
 

Abstract—A new approach to musical improvisation based

on controlled relaxation of imitation parameters by a robotic

acoustic musical device, is presented in this paper. The

presented RObotic Musical Instrument “ROMI”, is aimed at

jointly playing two instruments that belong to two different

classes of acoustic instruments and improvises while assisting

others in an orchestral performance. ROMI’s intelligent

control architecture also has the ability to provide player

identification and performance training. In this paper we

introduce the robotic device ROMI together with its control

architecture, the Musical State Representation “MSR” and

focus on parameter estimation for imitation of duo players by

ROMI. The MSR we have developed for controlling ROMI is a

feature extractor for learning to imitate human players in a

duet. The control architecture has an automatic parameter

estimation process that is usually employed for optimization of

the imitation stage. Improvisation can be achieved by

programming this process to function at non-optimal values,

thereby sounding notes that are definitely different than the

music piece being imitated. If this programming is not done

without constraints then the resultant sound will deviate too

much form the original music piece being imitated and can not

be classified as an improvisation. The constraints of this

programming are also introduced in this paper.

Index Terms—Control, Imitation, Improvisation, Musical

Representation, State Representation

I. INTRODUCTION

HE objective in our work is to develop a robotic

acoustic musical device that will be jointly playing at

least two acoustic instruments while assisting others in an

orchestral performance and that will also learn to imitate

other players using the same instruments. This intelligence in

imitation also provides player identification and

performance training. In this study we introduce the robotic

device together with its control architecture and focus on our

musical state representation and automatic parameter

estimation. We also provide the initial steps of ROMI’s

improvisation realized by relaxation of imitation parameters.

Building an all new acoustic musical instrument which
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plays itself by learning from human players and being

capable of improvisation is the main focus of our research.

In our work, instead of observing teachers who are experts in

one acoustic musical instrument playing, we propose to

observe groups of teachers playing instruments from two

different musical groups namely strings and percussion.

Initial results of our work on improvisation based on

imitation of human players by a robotic acoustic musical

device has been presented in [1]. The MSR that is used in

controlling the imitation process has been presented in [2].

This paper gives the final results and sensitivity analysis of

our work on improvisation by relaxation of imitation

parameters.

Existing work on improvisation includes grammars,

genetic algorithms and neural networks. Grammars have

been developed for automated jazz improvisation in which

non terminals can have a counter associated with them to

indicate when to stop expanding. The key idea in this system

is manifested in the terminals. The terminals contain

duration and one of several categories of notes that are

relevant to jazz playing. Each production rule has a

probability, allowing different terminal strings to be

produced each time [3], [4].

Genetic algorithms, inspired by the principles of natural

selection, have been used as heuristics in optimization of

imitation parameters for possible improvisations [5]. Given a

large space of possibilities, in the form of existing musical

parts, genetic algorithms use evolutionary operations such as

mutation, selection, and inheritance to develop new

generations of solutions iteratively, that are improvisations

meeting some convergence criteria [6]. Improvisation which

is a difficult topic in robotic imitation has been investigated

in the well defined musical improvisation domain of jazz

[7]-[9]. Many of the studies on imitation and improvisation

of musical instrument playing has been facilitated through

the use of computer generated music [10] and various new

electric musical instruments, including a wearable one a

PDA based one and a graphical one have been proposed

[11]-[13]. Research for imitation of playing musical

instruments and reproduction of acoustic music has also

been investigated as a pattern recognition problem [14]. The

data used from imitation of an acoustic musical instrument

playing technique has been applied  to musical instrument

teaching practice as a new area of application [15]. Artificial

Neural Networks are systems inspired by neuron

connections in the brain. CONCERT [16] is an Artificial

Neural Network trained to generate melodies in the style of
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Bach. CONCERT looks to learn information about note-to-

note transitions as well as higher-level structure of songs.

More complex models, such as Experiments in Musical

Intelligence (EMI), have produced accurate imitations of

composers. Programs like EMI work by taking as input a

corpus of works from a composer, analyzing the music, and

obtaining from it a set of rules. The key component is

recombination. A corpus of 370 Bach chorales, pieces

usually consisting of four voices, has been used as a basis

for new Bach influenced chorales. The training data is

divided into beat-length or measure-length sections and then

recombined in a Markovian process by looking for extracted

parts that, if placed sequentially, follow the rules of Bach’s

voice leading [17], [18].

