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Stress Distribution around Circular/Elliptical/
Triangular Holes in Infinite Composite Plate

Dharmendra S Sharma

Abstract— General stress functions for determining the
stress concentration around circular, elliptical and triangular
cutouts in laminated composite infinite plate subjected to
arbitrary biaxial loading at infinity are obtained using
Muskhelishvili’s complex variable method. The generalized
stress functions are coded using MATLAB and the effect of
fiber orientation, stacking sequence, loading factor, loading
angle and cutout geometry on stress concentration around
cutouts in orthotropic/anisotropic plates is studied. Some of the
results are compared with existing literature and finite element
solutions.

Index Terms — Composites, cutouts, failure criteria,
stress concentration factors, stress functions

I. INTRODUCTION

V arious shaped cutouts are made in structures and
machines to satisfy certain service requirements.
These cutouts work as stress raisers and may lead to
catastrophic failure. The behavior of isotropic plates with
such cutouts, under different loading conditions is already
studied extensively by many researchers. But, the
anisotropic media with various shaped discontinuity has
received very little attention.

Using Kolosov-Muskhelishvili’s [1] complex variable
approach, some problems of simply connected regions are
solved by Savin [2],Lekhnitskii [3], Ukadgaonker and Rao
[41,[5], Ukadgaonker and Kakhandki [6], Nageswara Rao et
al [7], Daoust and Hoa [8], Rezaeepazhand and Jafari [9],
Sharma [10] etc.

Savin [2] and Lekhnitskii [3] found stress concentrations
around circular, elliptical, triangular and square holes,
mainly in isotropic media. Though, Savin [2] used integro-
differential approach and Lekhnitskii [3] used series
approach to define the stress function, the final outcomes are
same. The analytic solutions for stress analysis of infinite
anisotropic plate with irregular holes are presented by
Ukadgaonker and Rao [4],[5] and Ukadgaonker and
Kakhandki [6]. They adopted Gao’s [11] arbitrary biaxial
loading condition to eliminate superposition of two uniaxial
loading problem to obtain solution for biaxial loading
problem. Ukadgaonker and Rao [5], Daoust and Hoa [8] and
Sharma [10] presented solutions for stress distribution
around triangular hole with blunt corners in composite
plates, whereas Nageswara Rao et al [7] found stress field
around square and rectangular holes. Ukadgaonker and Rao
[5] and Daoust and Hoa [8] explained effect of corner
bluntness, material parameters and fibre orientation on stress
concentration factor. Rezaeepazhand and Jafari [9]
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explained effect of load angle and hole orientation on
maximum stress concentration factor for triangular, square
and pentagonal hole with blunt corners, in isotropic media.
The bluntness of the corner taken by them is significantly
higher compared to Ukadgaonker and Rao [5] and Daoust
and Hoa [8], and the outcome for triangular cutout in
isotropic plate is in terms of comparatively smaller value of
stress concentration.

In this paper, Kolosov-Mushkhelishvilli’s complex
variable approach is adopted to obtain generalized stress
functions. The effect of hole geometry, material properties,
fiber orientation, stacking sequence, loading factor and
loading angle on stress field around cut-outs is studied. For
numerical results Graphite/epoxy, Glass/epoxy and isotropic
materials are considered.

II. COMPLEX VARIABLE FORMULATION

A thin anisotropic plate is considered under generalized
plane stress condition (Refer Fig. 1). The plate is assumed to
be loaded in such a way that resultants lies in XOY plane.
The mean values of strains along thickness of the plate can
be represented by generalized Hooke’s law.
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Where,

0,,0, 7, =mean value of stresses along thickness,

a; =compliance co-efficient

In the absence of body forces the stress components can
be written in terms of Airy’s stress function (U) as follows:
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Substituting equation (1) and equation (2) in strain-
displacement compatibility condition

2

O*e N 828V 827/@'
X J — - , t
oy ox* OxOy weee
o'U o'U
22 ox* ~ 24z ox’0y
o'U
+(2a,, + 966)8)(2—8)}2 =0 (3)
o'U o'U
—2ay 3T 23
X0y oy

