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A Wholesalers Optimal Ordering and Quantity
Discount Policies for Deteriorating Items

Hidefumi Kawakatsu

Abstract—This study analyses the seller's (wholesaler's) deci- rate of the vendor's inventory is equal to its rate of the

sion to offer quantity discounts to the buyer (retailer). The seller retailer’s inventory, and focused on the case where both the

purchases products from an upper-leveled supplier (manufac- ; , ) :
turer) and then sells them to the buyer who faces her customers’ buyer's and the vendor's total profits can be approximated

demand. The seller attempts to increase her profit by controlling using Taylor series expansmn. . .

the buyer's order quantity through a quantity discount strategy. In this study, we discuss a quantity discount problem
The buyer tries to maximize her profit considering the seller's between a seller (wholesaler) and a buyer (retailer) under
proposal. We formulate the above problem for deteriorating cjrcumstances where both the wholesaler’s and the retailer’s
items as a Stackelberg game between the seller and buyer toinventory levels of the product are depleted not only by

analyze the existence of the seller’'s optimal quantity discount . .
pricing policy which maximizes her total profit per unit of time. demand but also by deterioration. The wholesaler purchases

The same problem is also formulated as a cooperative game. Products from an upper-leveled supplier (manufacturer) and
Numerical examples are presented to illustrate the theoretical then sells them to the retailer who faces her/his customers’

underpinnings of the proposed formulation. demand. The shipment cost is characterized by economies of
Index Terms—quantity discounts, deteriorating items, total density[8]. The wholesaler is interested in increasing her/his
profit, Stackelberg game, cooperative game. profit by controlling the retailer's order quantity through
the quantity discount strategy. The retailer attempts to max-
I. INTRODUCTION imize her/his profit considering the wholesaler’s proposal.

ur previous work has formulated the above problem as a
tackelberg game between the wholesaler and the retailer

seller (wholesaler) and one buyer (retailer). Many researchtaligShOW the existence of the wholesaler's optimal quantity
have developed models to study the effectiveness of qu count pricing policy which maximizes her/his total profit

. . ) ) i & unit of time[9]. In this study, we also formulate the
tity dlscgunts. Q“f’_‘”“t_y dlscqunts are widely used by ﬂ%ame problem as a cooperative game. Numerical examples
seller with t.h.e opjecnve of ‘inducing th? buyer to ordg([ire presented to illustrate the theoretical underpinnings of the
larger quantities in order to reduce their total transacti

. . . . . X d model.

costs associated with ordering, shipment and |nventory|r(‘)fé]}.Opose mode

Monahan[1] formulated the transaction between the seller

and the buyer (see also [2], [3]), and proposed a method Il. NOTATION AND ASSUMPTIONS

for determining an optimal all-unit quantity discount policy The wholesaler uses a quantity discount strategy in order
with a fixed demand. Lee and Rosenblatt[4] generalizgd improve her/his profit. The wholesaler proposes, for the
Monahan's model to obtain the "exact” discount rate offeregtailer, an order quantity per lot along with the correspond-
by the seller, and to relax the implicit assumption of a lot-foling discounted wholesale price, which induces the retailer
lot policy adopted by the seller. Parlar and Wang[5] proposeg alter her/his replenishment policy. We consider the two
a model using a game theoretical approach to analyze #tions throughout the present study as follows:

quantity discount problem as a perfect information game. ForQption V;: The retailer does not adopt the quantity
more work: see also Sarmah et al.[6]. These models assurggstount proposed by the wholesaler. When the retailer
that both the seller’s and the buyer’s inventory policies cathooses this option, she/he purchases the products from the
be described by classical economic order quantity (EOQholesaler at an initial price in the absence of the discount,
models. The classical EOQ model is a cost-minimizatioghd she/he determines her/himself an optimal order quantity
inventory model with a constant demand rate. It is one @fhich maximizes her/his own total profit per unit of time.
the most successful models in all the inventory theories duepption V,: The retailer accepts the quantity discount
to its simplicity and easiness. proposed by the wholesaler.

