by the
vendor. However, his model assumed that the deterioration
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rate of the vendor’s inventory is equal to its rate of the
retailer’s inventory, and focused on the case where both the
buyer’s and the vendor’s total profits can be approximated
using Taylor series expansion.

In this study, we discuss a quantity discount problem
between a seller (wholesaler) and a buyer (retailer) under
circumstances where both the wholesaler’s and the retailer’s
inventory levels of the product are depleted not only by
demand but also by deterioration. The wholesaler purchases
products from an upper-leveled supplier (manufacturer) and
then sells them to the retailer who faces her/his customers’
demand. The shipment cost is characterized by economies of
density[8]. The wholesaler is interested in increasing her/his
profit by controlling the retailer’s order quantity through
the quantity discount strategy. The retailer attempts to max-
imize her/his profit considering the wholesaler’s proposal.
Our previous work has formulated the above problem as a
Stackelberg game between the wholesaler and the retailer
to show the existence of the wholesaler’s optimal quantity
discount pricing policy which maximizes her/his total profit
per unit of time[9]. In this study, we also formulate the
same problem as a cooperative game. Numerical examples
are presented to illustrate the theoretical underpinnings of the
proposed model.

II. NOTATION AND ASSUMPTIONS

The wholesaler uses a quantity discount strategy in order
to improve her/his profit. The wholesaler proposes, for the
retailer, an order quantity per lot along with the correspond-
ing discounted wholesale price, which induces the retailer
to alter her/his replenishment policy. We consider the two
options throughout the present study as follows:

Option V1: The retailer does not adopt the quantity
discount proposed by the wholesaler. When the retailer
chooses this option, she/he purchases the products from the
wholesaler at an initial price in the absence of the discount,
and she/he determines her/himself an optimal order quantity
which maximizes her/his own total profit per unit of time.

Option V2: The retailer accepts the quantity discount
proposed by the wholesaler.

The main notations used in this paper are listed below:

Qi: the retailer’s order quantity per lot under OptionVi(i =
1, 2).

Si: the wholesaler’s order quantity per lot under Option
Vi(i = 1, 2).

Ti: the length of the retailer’s order cycle under Option
Vi(i = 1, 2).

hs, hb: the wholesaler’s and the retailer’s inventory holding
costs per item and unit of time, respectively.

as, ab: the wholesaler’s and the retailer’s ordering costs per
lot, respectively.
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ξ(Ti): the shipmentcost per shipment from the wholesaler
to the retailer.

cs: the wholesaler’s unit acquisition cost (unit purchasing
cost from the upper-leveled manufacturer).

ps: the wholesaler’s initial unit selling price, i.e., the
retailer’s unit acquisition cost in the absence of the
discount.

y: the discount rate for the wholesale price proposed
by the wholesaler, i.e., the wholesaler offers a unit
discounted price of(1 − y)ps (0 ≤ y < 1).

pb: the retailer’s unit selling price, i.e., unit purchasing
price for her/his customers.

θs, θb : the deterioration rates of the wholesaler’s inventory
and of the retailer’s inventory, respectively (θs < θb).

µ: the constant demand rate of the product.

The assumptions in this study are as follows:

1) The retailer’s inventory level is continuously depleted
due to the combined effects of its demand and de-
terioration. In contrast, the wholesaler’s inventory is
depleted by deterioration during[jTi, (j + 1)Ti) (j =
0, 1, 2, · · ·), but at time jTi her/his inventory level
decreases byQi because of shipment to the retailer.

2) The rate of replenishment is infinite and the delivery
is instantaneous.

3) Backlogging and shortage are not allowed.
4) The quantity of the item can be treated as continuous

for simplicity.
5) Both the wholesaler and the retailer are rational and

use only pure strategies.
6) The shipment cost is characterized by economies of

density[8], i.e., the shipment cost per shipment de-
creases as the retailer’s lot size increases. We assume,
for simplicity, thatξ(Ti) ≡ β − αQi(Ti) (> 0).

7) The length of the wholesaler’s order cycle is given by
NiTi under OptionVi (i = 1, 2), whereNi is a positive
integer. This is because the wholesaler can possibly
improve her/his total profit by increasing the length of
her/his order cycle fromTi to NiTi. In this case, the
wholesaler’s lot size can be obtained by the sum of
Ni times of the retailer’s lot size and the cumulative
quantity of the waste products to be discarded during
[0, NiTi).