Some research works have focused on the presence of a

single model which is always detectable in the scene and

which is always performing the task that the observer is

programmed to learn, [19], [20]. A fixed-function mapping

based imitation supporting system has also been proposed

[21].

The idea of a rule based algorithm is to model the

structure of an artist’s style with a set of rules based on

music theory, the programmer’s own preferences, or a

corpus of data. These rules apply to particular conditions

and can sometimes be represented by a set of conditional

probabilities with a Markov Chain. Rules such as those in

the transition matrix would produce melodies that tend to

sound musical but lack direction [22].

Gesture based musical accompaniment systems have been

developed [23]. Some have simplified robotic imitation by

using only simple perceptions which are matched to relevant

aspects of the task [24]. Some have simplified the problem

of action selection by having limited observable behaviors

and limited responses [25], by assuming that it is always an

appropriate time and place to imitate [26], and by fixing the

mapping between observed behaviors and response actions

[27]. A survey of AI methods in composing music is given

in [28] and melody extraction as the basis of improvisation

by AI methods has been investigated in [29].

Our approach to improvisation is based on an imitation

process. The control architecture of ROMI has been

designed and the internal state representation MSR has been

formulated from the start with improvisation in mind. The

result is a system which produces additional notes, including

silences, and deleting notes form the original music piece

being imitated. Since the underlying process that is doing

these changes is a parameter estimator for the imitation, the

resultant samples are coherent with the existing melody,

rhythm, and note range of the original musical piece. The

system patches the improvisation parts into the imitation

parts which further enhances the musical quality of the

improvisation for the listener. We also introduce constraints

on how this relaxation of imitation parameters must be

governed in order to keep the deviations under control.

In our work, we concentrate upon imitating by ROMI to

reproduce acoustic melodies from human teachers playing

two types of instruments. In the second section, ROMI will

be introduced together with its control architecture. In the

third section, we will summarize our musical state

representation that is used for controlling ROMI. The

imitation process will be demonstrated by an example in the

same section as well. Our parameter estimation process will

be presented and discussed in the fourth section. Section five

demonstrates the results of our proposed improvisation

approach based on relaxation of imitation parameters.

Section six concludes the paper with sensitivity analysis.

II. DESIGN OF ROMI

Two acoustic musical instruments from two different

domains have been selected, namely Clavichord and Tubular

bells in building ROMI where its main components of the

tubular bells and playing subsystem are shown in Figure 1.

ROMI utilizes a 2 octave string section with “note A”

frequencies of 110 and 220 Hz and a tubular bells section

having a 1 octave percussion with “note A” frequency of 55

Hz. The sound of the tubular bells section is chromatic only

in room temperatures since the sound production properties

of the copper tubes being used are sensitive to temperature

changes. Sound is generated by solenoids hitting the copper

tubes and the harp strings as shown in Figure 1. The string

sections’ loudness is low compared to the tubes, so we

utilize an amplifier for the string sections sound.

Sample sound recordings have been collected from two

musicians playing a piano. These recordings are then utilized

for the development of the imitation algorithms after they

are converted to MIDI format by a commercial software. We

developed a software converter which converts these MIDI

representations, which are incomprehensible to the human

eye, into recognizable note sequences by ROMI enabling it

to gain insight to the musical notes being played.

A relay control card has been designed and used as shown

in Figure 2. This card is connected to a PC via the USB port

and can be programmed to control the 220VAC 7A relays.

These relays control the current of the solenoids in an

ON/OFF configuration. The block diagram of this card is

given in Figure 3. The resultant control can simulate note

ON/OFF commands of a sequencer. Velocity control for

ROMI is implemented by pulse width adjustment. Velocity

control is incorporated in the software control architecture of

ROMI enabling future D/A implementations.

Fig. 1   Tubular Bells, and Solenoids of ROMI
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Figure 4, shows how velocity control is implemented by

pulse width adjustment. If the time for a solenoid to hit its

associated tubular bell at maximum force exertion is denoted

by thmax, then any pulse width t1 supplied to the solenoid

which is smaller than thmax, will result in a sound in lower

loudness. If a pulse supplied to the solenoid has a wider

width (t+1)1 than t1 it will have a higher loudness. The

maximum loudness that can be achieved is thmax which means

that the solenoid fully impacts its associated tubular bell

while it is at rest. The width of the pulse can be used with

limited precision to implement velocity control of a note.