In many real-life Situations, retailers deal with periShable The main notations used in this paper are listed below:
products such as fresh fruits, food-stuffs and vegetables. T € the retailers order quantity per lot under Optibi{i —
inventory of these products is depleted not only by deman 1,2).
but also deterioration. Yang[7] has developed the model go ,the wholesaler's order quantity per lot under Option
determine an optimal pricing and a ordering policy for dete-" Vi(i = 1,2).

riorating items with quantity discount which is offered by th - the length of the retailer's order cycle under Option
vendor. However, his model assumed that the deterioratioh Viii = 1,2)
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&(T;):  the shipmentost per shipment from the wholesaleBy solving the differential equation in Eq. (1) with a bound-
to the retailer. ary condition7®) (T}) = 0, the retailer’s inventory level at
¢s:  the wholesaler’s unit acquisition cost (unit purchasintime ¢ is given by
cost from the upper-leveled manufacturer).

ps: the wholesaler’s initial unit selling price, i.e., the IO@) = p e M=t 1| )
retailer's unit acquisition cost in the absence of the
discount. wherep = /6.

y.  the discount rate for the wholesale price proposed Therefore, the initial inventory leve[® (0) (= Q; = Q
by the wholesaler, i.e., the wholesaler offers a un{gpl), in the order cycle becomes
discounted price of1 — y)ps (0 <y < 1).

py.  the retailer's unit selling price, i.e., unit purchasing Q(TY) = p (T —1). (3)
price for her/his customers.

0s, 0 : the deterioration rates of the wholesaler’s inventory o, the other hand, the cumulative inventod(7?), held
and of the retailer’'s inventory, respectively; (< 6). during [0, 1) is expressed by

u:  the constant demand rate of the product.

The assumptions in this study are as follows: T (eem — 1)
Do ; ; A(Ty) = IOWdt = p|—L —1]. (4)

1) The retailer’s inventory level is continuously depleted 0 0,

due to the combined effects of its demand and de-

terioration. In contrast, the wholesaler’s inventory is Hence, theretailer's total profit per unit of time under

depleted by deterioration during”;, (j + 1)73) (j = Option V; is given by

0,1,2,---), but at time j7; her/his inventory level

decreases by); because of shipment to the retailer. T dt — _ _

i Db SHIRTTS _ Do Jy M psQ(T1) — hpA(Ty) — ap

2) The rate of replenishment is infinite and the delivery m(71) = Jo

is instantaneous. & N

3) Backlogging and shortage are not allowed. (Ps + ﬁ) Q(Th) + ap

4) The quantity of the item can be treated as continuous = p(po0s + hpy) — T . (5)
for simplicity.

5) Both the wholesaler and the retailer are rational andIn the following, the results of analysis are briefly sum-
use only pure strategies. marized:

6) The shipment cost is characterized by economies ofThe proof is given in A.
density[8], i.e., the shipment cost per shipment de- There exists a unique finitdy = 77 (> 0) which
creases as the retailer’s lot size increases. We assumeximizes~(7) in Eq. (5). The optimal order quantity
for simplicity, thaté(T;) = 8 — aQ;i(T;) (> 0). is therefore given by

7) The length of the wholesaler’s order cycle is given by
N;T; under OptionV; (i = 1, 2), whereN; is a positive Qi =p (eebT{‘ — 1) . (6)

integer. This is because the wholesaler can possibly
improve her/his total profit by increasing the length ofpe total profit per unit of time becomes
her/his order cycle fronT; to N;T;. In this case, the
wholesaler’s lot size can be obtained by the sum of y hy\ g,
N; times of the retailer's lot size and the cumulative ™! (T7) = p {@beb + ) = 0 (ps + 9b> € 1} - (1)
guantity of the waste products to be discarded during
[0, N;T;).
B. UnderOption 15