III. RETAILER’S TOTAL PROFIT

This section formulates the retailer’s total profit per unit
of time for the OptionV1 andV2 available to the retailer.

A. Under OptionV1

If the retailer chooses OptionV1, her/his order quantity per
lot and her/his unit acquisition cost are respectively given by
Q1 = Q(T1) and ps, whereps is the unit initial price in
the absence of the discount. In this case, she/he determines
her/himself the optimal order quantityQ1 = Q∗

1 which
maximize her/his total profit per unit of time.

Since the inventory is depleted due to the combined effect
of its demand and deterioration, the inventory level,I(b)(t),
at time t during [0, T1) can be expressed by the following
differential equation:

dI(b)(t)/dt = −θbI
(b)(t) − µ. (1)

By solving the differential equation in Eq. (1) with a bound-
ary conditionI(b)(T1) = 0, the retailer’s inventory level at
time t is given by

I(b)(t) = ρ
[
eθb(T1−t) − 1

]
, (2)

whereρ = µ/θb.
Therefore, the initial inventory level,I(b)(0) (= Q1 = Q

(T1), in the order cycle becomes

Q(T1) = ρ
(
eθbT1 − 1

)
. (3)

On the other hand, the cumulative inventory,A(T1), held
during [0, T1) is expressed by

A(T1) =
∫ T1

0

I(b)(t)dt = ρ

[(
eθbT1 − 1

)
θb

− 1

]
. (4)

Hence, theretailer’s total profit per unit of time under
Option V1 is given by

π1(T1) =
pb

∫ T1

0
µdt− psQ(T1) − hbA(T1) − ab

T1

= ρ(pbθb + hb) −

(
ps + hb

θb

)
Q(T1) + ab

T1
. (5)

In the following, the results of analysis are briefly sum-
marized:

The proof is given in A.
There exists a unique finiteT1 = T ∗

1 (> 0) which
maximizesπ1(T1) in Eq. (5). The optimal order quantity
is therefore given by

Q∗
1 = ρ

(
eθbT∗

1 − 1
)
. (6)

The total profit per unit of time becomes

π1(T ∗
1 ) = ρ

[
(pbθb + hb) − θb

(
ps +

hb

θb

)
eθbT∗

1

]
. (7)

B. UnderOption V2

If the retailer chooses OptionV2, the order quantity and
unit discounted wholesale price are respectively given by
Q2 = Q2(T2) = ρ

(
eθbT2 − 1

)
and (1 − y)ps. The retailer’s

total profit per unit of time can therefore be expressed by

π2(T2, y) = ρ(pbθb + hb)

−

[
(1 − y)ps + hb

θb

]
Q2(T2) + ab

T2
. (8)

IV. WHOLESALER’S TOTAL PROFIT

This section formulates the wholesaler’s total profit per
unit of time, which depends on the retailer’s decision.
Figure 1 shows both the wholesaler’s and the retailer’s
transitions of inventory level in the case ofNi = 3.
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Fig. 1. Transition of Inventory Level (Ni = 3)

A. Total Profit under OptionV1

If the retailer chooses OptionV1, her/his order quantity
per lot and unit acquisition cost are given byQ1 and ps,
respectively. The length of the wholesaler’s order cycle can
be divided intoN1 shipping cycles (N1 = 1, 2, 3, · · ·) as
described in assumption 7), whereN1 is also a decision
variable for the wholesaler.

The wholesaler’s inventory is depleted only due to de-
terioration during [(j − 1)T1, jT1) in jth shipping cycle
(j = 1, 2, · · · , N1). Therefore, the wholesaler’s inventory
level, I(s)(t), at time t can be expressed by the following
differential equation:

dI(s)(t)/dt = −θsI
(s)(t), (9)

with a boundary conditionI(s)(jT1) = zj(T1), wherezj(T1)
denotes the remaining inventory at the end of thejth shipping
cycle. By solving the differential equation in Eq. (9), the
wholesaler’s inventory level,I(s)(t) = I

(s)
j (t), at time t in

jth shipment cycle is given by

I
(s)
j (t) = zj(T1)eθs(jT1−t). (10)

It can easily be confirmed that the inventory level at the
end of the (N1 − 1)th shipping cycle becomesQ1, i.e.
zN1−1(T1) = Q1, as also shown in Fig. 1. By induction,
we have

zj(T1) = Q(T1)
[
e(N1−j)θsT1 − 1

]
/

[
eθsT1 − 1

]
. (11)