(Advance online publication: 27 February 2012)



Engineering Letters, 20:1, EL._20 1 01

Symbolically, the above equation can be written in terms
of four linear differential operators as

D,D,D;D,U =0 “)

D, (k=123,4)= i—sk i,
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Where, s,(k=123,4)are the

characteristic equation

roots of the
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The roots of equation (5) can be written as

s, =a, +if,

s, =a, +if,

sy =, —if,

s, =0, —if}, (6)

On integrating equation (3), the Airy’s stress function
U (x, ) can be represented as

F(x+sy)+ F(x+s5,) j
+F(x+8,0)+ F(x+5,p)
F(z)+ F,(z,)

+ Fi(z,)+ FZ(ZZ)J

The analytic functions @ (z;), v (z,) and their conjugates
are given by

U(x,y)=(

()

U(x,y)=(

dr, dF, _ .

& —¢(zl),—dz =y(z,);

dF —— dF, ——
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By substituting analytic functions from equation (8) into
equation (7), and finally equation (7) into equation (2), the

stress components in terms of @#(z,) andy(z,)can be
represented as

o, =2Re|s, 4 (z) + 5,7 (z,)]
o, =2Rel'(z)+v/'(z,)] ©)
[ -2 Re[sl¢'(zl)+ SzV/'(Zz )]

The stresses in Cartesian coordinates given in equation
(9) can be written in orthogonal curvilinear coordinate

system by means of the following relations
2 2
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m and n are the direction cosines.

III. MAPPING FUNCTION

The area external to a given hole (here, circular, elliptical
or triangular), in Z-plane is mapped conformably to the area

outside the unit circle in { plane using following mapping
function.

reoAeg2]

R =Hole size constant

(1)

¢ = pe'® (Here, p =1 for unit circle)
m, =0, for circular hole

a—

b
j, for elliptical hole, where, a and b

k=Lm, :(aer

are the semi major and semi minor axis of the ellipse,

respectively
k=358111417...and my;=1/3; my=1/45;
mg=1/162;  m, =7/2673;  m, =1/729;

m,; =91/111537, for triangular hole.

For anisotropic materials, the deformations undergo affine
transformation. Hence, the mapping function (Equation

(11)) is modified by introducing complex parameters s ;..

z,=w,5)= g{aj(é+imk§kj+bj(§+im—’;ﬂ

a,=(1+is,) b, =(1-is;); =12 (12)

IV. ARBITRARY BIAXIAL LOADING CONDITIONS

In order to consider several cases of in-plane loads, the
arbitrary biaxial loading condition is introduced into the
boundary conditions. This condition has been adopted from
Gao’s [10] solution for elliptical hole in isotropic plate. By
means of this condition solutions for biaxial loading can be
obtained without the need of superposition of the solutions
of the uni-axial loading. This is achieved by introducing the
biaxial loading factor A and the orientation angle B into the
boundary conditions at infinity.

The boundary conditions for in-plane biaxial loading
conditions are as follows:

o’ =Ao; o" =0, 7.=0 at |z|—>oo
x ¥y Xy

0

ando .

) are stresses applied about x', y* axes at

Where, O':)

infinity (Refer Fig. (1)). By applying stress invariance into
above boundary conditions, boundary conditions about
XOY can be written explicitly as:

o, = g[m +1)+ (1 —1)cos 23]

[(A+1)—(A—-1)cos2/]

O'y:

[(A-1)sin2/] (13)
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For inclined uni-axial tension: A=0, 0

(a) Loading along x-axis : A=0, B=n/2

(b) Loading along y-axis : A=0, p=0

For equi-biaxial tension 1A=1, B=

For shear stress : A=-1, B=n/4 or 3n/4

Fig. 1 Arbitrary biaxial loading condition

V. STRESS FUNCTION FOR CUTOUTS OF DIFFERENT SHAPES

The scheme for solution of anisotropic plate containing a
cutout subjected to remotely applied load is shown in Fig.
(2). To determine the stress function, the solution is split
into two stages:

A. First Stage

The stress functions, @ (z,) andy,(z,) are determined
for the hole free plate under the application of remotely
applied load. The boundary conditions f,and fare found

for the fictitious hole using stress functionsd(z,)
andy,(z,) .
The stress function ¢(z,)and y(z,)are obtained for

hole free plate due to remotely applied load wa , O'yoO as
$(z,)=B z,
v,(z,)=(B +iC )z, (14)

Where,
0 2 2 © )
. O, +(a, +B,)o, +2a,7,,

2(ay —ay)* +(B" - B7))

B

. (& - B’ -2a0,)0,” —0,” = 2a,7,)”
B 2(ct, — ) + (B - B))
(& —a)lo,” +[ay (@ - B)
—ay ()’ - B)]o,”
o\’ =)~ (@’ = B,
2B, [(a, — )’ + (B, = )]

C is taken zero, because no rotation is allowed.
The boundary conditions f, f,on the fictitious hole are

determined from these stress functions as follows

/i :2Re[ 1(21)+W1(22)]
fr= 2Re[51¢1 (Zl)+32‘//1 (Zz )]

‘Re’ real part of complex number.

By substituting equation (12) into equation (14), and
finally equation (14) into equation (15), the boundary
conditions are obtained as follows:

(K, + KT)(% > mkékJ

k=1

(15)

f1: N
+(K2+K_l)(§+2m—:j

(16)

Where,

2
K, = [g [B'b, + (B +iC")b, |

K, :[g [SIB*al +5,(B” +z'c'*)a2]

K, = (5 5,875, +5,(B" +iC")b, |

B. Second Stage
For the second stage solution, the stress functions

¢0 (Zl )and W 0 (z ,) are determined by applying negative

of the boundary conditions flo =—f, and f20 =—f, on
its hole boundary in the absence of the remote loading.
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A. The stress functions B. The second stage C. The stress function
($1(z1) and w;(z,)) for the stress functions (#(z;) and y(zy) for
hole free plate under the (to(z1) and wy(z3)) plate with hole,
application of remotely for plate with hole, subjected to remotely
applied load. The boundary without Io)ad at applied load.
conditions at the hole mﬁmty (1 =1 and
circumference is f; and f> f2=-15)

Fig.2. Problem configuration with scheme of solution

The stress functions of second stage solution are obtained

. . 0 0y .
using these new boundary conditions (f, ,f, ) into
Schwarz formula:

¢0(§)=—j( 2f fz t+é’dl‘

4r(s, -¢ t 1(17)
t+§ a’t
wo(Q)= r[( f fz (t 2
(18)

Where vy is the boundary of the unit circle in {-plane, t is the
value of { on hole boundary, A, and A, are imaginary
constants which will have no contribution towards stress
field.

By evaluating the integral the stress functions are
obtained as

0 = el bs > ﬂ}

$,($) {§+ 2 e

Wo(§)=—{§ +b, Z: } (19)
Where,

{
=i

}SZ(K +Ky)— (K +Ky)

} 5,(K, +K) - (K, +K3)

}[ (K, +K,))— (K + K]

b4={ 1 }[SI(K2+Z)—<K4+K_3)]
S =95,

C. Final Solution
The stress function ¢(z,) and y(z,)for single hole

problem, can be obtained by adding the stress functions of
first and second stage.

P#(z,) =4 (z)+(z)
w(z,)=w,(z,)+y,(z,) (20)

VI. RESULTS AND DISCUSSION

The numerical results are obtained for Graphite/epoxy
(E;=181GPa, E,=10.3GPa, G1,=7.17GPa and v,,=0.28) and
Glass/epoxy (E;=47.4GPa, E,=16.2GPa, G,,=7.0GPa and
v1,=0.26). Some of the results are obtained for isotropic
plate (E=200GPa, G=80GPa and v=0.25) also for sake of
comparison. The steps followed in computer implementation
are as under:

1. Choose the value of biaxial load factor, A and load
angle, B for the type of loading.

2. Calculate the compliance co-efficient, a; from
generalized Hooke’s Law

3. Calculate the value of complex parameters of
anisotropy s; and s, from the characteristic equation
(Equation 1). Some of the constants of anisotropy s; and s,
are presented in Table 1.