_ ”_I' RETAILER'S TOTA!‘ PROFIT _ _ If the retailer chooses Optiobiz, the order quantity and
This section formulates the retailer's total profit per unignit discounted wholesale price are respectively given by
of time for the OptionV; and V; available to the retailer. (@, = Q2(T) = p (e%Tz — 1) and (1 — y)ps. The retailers
total profit per unit of time can therefore be expressed by

A. Under OptionV;

If the retailer chooses Optiov,, her/his order quantity per m2(T2,y) = P26y + o)
lot and her/his unit acquisition cost are respectively given by [(1 —y)ps + %ﬂ Q2(T2) + ap
@1 = Q(T1) and p,, wherep, is the unit initial price in - T )
the absence of the discount. In this case, she/he determines
her/himself the optimal order quantit§); = @7 which
maximize her/his total profit per unit of time.
Since the inventory is depleted due to the combined effect IV. WHOLESALER'S TOTAL PROFIT
of its demand and deterioration, the inventory levét)(t),
at time ¢ during [0, 73) can be expressed by the following
differential equation:

This section formulates the wholesaler’s total profit per
unit of time, which depends on the retailer's decision.
Figure 1 shows both the wholesaler's and the retailer's
dI®(t)/dt = —0,1) (t) — p. (1) transitions of inventory level in the case df = 3.
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The wholesales cumulative inventory, held duriri@, N17})

Wholesaler’s inventory level becomes
SiRc N;—1
B(Ny,Ty) = Y B;(Ty)
=1

Qu(Ty) (eMoh —1
= gm— ~ M) (149

Hence, fora given Ny, the wholesaler’s total profit per

0 T 2T, 3T, 4 unit of time under Optior/; is given by
Retailer’s inventory level p (N T*) B 1 [ N Q(T*) N f(T )
0, 1V, 4y ) = N\ T} PsiV1 1 1 1
—csS(N1, TY) — hs B(Ny, ) — as]
0 T, 21; 37; (szerJrOA) QIT) -5
Fig. 1. Transition of Inventory Level §/; = 3) n
(cs n %) S(Ny, T3 + as
— ° . 15
N TY (15)

A. Total Profit under Optior/;

If the retailer chooses Optiolr;, her/his order quantity

per lot and unit acquisition cost are given B and p,, B. Total Profit under Optionl;

respectively. The length of the wholesaler’s order cycle can . )
be divided into N, shipping cycles ¥, = 1,2,3,---) as When the retailer chooses Optidr, she/he purchases

described in assumption 7), wher§, is also a decision @2 = Q(T2) units of the product at the unit discounted

variable for the wholesaler. wholesale price(1 — y)p,. In this case, the wholesaler's
The wholesalers inventory is depleted only due to d&rder quantity per lot under Optiof; is e>,<pressed as

terioration during[(j — 1)1, 4T1) in jth shipping cycle So = _S(NQZTQ), accordlngly the vyholesalers total profit

(j = 1,2,---,N,). Therefore, the wholesalers inventoryP€r unit of time under Optiof¥; is given by

level, I(*)(¢), at timet can be expressed by the following

differential equation: Py(N3, T, y) = N (1 = y)ps N2Q(T) — N2&(T2)
242

I (t)/dt = 0,1 (t), ©) —¢sS(N2, Tz) = hs B(N2, Ty) — a,]
with a boundary conditiod®) (jT}) = z;(T}), wherez; (T}) [(1 —y)ps + 5= + Oé] QTz) —p
denotes the remaining inventory at the end of itheshipping = T
cycle. By solving the differential equation in Eg. (9), the s
wholesaler's inventory levelf*)(t) = I\")(t), at timet in B (Cs + 95) SN2, Tp) + ay (16)
jth shipment cycle is given by NoTy 7

I9(t) = 2 (Ty)eb 0T, (10) where

It can easily be confirmed that the inventory level at the Q(Ty) = p (™™ 1), (17)

end of the (N; — 1)th shipping cycle become§), i.e.
zn,—1(T1) = @1, as also shown in Fig. 1. By induction,
we have