The wholesaler’s order quantity,S1 = S(N1, T1) (= z0(T1))
per lot is then given by

S(N1, T1) = Q(T1)
[
eN1θsT1 − 1

]
/

[
eθsT1 − 1

]
. (12)

On the other hand, the wholesaler’s cumulative inventory,
Bj(T1), held duringjth shipping cycle is expressed by

Bj(T1) =
∫ jT1

(j−1)T1

I
(s)
j (t)dt

=
Q(T1)
θs

[
e(Ni−j)θsT1 − 1

]
. (13)

The wholesaler’s cumulative inventory, held during[0, N1T1)
becomes

B(N1, T1) =
N1−1∑
j=1

Bj(T1)

=
Q1(T1)
θs

(
eN1θsT1 − 1
eθsT1 − 1

−N1

)
. (14)

Hence, fora givenN1, the wholesaler’s total profit per
unit of time under OptionV1 is given by

P1(N1, T
∗
1 ) =

1
N1T ∗

1

·
[
psN1Q(T ∗

1 ) −N1ξ(T1)

−csS(N1, T
∗
1 ) − hsB(N1, T

∗
1 ) − as

]
=

(
ps + hs

θs
+ α

)
Q(T ∗

1 ) − β

T ∗
1

−

(
cs + hs

θs

)
S(N1, T

∗
1 ) + as

N1T ∗
1

. (15)

B. Total Profit under OptionV2

When the retailer chooses OptionV2, she/he purchases
Q2 = Q(T2) units of the product at the unit discounted
wholesale price(1 − y)ps. In this case, the wholesaler’s
order quantity per lot under OptionV2 is expressed as
S2 = S(N2, T2), accordingly the wholesaler’s total profit
per unit of time under OptionV2 is given by

P2(N2, T2, y) =
1

N2T2
·
[
(1 − y)psN2Q(T2) −N2ξ(T2)

−csS(N2, T2) − hsB(N2, T2) − as

]
=

[
(1 − y)ps + hs

θs
+ α

]
Q(T2) − β

T2

−

(
cs + hs

θs

)
S(N2, T2) + as

N2T2
, (16)

where

Q(T2) = ρ
(
eθbT2 − 1

)
, (17)

S(N2, T2) = Q(T2)
[
eN2θsT2 − 1

]
/

[
eθsT2 − 1

]
. (18)

V. RETAILER’S OPTIMAL RESPONSE

This section discusses the retailer’s optimal response. The
retailer prefers OptionV1 over OptionV2 if π∗

1 > π2(T2, y),
but when π∗

1 < π2(T2, y), she/he prefersV2 to V1. The
retailer is indifferent between the two options ifπ∗

1 =
π2(T2, y), which is equivalent to

y =

(
ps + hb

θb

) [
Q(T2) − ρθbT2e

θbT∗
1
]
+ ab

psQ(T2)
. (19)

Let us denote, byψ(T2), the right-hand-side of Eq. (19). It
can easily be shown from Eq. (19) thatψ(T2) is increasing
in T2 (≥ T ∗

1 ).
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Fig. 2. Characterization of retailer’s optimal responses

VI. WHOLESALER’S OPTIMAL POLICY UNDER
THE NON-COOPERATIVE GAME

The wholesaler’s optimal values forT2 and y can be
obtained by maximizing her/his total profit per unit of
time considering the retailer’s optimal response which was
discussed in Section V. Henceforth, letΩi (i = 1, 2) be
defined by

Ω1 = {(T2, y) | y ≤ ψ(T2))},
Ω2 = {(T2, y) | y ≥ ψ(T2))}.

Figure 2 depicts the region ofΩi (i = 1, 2) on the(T2, y)
plane.

A. Under OptionV1

If (T2, y) ∈ Ω1 \ Ω2 in Fig. 2, the retailer will naturally
select OptionV1. In this case, the wholesaler can maximize
her/his total profit per unit of time independently ofT2 andy
on the condition of(T2, y) ∈ Ω1\Ω2. Hence, the wholesaler’s
locally maximum total profit per unit of time inΩ1 \ Ω2

becomes

P ∗
1 = max

N1∈N
P1(N1, T

∗
1 ), (20)

whereN signifies the set of positive integers.