4. Calculate the constants: a;, by, a,, b,, B, B’, C’, K,

Kz, K3, K4 etc.
5. Evaluate the stress functions and their derivatives.
6. Evaluate stresses.

The stress functions obtained above are the generalized
solutions. Using these functions, stress distribution for

(Advance online publication: 27 February 2012)
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different loading conditions and material parameters can be
obtained.
The following loading cases have been considered.

1. Plate subjected to uni-axial tension at infinite
distance.

2. Plate subjected to biaxial tension at infinite
distance.

The stress concentration around elliptical hole varies as
ratio of lengths of major axis (2a) to minor axis (2a) varies.
The circle (a/b=1) and crack (a/b=c0) are the special case of
ellipse. As (a—b)/(a+ b)approaches unity, the stress
concentration at the end of major axis of the ellipse tends to
be infinite for all materials under consideration (Refer
Fig.(3)). For isotropic material the stress concentration is
found higher when uni-axial load is applied compared to
equi-biaxial loading.

Table 1 Constants of anisotropy

Fiber Graphite/epoxy Glass/epoxy

angle S| Sy S| Sz
0 | -0.0000 0+ 0.0000 + -0.00 +
+.8936i | 0.8566i 2.3960i 0.7139i
90 -0.000 + | 0.000+ | -0.000 + 0.000 +
1.16741 | 0.2043i 1.4007i 0.4174i
0/90 | -0.000+ | 0.000+ | -0.000 + 0.000 +
3.6403i | 0.2747i 2.0142i 0.4965i
45/- | -0.8597 | 0.8597 | -0.6045+ | 0.6045+
45 +0.511i | +0.511i | 0.7966i 0.7966i

The Fig.(4) shows distribution of normalized tangential
stress (0¢/c) around circular hole in infinite plate subjected
to uniaxial (A=0) loading at infinity. For all material under
consideration (Graphite/epoxy (0/90), Graphite/epoxy (45/-
45) and Isotropic Steel) compressive zone is evident at
around 90° and 270°. The maximum value of cg/c for
Graphite/epoxy (45/-45) is not found at 0° and 180° but at
35% 145° 215° and 325°. Also the maximum value for
Graphite/epoxy (45/-45) is found smaller in comparison to
other material in consideration.

The stress distribution around circular hole in
composite/isotropic plate subjected to equi-biaxial loading
can be seen in Fig. (5). As expected, isotropic material
shows equal intensity of stress concentration around hole
under hydrostatic state of stress (A=1). The anisotropy
brings in change in magnitude of stress concentration and
also location of it.

The normalized tangential stress (cg/c) around elliptical
hole (semi major axis (a)/semi minor axis (b)=2.0) in
infinite plate subjected to uni-axial (A=0) and equi-biaxial
(A=1) loading at infinity is shown in Fig. (6) and Fig. (7),
respectively. In all cases under consideration, uni-axial
loading produces higher stress concentration compared to
equi-bixial loading.

16 : : . —
Isotropic material (A=0) ]

m— [sotropic material (A=1)
= = = Graphite/epoxy(0/90)(A=1) ]
Graphite/epoxy(45/—45)(2=1)
121 = = = Graphite/epoxy(45/—45)(A=0) |¢
— — — Graphite/epoxy(0/90)(A=0)

e

l

Cablath

Fig. 3: Change in maximum stress concentration factor for
elliptical hole as ratio (¢ —5)/(a +b) varies from O(crack) to

1.0(circle).