4(Ty) = Q(Th) [ewl—j)em _ 1} /[T —1]. (11) V. RETAILER’S OPTIMAL RESPONSE

S(No, Tp) = Q(Tp) [eM2PT> — 1] / [”7> — 1] . (18)

The wholesaler’s order quantity; = S(N1,T}) (= 2z(11)) This section discusses the retailer’s optimal response. The
per lot is then given by retailer prefers Optio; over OptionVs if 7 > ma (T3, y),
but whenn} < m2(T3,y), shelhe preferds to V;. The
retailer is indifferent between the two options iff =

S(N1, Th) = Q(Th) [eM%™ —1] / [¢%™ —1]. (12) 7,(Ty,y), which is equivalent to

On the other hand, the wholesaler’s cumulative inventory,

B;(T1), held duringjth shipping cycle is expressed by B (ps + ZTZ,)) [Q(T2) — PO Toe™ ] + ay (19)
3T Y psQ(TQ) '
By = [ 1 | |
G-1)Ty Let usdenote, byy(Tz), the right-hand-side of Eq. (19). It
Q1) (Ni—§)0. Ty can easily be shown from Eg. (19) théf7:) is increasing
== e - @ inn e,
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y where
W(TZ)\ C = (Cs + hs/es)v (24)
o, H(N2) = (ho /0y — hy /0 + ) Na. (25)
Q
OTI* L Let us now definel(T3) as follows:

Fig. 2. Characterization of retailer’s optimal responses

L(Tg) = CQSTQQ(TQ)

N26N205T2 (eGSTQ _ 1) — etsT2 (eNzest _ 1)

0.To _ 1)2
VI. WHOLESALER'’S OPTIMAL POLICY UNDER 6T e
THE NON-COOPERATIVE GAME + [phe HTQ - Q(Ty)]
N0 T
The wholesaler's optimal values fdf;, and y can be X Z:Till — H(N)| . (26)

obtained by maximizing her/his total profit per unit of
time considering the retailer's optimal response which was
discussed in Section V. Henceforth, 18t (i = 1,2) be
defined by

We here summarize the results of analysis in relation to
the optimal quantity discount policy which attait#% (/NV2)
in Eq. (22) whenNs is fixed to a suitable value.
The proofs are given in Appendix B.
1) Ny = 1.
. (CS +hb/9b —a) > 0:

N = {(Tz,y) | y <Y(12))},
Qo = {(T2,y) | y > ¥(T2))}

Figure 2 depicts the region 61; (i = 1,2) on the(T3,y)
plane.

A. Under OptionV;

If (Tz,y) € Q1 \ Q2 in Fig. 2, the retailer will naturally
select OptionV;. In this case, the wholesaler can maximize
her/his total profit per unit of time independently’8f andy
on the condition of T3, y) € 21\25. Hence, the wholesaler’s
locally maximum total profit per unit of time if2; \ Qs

In this subcase, there exists a unique firite
(> T7 ) which maximizesP, (N, T») in Eq. (23),
and thereford Ty, y*) is given by

(T;vy*) - (TZa g)v (27)

wherej = ¢(Ty).
The wholesaler’s total profit then becomes

Py(Na) = pby [(ps + hu/0) eIt

becomes

Pl =

where N signifies the set of positive integers.

B. Under OptionV;

On the other hand, ifT5, y) € Q2\ Q, the retailer’s opti-
mal response is to choose Optidbh. Then the wholesaler’s
locally maximum total profit per unit of time if2; \ ©; is

—(cs + hy /0y — ) e”™2]. (28)

max Pi(Ny, T7), (20)

o (es+hp/0p —a) <O:
In this subcase, the optimal policy can be
expressed by

(T5,y") — (Tr,1), (29)

where 7, (> Ty) is the unique finite positive
solution toy(T») = 1.

given by The wholesaler’s total profit is therefore given
* » by
P; = max Py(Ny), (21) )
where Py(N,) = ,w — B~ as. (30)
. Ty
Py(Ny) = Py(Ny, Ty, y). 22
2(NV2) (g hax o 5 (Na, Ta, y) (22) 2 Ny > 2

More precisely, we should use "sup” instead of "max” in

Eq. (22).