Any pulse width larger than thmax has the potential of causing

an unwanted secondary sound on the tubular bell, therefore

th100 must be smaller than t1 + t2 which is the minimum time

duration between two consecutive notes played on the same

tubular bell.

The string section is currently using simple hammers to hit

the strings. Small microphones are employed to amplify the

sound. Trials showed that bandbass filters with very sharp

and narrow frequency responses are necessary to avoid

crosstalk between these microphones.

The tubular bells section has an acceptable acoustic sound

level, therefore no amplification is used for this section. The

copper tubes used are sensitive to temperature changes, so

the tuning of this section is guaranteed only at room

temperatures. Our test showed that the tubular bells section

is chromatic for a temperature range of 22-26C. There is no

way to tune the cooper tubes for differences in ambient

temperature since their frequency response is a function of

their geometry.

There is a noise due to the

operation of the relays and

solenoids which is inaudible

when the control card with the

relays are placed in a sound

proof box.

The operation of tubular

bells present a swinging

problem as shown in the figure

to the left. Once a solenoid hits

a tubular bell, a momentum is

induced to the tubular bell

which is proportional with the

bells weight. This swinging

motion is like a pendulum if

the solenoid is very well

aligned with the center of the

tubular bell. If not, than the

motion is not one dimensional which further complicates the

problem. Our setup for the tubular bells allows us to

individually adjust the location of the tubular bells with

respect to the solenoids. We align the tubular bells using this

setup, such that the resultant motion can be modeled as a

single dimensional pendulum with negligible deviations in a

second dimension. After a tubular bell is hit by the solenoid

the swinging motion fades away in a finite time. If a second

note on the same tubular bell is to be played before the

pendulum motion has become negligible, than the solenoid

to hit the tubular bell at a location other than the standard

location of the tubular bell when it is in rest. The problem is

that, since the solenoid will hit a swinging tubular bell

slightly before or after the intended time, the velocity control

implemented by adjusting the pulse width can become

unpredictable. Our solution to  reduce the swinging problem

to a negligible level, is to hit each tubular as close to its

hinge as possible.

The control architecture of ROMI is given in Figure 5.

Here two sets of musical signals are separately processed,

one for the clavichord and the other for tubular bells. The

processing of these signals is never mixed in any of the

application blocks. In learning mode, the human teachers

play the respective musical instrument in an acoustically

noise free environment. These sound samples are recorded

by a microphone and further isolated from possible

background noise by the application of a 0-50Hz low pass

filter for the tubular bells and a 200-800Hz band pass filter

for the clavichord and stored as a sound signal in WAV

format. Then a commercial software is used to extract the

musical notes in the sound signal, the result is an industrial

standard file called MIDI where music is represented as note

ON and OFF note commands.
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Fig. 2   Solenoid Control Card
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Fig. 4   Pulse Width Adjustment for Velocity Control
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This process is shown in Figure 5, as “WAV to MIDI

Conversion”. The MIDI file is then processed by our

“Feature Extraction” stage and all recorded samples are

stored in a “Sample Collection”. The feature extraction

process converts the MIDI files into our “Musical State

Representation” (MSR) that is introduced in the next

section. From this point on, all musical data is represented as

three number streams N, M and P. Original musical

recordings representing models to be used for player

identification and parameter estimation, are also converted

into MSR and is stored in the “Original Scores Collection”.

All data at these stages: the sample being processed, the

Samples Collection being learned by ROMI in previous

sessions and the Original Scores Collection are converted

into our MSR format.

The sample being processed is compared with the

corresponding original score at the “Comparator” and a

“Delta” vector is calculated as the distance of the sample

from the original score. All delta vectors are stored in the

“Delta Collection”, therefore the system not only stores the

MSR for each sample but also stores the delta vector for

each sample as well. This information is utilized by the

“Parameter Estimation” process to estimate the six imitation

parameters w, y, x, p, r, q.

Sound is reproduced by ROMI and the reproduced sound

is fedback to the system via microphones and control is

achieved by minimizing the difference between the musical

information stored in the MSR with the music generated.

III. MUSICAL STATE REPRESENTATION

In the “Musical State Representation” (MSR) that we

have developed as a feature extractor for controlling ROMI,

time (t) is slotted into 1/64
th

 note duration. The maximum

musical part length is set to 1 minute in our application for

simplicity. This gives 1920 slots of time for each musical

part (these numbers are based on the fact that the control

algorithms are set for 120bpm).