B. Under OptionV2

On the other hand, if(T2, y) ∈ Ω2 \Ω1, the retailer’s opti-
mal response is to choose OptionV2. Then the wholesaler’s
locally maximum total profit per unit of time inΩ2 \ Ω1 is
given by

P ∗
2 = max

N2∈N
P̂2(N2), (21)

where

P̂2(N2) = max
(T2,y)∈Ω2\Ω1

P2(N2, T2, y). (22)

More precisely, we should use ”sup” instead of ”max” in
Eq. (22).

For a givenN2, we show below the existence of the whole-
saler’s optimal quantity discount pricing policy(T2, y) =
(T ∗

2 , y
∗) which attains Eq. (22). It can easily be proven that

P2(N2, T2, y) in Eq. (16) is strictly decreasing iny, and
consequently the wholesaler can attainP̂2(N2) in Eq. (22)
by lettingy → ψ(T2)+0. By letting y = ψ(T2) in Eq. (16),
the total profit per unit of time ony = ψ(T2) becomes

P2(N2, T2) = ρ (ps + hb/θb) θbe
θbT∗

1

− 1
N2T2

·
[
C · S(N2, T2) −H(N2)Q(T2)

+(ab + β)N2 + as

]
, (23)

where

C = (cs + hs/θs), (24)

H(N2) = (hs/θs − hb/θb + α)N2. (25)

Let us now defineL(T2) as follows:

L(T2) ≡ CθsT2Q(T2)

×N2e
N2θsT2(eθsT2 − 1) − eθsT2(eN2θsT2 − 1)

(eθsT2 − 1)2

+
[
ρθbe

θbT2T2 −Q(T2)
]

×
[
C
eN2θsT2 − 1
eθ2T2 − 1

−H(N2)
]
. (26)

We here summarize the results of analysis in relation to
the optimal quantity discount policy which attainŝP2(N2)
in Eq. (22) whenN2 is fixed to a suitable value.

The proofs are given in Appendix B.

1) N2 = 1:

• (cs + hb/θb − α) > 0:
In this subcase, there exists a unique finiteT̃2

(> T ∗
1 ) which maximizesP2(N2, T2) in Eq. (23),

and therefore(T ∗
2 , y

∗) is given by

(T ∗
2 , y

∗) → (T̃2, ỹ), (27)

whereỹ = ψ(T̃2).
The wholesaler’s total profit then becomes

P̂2(N2) = ρθb

[
(ps + hb/θb) eθbT∗

1

− (cs + hb/θb − α) eθbT∗
2
]
. (28)

• (cs + hb/θb − α) ≤ 0:
In this subcase, the optimal policy can be

expressed by

(T ∗
2 , y

∗) → (T̂2, 1), (29)

where T̂2 (> T ∗
1 ) is the unique finite positive

solution toψ(T2) = 1.
The wholesaler’s total profit is therefore given

by

P̂2(N2) = − (c2 − α)Q(T̂2)
T̂2

− β − as. (30)

2) N2 ≥ 2:
Let usdefineT2 = T̃2 (> T ∗

1 ) as the unique solution
(if it exists) to

L(T2) = (ab + β)N2 + as. (31)

In this case, the optimal quantity discount pricing
policy is given by Eq. (27).

C. Under OptionV1 and V2

In the case of(T2, y) ∈ Ω1 ∩Ω2, the retailer is indifferent
between OptionV1 and V2. For this reason, this study
confines itself to a situation where the wholesaler does not
use a quantity discount policy(T2, y) ∈ Ω1 ∩ Ω2.
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D. Optimal value forNi

For a givenTi, we here derive a lower bound and an upper
bound for the optimal value ofNi = N∗

i (N∗
i = 1, 2, 3, · · ·)

which maximizesP1(N1, T
∗
1 ) in Eq. (15) andP2(N2, T2, y))

in Eq. (16).
Let K(Ti) be defined by

K(Ti) ≡ (cs + hs/θs)Q(Ti)/(eθsTi − 1). (32)

In the following, the results of analysis are briefly sum-
marized.

The proofs are shown in Appendix C.

1) Lower boundNi = N
(L)
i (Ti) (≤ N∗

i ):

• (eθsTi − 1)2 ≥ as/K(Ti):
N

(L)
i (Ti) = 1.