—— (raphite/Epoxy (0/90)
m— Graplute/Epoxy (45/-45)
= = = Isotropic Material

Oy G=2.9573 - -

a o g=3.0 \

o, G-4.9141

Fig. 4: The normalized tangential stress around circular hole
in infinite plate subjected to uniaxial loading at infinity
(2=0)

v Tsotropic Material
= = = Graphite/Epoxy(0/90)
A mmmm Graphite/Epoxy(45/—45)

0,/0=39141 — F~
u s ‘
/6 =3.9]4
Oy/0=3.9141 '
£ ] .
1 1
Wz R ‘,1_‘“

o=
6,0 2.0
o
’—" ‘,-"'li..
P - ~
1
L 3 s
~ »
hhb., ""

Fig. 5: The normalized tangential stress around circular hole
in infinite plate subjected to equi-biaxial loading at infinity
(A=1)
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6 (degree)
Fig. 6: The normalized tangential stress (cg/c) around
elliptical hole (a/b=2.0) in infinite plate subjected to uni-
axial loading at infinity (A=0)

8 T T
I: 7.8283 = = = Graphite/Epoxy(0/90) L
7l = (iraphite/Epoxy(45/—45) :
: Isotropic Material 1
1
6 ': g
]
1
s[v 4000 .
/
o '
Ea: 40 ]
3 L -
2
1 L
O | 1 l
0 50 100 150
0

Fig. 7: The normalized tangential stress (cg/c) around
elliptical hole (a/b=2.0) in infinite plate subjected to equi-
biaxial loading at infinity (A=1)

The mapping function having 7 terms is used for
triangular hole. As number of terms increases the hole shape
converges to equilateral triangle and corner radius decreases
(Refer Fig. (8)). With the 7-term mapping function the
corner radius is found 0.0031 with side length 2.3676.

Stress is a point function and varies as we go around the
hole boundary. Fig. (9) shows the stress distribution around
triangular hole for different materials (corner radius,
r=0.0476). The hole geometry and material parameters are
taken same as Ukadgaonker and Rao [5] and Daoust and
Hoa [8]. Fig. (9) can be compared with Fig. (3) (pp. 178) of
Ukadgaonker and Rao [5] and Fig. (6) (pp. 127) of Daoust
and Hoa [8].

. .
— ) terms

== =7 terms

09r

08F

0.7r

0.6

! 1
-0.4 -0.2

1
—0.6

Fig. 8: Effect of number of terms on triangular hole shape

= = =Jsotropic material
20| ™= CE 9000 Glass/Epoxy _
— T300/5208 Graphite/Epoxy

v I I 1 1 I M=====1

|
0 20 40 60 80 100 120 140 160 180

Fig. 9: Normalized tangential stress around the triangular
hole (corner radius=0.0457, load angle, [3=00, fiber
orientation angle, ® =0°).

The Graphite/epoxy and Glass/epoxy lamina are
considered to understand the effect of fiber orientation angle
on normalized tangential stress. The maximum (cg/c) on the
boundary of hole corresponding to fiber orientation angle
ranging from 0° to 90° are shown in Fig. (10), (11) and (12).
For plates with circular and elliptical hole the maximum
tensile stress (o¢/c) increases as fiber orientation angle
increases, whereas maximum compressive stress (cgy/c)
decreases (Refer Fig. (10) and (11)). For the plate containing
triangular hole the effect of fiber orientation angle (®) on
normalized tangential stress (c¢/c) for Graphite/epoxy and
Glass/epoxy material is studied for load angle p=0" and
p=90°. The Graphite/epoxy plate subjected to uni-axial
loading (A=0, p=0°) experience highest stress concentration
when fiber orientation angle is ®=90". (Refer Fig. (12))

(Advance online publication: 27 February 2012)
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0 10 20 30 40 30 60 70 80 90 Fibre orientation angle, ¢

Fibre orientation angle, . . . .
tbre ovientation angle. ¢ Fig. 12: Effect of fiber orientation angle (®) on normalized

tangential stress (c¢/c) for Graphite/epoxy and Glass/epoxy
plate with triangular hole with corner radius=0.0031

Fig. 10: Effect of fiber orientation angle (®) on normalized
tangential stress (cg/c) for Graphite/epoxy and Glass/epoxy
plate with circular hole

5

12| e— MaX(GBf’G)(Cn'aphite/ epoxy) n

—o— Min(GB/G)(Cn'aphite/epoxy) 45
10 1
- -Max(GB/G)(Glassfepoxy)
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Isotropic material
—{— Graphite/epoxy(0/90)
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et ::'\ | | | A i i
_ — T
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M;Sﬂg Load angle, B
4 mumﬁmmﬂmﬁ | | | | | | | Fig. 13': Effect of load angle (B) o¥1 maximum no%’mahzetd
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Fibre orientation angle, ¢ plate with circular hole