Let usdefineT, = T (> T}) as the unique solution
(if it exists) to

For a givenN,, we show below the existence of the whole-

saler’s optimal quantity discount pricing polidyls,y) =
(T5,y*) which attains Eq. (22). It can easily be proven that
Py(Ny,Ts,y) in Eq. (16) is strictly decreasing ip, and
consequently the wholesaler can attaf?f(Ng) in Eq. (22)

L(T3) = (ap + B)N2 + as. (31)

In this case, the optimal quantity discount pricing
policy is given by Eq. (27).

by lettingy — ¢(T»)+ 0. By lettingy = ¢(T») in Eq. (16),

the total profit per unit of time oy = ¢(7%) becomes
Py(Na, Tp) = p(ps + hs/0) Ope” "
- [C- S(No, Tz) — H(N2)Q(T3)

C NoTh

C. Under OptionV; and V5

In the case of T, y) € Q2 N, the retailer is indifferent
between OptionV; and V;. For this reason, this study
confines itself to a situation where the wholesaler does not

+(ap + B) N2 + as], (23) use a quantity discount polic§ls,y) € 21 N Qs.

(Advance online publication: 12 November 2011)



Engineering Letters, 19:4, EL._ 19 4 10

D. Optimalvalue for N;

For a givenT;, we here derive a lower bound and an upper

TABLE |
SENSITIVITY ANALYSIS

(a) Under OptionVy

bound for the optimal value aV; = N} (N; =1,2,3,---) as | @ p1 Si(NY)  Pr
which maximizesP; (N1, T3) in Eq. (15) andP (N2, Ty, y)) 500 | 47.35 300.00 47.35(1) 910.75
in Eq. (16). 1000 | 47.35 300.00 99.09(2) 861.24
Let K (T;) be defined by 2000 | 47.35 300.00 99.09(2) 804.78
3000 | 47.35 300.00 155.61(3) 752.21

K(T;) = T;) /(%7 —1). 2
( 1) (cs + hs/QS)Q( l)/(e ) (32) (b) UnderOption V>

In the following, the results of analysis are briefly sum- as @3 123 S;(N3) B
marized. 500 | 107.63 285.01 107.63(1) 998.56
The proofs are shown in Appendix C. 1000 | 117.65  281.63 117.65(1) 9728
D) N 2000 | 135.77 27549 135.77(1) 926.23
1) Lower boundN; = N;™(Ts) (< Ni): 3000 | 152.04 270.04 152.04(1) 884.43

o (e%Ti —1)2 > a,/K(T;):
NI = 1.
o (T —1)2 < a,/K(T5):
There exists a unique finitéJfL)(TZ-) >1)
which is the solution to
NieNiesT,;* (eesn —1)
—(NOT 1) = a,/K(T),
2) Upper boundV; = NY/(T;) (> N}):
There exists a unique finitd\")(T;) (> N (T3))
which is the solution to
Nie(Nifl)GsTi (eQSTi _ 1)
—(N0Ti 1) = a,/K(T;).
The above results indicate that the optindg! satisfies
1 < NP(1) < N < NY(T).
In the above, it should be reminded that we can Tise-

T; under OptionV;.

VII. WHOLESALER'S OPTIMAL POLICY UNDER
THE COOPERATIVE GAME

(33)

(34)

(35)

VIIl. NUMERICAL EXAMPLES

Table | reveals the results of sensitively analysis in refer-
ence t0Qj, p1 (= ps). S (= S(N?,TY)), Ny, Pr, Q3
(= QT p3 1~y )po). S5 (= S(N3,T3)), N3,

Py for (cs,ps,Pos @b, Ns, hi, 05, 0p, 1,0, 3) = (100, 300,
600, 1200, 1,1.1,0.01,0.015, 5,2, 1000) whena, = 500, 10
00, 2000 and 3000.