• (eθsTi − 1)2 < as/K(Ti):
There exists a unique finiteN (L)

i (Ti) (≥ 1)
which is the solution to

Nie
NiθsT∗

i (eθsTi − 1)
−(eNiθsTi − 1) = as/K(Ti). (33)

2) Upper boundNi = N
(U)
i (Ti) (≥ N∗

i ):
There exists a unique finiteN (U)

i (Ti) (≥ N
(L)
i (Ti))

which is the solution to

Nie
(Ni−1)θsTi(eθsTi − 1)

−(eNiθsTi − 1) = as/K(Ti). (34)

The above results indicate that the optimalN∗
i satisfies

1 ≤ N
(L)
i (Ti) ≤ N∗

i < N
(U)
i (Ti). (35)

In the above, it should be reminded that we can useT1 =
T ∗

1 under OptionV1.

VII. WHOLESALER’S OPTIMAL POLICY UNDER
THE COOPERATIVE GAME

This section discusses a cooperative game between the
wholesaler and the retailer. We focus on the case where the
wholesaler and the retailer maximize their joint profit. We
here introduce some more additional notationsN3, T3 and
Q3, which correspond toN2, T2 andQ2 respectively, under
Option V2 in the previous section.

Let J(N3, T3, y) express the joint profit function per
unit of time for the wholesaler and the retailer, i.e., let
J(N3, T3, y) = P2(N3, T3, y) + π2(T3, y), we have

J(N3, T3, y) = ρ(pbθb + hb)

− 1
N3T3

·
[
C · S(N3, T3) −H(N3)Q(T3)

+(ab + β)N3 + as

]
. (36)

It can easily be proven from Eq. (36) thatJ(N3, T3, y)
is independent of y and we haveJ(N3, T3, y) = P2(
N3, T3, ψ(T3)) + π∗

1 . This signifies that the optimal quan-
tity discount policy (T3, y) = (T ∗

3 , y
∗) which maximizes

J(N3, T3, y) in Eq. (36) is given by(T ∗
2 , y

∗) as shown
in Section VI. This is simply because, in this study, the
inventory holding cost is assumed to be independent of the
value of the item.

TABLE I
SENSITIVITY ANALYSIS

(a) Under OptionV1

as Q∗
1 p1 S∗

1 (N∗
1 ) P ∗

1

500 47.35 300.00 47.35(1) 910.75

1000 47.35 300.00 99.09(2) 861.24

2000 47.35 300.00 99.09(2) 804.78

3000 47.35 300.00 155.61(3) 752.21

(b) UnderOption V2

as Q∗
2 p∗2 S∗

2 (N∗
2 ) P ∗

2

500 107.63 285.01 107.63(1) 998.56

1000 117.65 281.63 117.65(1) 972.8

2000 135.77 275.49 135.77(1) 926.23

3000 152.04 270.04 152.04(1) 884.43

VI II. NUMERICAL EXAMPLES

Table I reveals the results of sensitively analysis in refer-
ence toQ∗

1, p1 (= ps), S∗
1 (= S(N∗

1 , T
∗
1 )), N∗

1 , P ∗
1 , Q∗

2

(= Q(T ∗
2 )), p∗2 (=(1 − y∗)ps), S∗

2 (= S(N∗
2 , T

∗
2 )), N∗

2 ,
P ∗

2 for (cs, ps, pb, ab, hs, hb, θs, θb, µ, α, β) = (100, 300,
600, 1200, 1, 1.1, 0.01, 0.015, 5, 2, 1000) whenas = 500, 10
00, 2000 and3000.

In Table I(a), we can observe that bothS∗
1 andN∗

1 are non-
decreasing inas. As mentioned in Section II, under Option
V1, the retailer does not adopt the quantity discount offered
by the wholesaler, which signifies that the wholesaler cannot
control the retailer’s ordering schedule. In this case, the
wholesaler’s cost associated with ordering should be reduced
by increasing her/his own length of order cycle and lot size
by means of increasingN1.

Table I(b) shows that, under OptionV2, S∗
2 increases with

as, in contrast,N∗
2 takes a constant value, i.e., we have

N∗
2 = 1. Under OptionV2, the retailer accepts the quantity

discount proposed by the wholesaler. The wholesaler’s lot
size can therefore be increased by stimulating the retailer
to alter her/his order quantity per lot through the quantity
discount strategy. If the wholesaler increasesN2 one step,
her/his lot size also significantly jumps up sinceN2 takes
a positive integer. Under this option, the wholesaler should
increase her/his lot size using the quantity discount rather
than increasingN2 whenas takes larger values. We can also
notice in Table I that we haveP ∗

1 < P ∗
2 . This indicates

that using the quantity discount strategy can increase the
wholesaler’s total profit per unit of time.