Fig. 11: Effect of fiber orientation angle (®) on normalized

tangential stress (cy/s) for Graphite/epoxy and Glass/epoxy Table 2. The stress concentration factors for various load

plate with elliptical hole having a/b=2.0 angles.
Graphite/ | Graphite/ Isotropic
€poxy epoxy (45/-45) | Material
The load angle (B) is varied from 0° to 90° and (0/90)
corresponding maximum normalized tangential stress is Circular 4915 at | 4.9150 at | 3.0(For all
found. The effect of load angle (B) on maximum normalized hole p=0°,90° | p=45° load angle)
tangential stress (o¢/c) for Graphite/epoxy and isotropic 2.9578 at | 2.9578 at p=0°,
plate with circular, elliptical and triangular hole is presented p=45° 90°
in Flg (13), (14) and (15), respectively. The maximum and Elliptical 8.8301 at | 5.8502 at | 5.0 at B:900
minimum values of maximum normalized tangential stress hole 32900 32630
corresponding to some load angle are tabulated in Table (2). (a/b=2) 2762 1at 1.7798 at p= 0" | 2.0 at p=0°
A comparison of von-Mises stresses for triangular hole =33
having corner radius r=0.0031 unit for isotropic steel can be Triangular | 67.0607 at | 39.6906 at | 347472 at
seen in Fig. (16). . The results from. preseI}t method hole $=90" =29" =30, 90°
(Oyon/0=34.75) are in close confirmation with results (=0.0031) | 28.6624 227871 ai | 258104 at
obtained from finite element software (ANSYS) atp=41° | p=90" B=0°, 60°
(Gyon/06=34.09). ’
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Fig. 14: Effect of load angle (f) on maximum normalized
tangential stress (og/c) for Graphite/epoxy and isotropic
plate with elliptical hole having a/b=2.0
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Fig. 15: Effect of load angle (f) on maximum normalized
tangential stress (o¢/c) for Graphite/epoxy and isotropic
plate with triangular having corner radius r=0.0031

> —

Fig. 16: von-Mises stress distribution around triangular hole
(r=0.0031)

Table 2. The stress concentration factors for various load
angles.

Graphite/ | Graphite/ Isotropic
epoxy epoxy (45/-45) | Material
(0/90)
Circular 49150 at | 4.9150 at | 3.0(For all
hole p=0°,90° | p=45° load angle)
2.9578 at | 2.9578 at p=0°,
p=45° 90°
Elliptical | 8.8301 at | 5.8502 at | 5.0 at p=90°
hole p=90° p=63°
(a/b=2) 2.7621at | 1.7798 at p=0° | 2.0 at p=0°
p=33°
Triangular | 67.0607 at | 39.6906 at | 34.7472  at
hole p=90° p=29° p=30°, 90°
(corner 28.6624 22.7871 at | 25.8104 at
radius, at p=41° | p=90° p=0°, 60°
=0.0031)

VII. CONCLUSION

The general stress functions for determining the stress
concentration around circular, elliptical and triangular
cutouts in laminated composite plate subjected to arbitrary
biaxial loading at infinity are obtained using
Muskhelishvili’s complex variable method. The solution
presented here can be a handy tool for the designers. From
the numerical results following points can be concluded:

1. The principle of superposition can be avoided by
introducing biaxial loading factor.

2. As the ratio of minor to major axis in elliptical hole
decreases from 1.0 to 0, the stress concentration
approaches infinity. The stress concentration factor
for isotropic material under biaxial loading is
always smaller than that obtained when uniaxial
loading is applied.

3. The stress field around hole is greatly affected by
fiber orientation and stacking sequence of lamina.
The magnitude and location of maximum stress
around the hole periphery is highly dependent on
fiber orientation and stacking sequence, for the
given material and loading condition.

4. The stress concentration factor is greatly affected
by material parameters and loading angle.

5. The bluntness of the corner radius has significant
effect on stress concentration.
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