In Table I(a), we can observe that bath and N} are non-
decreasing irmu;. As mentioned in Section Il, under Option
V1, the retailer does not adopt the quantity discount offered
by the wholesaler, which signifies that the wholesaler cannot
control the retailer's ordering schedule. In this case, the
wholesaler’s cost associated with ordering should be reduced
by increasing her/his own length of order cycle and lot size
by means of increasing/;.

Table I(b) shows that, under Optidr, S; increases with
as, in contrast,N; takes a constant value, i.e., we have
N3 = 1. Under OptionVs, the retailer accepts the quantity
discount proposed by the wholesaler. The wholesaler's lot
size can therefore be increased by stimulating the retailer
to alter her/his order quantity per lot through the quantity
discount strategy. If the wholesaler increasés one step,

This section discusses a cooperative game between Heg/his lot size also significantly jumps up sindg takes
wholesaler and the retailer. We focus on the case where thositive integer. Under this option, the wholesaler should
wholesaler and the retailer maximize their joint profit. Wencrease her/his lot size using the quantity discount rather

here introduce some more additional notatidws 75 and

than increasingV, whena, takes larger values. We can also

@3, which correspond taV,, T and Q- respectively, under notice in Table | that we havé’s < P;. This indicates

Option V4 in the previous section.

that using the quantity discount strategy can increase the

Let J(Ns,T3,y) express the joint profit function perwholesaler’s total profit per unit of time.
unit of time for the wholesaler and the retailer, i.e., let

'](N37T37y) = P2(N37T3’y) +7T2(T37y)1 we have

J(N3,T3,y) = p(psdy + hs)

_N31T3 - [C- S(N3,T3) — H(N3)Q(T3)

+(ap + B)N3 + as).

It can easily be proven from Eq. (36) thd{Ns,T5,y)

(36)

IX. CONCLUSION

In this study, we have discussed a quantity discount prob-
lem between a wholesaler and a retailer under circumstances
where both the wholesaler's and the retailer's inventory
levels of the product are depleted not only by demand
but also by deterioration. The wholesaler is interested in
increasing her/his profit by controlling the retailer's order
guantity through the quantity discount strategy. The retailer

is independent of y and we havé(Ns,T3,y) = P( attempts to maximize her/his profit considering the whole-
N3, T3,%(T3)) + w7. This signifies that the optimal quan-saler's proposal. We have formulated the above problem as
tity discount policy (T3,y) = (T%,y*) which maximizes a Stackelberg game between the wholesaler and the retailer
J(N3,T5,y) in Eq. (36) is given by(Ty,y*) as shown to show the existence of the wholesaler’s optimal quantity
in Section VI. This is simply because, in this study, thdiscount policy that maximizes her/his total profit per unit
inventory holding cost is assumed to be independent of thé time in the same manner as our previous work[9]. In
value of the item. this study, we have also formulated the same problem as a

(Advance online publication: 12 November 2011)
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cooperatie game. The result of our analysis reveals that the
wholesaler is indifferent between the cooperative and non-
cooperative options. It should be pointed out that our results
are obtained under the situation where the inventory holding
cost is independent of the value of the item. The relaxation
of such a restriction is an interesting extension.

APPENDIXA

This appendix shows the existence of a unique optimal
order quantity which maximizes the retailer’s total profit per
unit of time under Optior/;.

By differentiating =1 (71) in Eq. (5) with respect tdl},
we have

d
Tﬂﬂl (Tl)
p ( s + %Z) [0, T e%Tr — (Tt —1)] — a
S = .(37)
1
Then g2 (T1) > 0 agrees with
0,17 — (T —1) < — 2 (38)

p (ps + 3—3)
Let Ly(Ty) expressthe left-hand-side of Inequality (38),
and we have

Ly(Ty) = 0;T1e”™ (> 0), (39 o
L) =0 [<—2 ] (0

T, ——+o0

On the basis of the above results, we can show that there
exists a unique finitd;" (> 0). The retailer's optimal order
guantity per lot can therefore be given by Eq. (6).