IX. CONCLUSION

In this study, we have discussed a quantity discount prob-
lem between a wholesaler and a retailer under circumstances
where both the wholesaler’s and the retailer’s inventory
levels of the product are depleted not only by demand
but also by deterioration. The wholesaler is interested in
increasing her/his profit by controlling the retailer’s order
quantity through the quantity discount strategy. The retailer
attempts to maximize her/his profit considering the whole-
saler’s proposal. We have formulated the above problem as
a Stackelberg game between the wholesaler and the retailer
to show the existence of the wholesaler’s optimal quantity
discount policy that maximizes her/his total profit per unit
of time in the same manner as our previous work[9]. In
this study, we have also formulated the same problem as a
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cooperative game. The result of our analysis reveals that the
wholesaler is indifferent between the cooperative and non-
cooperative options. It should be pointed out that our results
are obtained under the situation where the inventory holding
cost is independent of the value of the item. The relaxation
of such a restriction is an interesting extension.

APPENDIX A

This appendix shows the existence of a unique optimal
order quantity which maximizes the retailer’s total profit per
unit of time under OptionV1.

By differentiatingπ1(T1) in Eq. (5) with respect toT1,
we have

d

dT1
π1(T1)

= −
ρ

(
ps + hb

θb

) [
θbT1e

θbT1 − (eθbT1 − 1)
]
− ab

T 2
1

. (37)

Then d
dT1

π1(T1) ≥ 0 agrees with

θbT1e
θbT1 − (eθbT1 − 1) ≤ ab

ρ
(
ps + hb

θb

) . (38)

Let Lb(T1) expressthe left-hand-side of Inequality (38),
and we have

L′
b(T1) = θ2bT1e

θbT1 (> 0), (39)

Lb(0) = 0

< ab

ρ
(
ps + hb

θb

)
 , (40)

lim
T1→+∞

L1(T1) = +∞. (41)

On the basis of the above results, we can show that there
exists a unique finiteT ∗

1 (> 0). The retailer’s optimal order
quantity per lot can therefore be given by Eq. (6).

APPENDIX B

In this appendix, we discuss the existence of the optimal
quantity discount pricing policy which attainŝP2(N2) in
Eq. (22) whenN2 is fixed to a suitable value.

1) N2 = 1:
By differentiating P2(N2, T2) in Eq. (23) with

respect toT2, we have

∂

∂T2
P2(N2, T2)

= − 1
T 2

2

{[
ρθbe

θbT2 −Q(T2)
](

cs +
hb

θb
− α

)
−(ab + as + β)

}
. (42)

It can easily be shown from Eq. (42) that the sign of
∂

∂T2
P2(N2, T2) is positive when(cs + hb/θb − α) =

0. In contrast, in the case of
(
cs + hb

θb
− α

)
>
< 0,

∂
∂T2

P2(N2, T2) ≥ 0 agrees with

θbT2e
θbT2 −

(
θbe

θbT2 − 1
)

<=
>

ab + as + β

ρ(cs + hb/θb − α)
. (43)

Let L1(T2) express the left-hand-side of Inequal-
ity (43), we have

L′
1(T2) = θ2bT2e

θbT2 (> 0), (44)

L1(T ∗
1 ) =

ab

ρ(ps + hb/θb)
, (45)

lim
T2→+∞

L1(T2) = +∞. (46)

From Eqs. (44), (45) and (46), the existence of an op-
timal quantity discount pricing policy can be discussed
for the following two subcases:

• (cs + hb/θb − α) > 0:
Equiation (45) yields

L1(T ∗
1 ) <

ab + as + β

ρ(cs + hb/θb − α)
. (47)

Equiations (44),(46) and (47) indicate that the
sign of ∂

∂T2
P2(N2, T2) changes from positive to

negative only once. This signifies thatP2(N2, T2)
first increases and then decreases asT2 increases,
and thus there exists a unique finitẽT2 (> T ∗

1 )
which maximizesP2(N2, T2) in Eq. (23). Hence,
(T ∗

2 , y
∗) is given by Eq. (27).

• (cs + hb/θb − α) ≤ 0:
In this subcase,P2(N2, T2) is increasing in

T2, and consequently the optimal policy can be
expressed by Eq. (29).