APPENDIXB

In this appendix, we discuss the existence of the optimal
quantity discount pricing policy which attainB,(N;) in
Eg. (22) whenlV; is fixed to a suitable value.
1) Ny = 1.
By differentiating P»(N2,T3) in Eq. (23) with

Let L,(T>) expressthe left-hand-side of Inequal-
ity (43), we have

LY(Ty) = 6;Toe™™ (>0),  (44)
N ab
L) = p(ps + hy/0p)’ (#5)

To—+o0

From Egs. (44), (45) and (46), the existence of an op-
timal quantity discount pricing policy can be discussed
for the following two subcases:
. (Cs + hb/Gb - a) > 0:
Equiation (45) yields

ap +as + 0
(Cs +hb/9b—a)'

Equiations (44)(46) and (47) indicate that the
sign of 5% P»(N2,T3) changes from positive to
negative only once. This signifies thBf(N», T»)
first increases and then decrease§ amcreases,
and thus there exists a unique finifg (> T7)
which maximizesP, (N, T) in Eq. (23). Hence,
(T, y*) is given by Eq. (27).

o (cs+hp/Op —a) <O:

In this subcaseP,(N,,T>) is increasing in
T, and consequently the optimal policy can be
expressed by Eq. (29).

Ny > 2.
By differentiating P»(N2,T3) in EqQ. (23) with
respect tdlz, we have

Ly(TY) < p (47)

0
877,2]32(1\72, 1)
L(T5) — (ap + B)N2 — as
Ny T2 ; (48)
where L(T») is definedby Eq. (26).
Then %PQ(NQ,TQ) > 0 agrees with
L(Ty) < (ap + B)N2 + as. (49)

If we assume that there exists a unique solution to
Eq. (31), the optimal quantity discount pricing policy
can be given by Eq. (27).

respect tdly, we have APPENDIXC
0 For a givenT;, this appendix shows the existence of a
TBPQ(NQ’TQ) lower bound and an upper bound for the optimal value of

1 hy
= g { ™ — Q] (e 5 o)

. ﬁ)}- (42)

It can easily be shown from Eq. (42) that the sign of
B—%PQ(NQ,TQ) is positive when(c, + hy, /0, — )
0. In contrast, in the case O(cs + g—: —a) 20,
%PQ(NQ,TQ) > ( agrees with

(Hbeesz — 1)
ap + as + 0
ples +hp/0p —a)

HngegbB —

=
>

(43)

N; =
in Eq. (15) andPz (N2, Ts, y) in Eq. (16).
Let G(T;) be defined by

N} (N} = 1,2,3,---) which maximizesP; (Ny, T7)

(pi + hs/0s + )Q(T;) — B
= T ,

G(TY) (50)

then P, (IV1, T5) and P2(N3, Tz, y) can be rewritten as

(%7 — 1) + a,/K(T})

P;(N;) N;T;/ K(T;) )

G(T3) —

(51)

wherep; = ps, p2 = (1 — y)ps and K(T;) is defined by
Eq. (32).
1) Lower boundN; = Nl.(L)(Ti) (< N)):
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By calculatingthe difference betweet®;(V; + 1)
and P;(N;), we have

= P;(N1 +1) — B(IVy)
1

- (N; + 1)N,T; ) K(T;) ' [('y
NNy 1)+ as/mm} (52)

AP}(L)

N;

—1)

wherey = e%7Ti,
Then AP}L) > 0 agrees with

(Y = 1) = N (y 1) = —a/K(T). (59

(2]

These observations can
unique finite N\Y(T}) (>
solution to

Nie(N,‘,—l)esTi (895Ti _ 1)

—(eNi%Ti 1) = a,/K(T;).

clarify that there exists a
NE(T;)) which is the

K2

(63)
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