2) N2 ≥ 2:
By differentiating P2(N2, T2) in Eq. (23) with

respect toT2, we have

∂

∂T2
P2(N2, T2)

= −L(T2) − (ab + β)N2 − as

N2T 2
2

, (48)

whereL(T2) is definedby Eq. (26).
Then ∂

∂T2
P2(N2, T2) ≥ 0 agrees with

L(T2) ≤ (ab + β)N2 + as. (49)

If we assume that there exists a unique solution to
Eq. (31), the optimal quantity discount pricing policy
can be given by Eq. (27).

APPENDIX C

For a givenTi, this appendix shows the existence of a
lower bound and an upper bound for the optimal value of
Ni = N∗

i (N∗
i = 1, 2, 3, · · ·) which maximizesP1(N1, T

∗
1 )

in Eq. (15) andP2(N2, T2, y) in Eq. (16).
Let G(Ti) be defined by

G(Ti) ≡ (pi + hs/θs + α)Q(Ti) − β

Ti
, (50)

thenP1(N1, T
∗
1 ) andP2(N2, T2, y) can be rewritten as

Pi(Ni) = G(Ti) −
(eθsTi − 1) + as/K(Ti)

NiTi/K(Ti)
, (51)

where p1 = ps, p2 = (1 − y)ps andK(Ti) is defined by
Eq. (32).

1) Lower boundNi = N
(L)
i (Ti) (≤ N∗

i ):
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By calculatingthe difference betweenPi(Ni + 1)
andPi(Ni), we have

∆P (L)
i = Pi(N1 + 1) − Pi(Ni)

=
1

(Ni + 1)NiTi/K(Ti)
·
[
(γNi − 1)

−Niγ
Ni(γ − 1) + as/K(Ti)

]
,(52)

whereγ = eθsTi .
Then∆P (L)

i ≥ 0 agrees with

(γNi − 1) −Niγ
Ni(γ − 1) ≥ −as/K(Ti). (53)

Let us denote, byL(L)(Ni), the left-hand-side of
Inequality (53), and we have

∆L(L) = L(L)(Ni + 1) − L(L)(Ni)
= −(Ni + 1)

×γNi(γ − 1)2 (< 0), (54)

L(L)(1) = −(γ − 1)2, (55)

lim
Ni→+∞

L(L)(Ni) = −∞ (< −as/K(Ti)) . (56)

From Eqs. (54), (55) and (56), we can clarify the
conditions where a lower boundN (L)

i (Ti) exists as
shown below.

• (eθsTi − 1)2 ≥ as/K(Ti):
In this subcase,Pi(Ni) is non-increasing inNi,

and consequentlyN (L)
i (Ti) = 1.

• (eθsTi − 1)2 < as/K(Ti):
In this subcase, the sign of∆P (L)

i changes
from positive to negative only once, and thus there
exists a unique finiteN (L)

i (Ti) (≥ 1) which is the
solution to

Nie
NiθsTi(eθsTi − 1)

−(eNiθsTi − 1) = as/K(Ti). (57)

2) Upper boundNi = N
(U)
i (Ti) (≥ N∗

i ):
By calculating the difference betweenPi(Ni) and

Pi(Ni − 1), we have

∆P (U)
i = Pi(N1) − Pi(Ni − 1)

=
1

(Ni − 1)NiTi/K(Ti)

×
[
(γNi − 1) −Niγ

Ni−1(γ − 1)

+as/K(Ti)
]
. (58)

Then∆P (U)
i ≥ 0 agrees with

(γNi − 1) −Niγ
Ni−1(γ − 1) ≥ −as/K(Ti).(59)

Let L(U)(Ni) express the left-hand-side of Inequal-
ity (59), we have

∆L(U) = L(U)(Ni) − L(U)(Ni − 1)
= −(Ni − 1)

×γNi−2(γ − 1)2 (< 0), (60)

L(U)(1) = 0 (> −as/K(Ti)) , (61)

lim
Ni→+∞

L(U)(Ni) = −∞ (< −as/K(Ti)) . (62)

These observations can clarify that there exists a
unique finiteN (U)

i (Ti) (≥ N
(L)
i (Ti)) which is the

solution to

Nie
(Ni−1)θsTi(eθsTi − 1)

−(eNiθsTi − 1) = as/K(Ti). (63)
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