At the moment our MSR can work with a maximum of

256 different musical parts. Each musical part has a “Sample

Collection” of maximum 128 samples performed by human

teachers. MSR for each distinct sample “j” for a given

musical part “g” (MPg) are stored at the “Feature

Extraction” processes’ “Sample Collection” as shown in

Figure 5. Our reason to chose a collection mode instead of a

learning mode, where each new sample updates a single

consolidated data structure, is to keep all available variations

alive for use in improvisation.

Each monophonic voice is represented by two number

streams “N” and “M”, where the number values are whole

numbers between -127 and 128. “0” value for N and M and

“-1”, ”1”, “-127” values for M streams have special

meanings. Stream N records the relative pitch difference

between consecutive notes. Stream M records the relative

loudness difference between consecutive notes. The stream

itself is a record of the duration of all notes. When there is a

change in the current note, at least one of the two number

streams register this event in the array structure by recording

a non zero number.

The number streams N and M consists of “0” values as

long as there is no change in the current note. Each number

in these streams are equivalent to a 1/64
th

 note duration.

Note that for most people a 1/64
th

 note is incomprehensibly

short.

Number stream “P” is an event indicator similar to a token

state change in a Petri Net, where P values can assume any

rational number. The event indicator P number stream is

important in our improvisation algorithms. The addition of

the event indicator P to the MSR has eased the detection of

tempo in musical parts.

Silence is considered as a note with starting loudness

value of -127. When silence ends the M stream resumes

from the last note loudness value attained before the silence.
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If a note has the same note value as the previous note then

the N stream will record a “0” but the M stream will record

the loudness change value of “1” if loudness remains the

same.

Four examples will demonstrate the process of generating

the number streams N, M, and P next:

Starting note value and velocity (loudness) is recorded for

each musical part. ROMI’s cognition system is mostly

focused upon duration, loudness and pitch difference taken

in this order of importance.

The following figures present a visualization of our MSR.

Here the opening part of Lugwig von Beethoven`s Ecossais

has been used as the sample. Figure 6, shows how the

original recording is represented based on our MSR

notation. Note that, the data is in fact a one dimensional

array of whole numbers. To aid in visualization, this array

has been continued from one line below for each 64

consecutive array elements. The numbers in the first row and

column represent this arrangement. The first note is a special

character which stores the information of its value and

velocity. After the first note, all information is stored as the

difference between two consecutive notes. As long as there

are no note changes streams N and M consists of “0” values

and are shown by mid level gray tone in Figure 6 & 7, as

shown by the legend to the right of the figures.

Lighter tones of gray indicate a positive change in N and

M streams; and darker tones of gray indicate a negative

change. Therefore, every move from the mid level gray tone

indicates a note change. Note that the changes in M streams

has a larger scale. Pure black array elements represent a

“silence” in M streams.

Figure 7, shows the MSR for one of the performances of

the same musical part that ROMI “heard” by identifying one

of our human teachers playing it on a piano. It is possible to

“see” the difference with the original score where the

“heard” recording from human teacher has small deviations

from the original score.

Figure 8, shows the difference (Delta Vector) between the

original score and the heard sample played on a piano by

one human teacher. In the representation of the Delta Vector

the value zero is shown with pure white color since the

absolute value of the difference is of importance. In this

figure all non zero array elements represent a note being

played by the human teacher either with a wrong value or at

the wrong time with respect to the original score.

The number of non zero (non white) elements and their

intensity is a measure of how good the performance of the

human teacher was “heard”. This information can be used

for parameter estimation and player evaluation as will be

presented in the next section.

Using the MSR made of N, M and P streams, ROMI

imitates a musical piece based on the following algorithm.

This algorithm uses six imitation parameters named as “w, y,

x, p, r, q” which affect the reproduction quality of the

imitated musical part.

1. Play all notes where Nij(t) has identical value with at

least “w” percent of all j iterations, within a time window of

p slots, with average value of all available non zero Mij(t)

values.

2. Play all notes, not already played by step 1, where

Mij(t) has a loudness value in at least “y” percent of all j

iterations, within a time window of r slots, with average

value of all available Nij(t) values.

3. Play all notes, not already played by step 1 or 2, where

Pj(t) is not “0” for “x” percent of all available j iterations,

within a time window of q slots, with average value of all

available Nij(t) values and with average value of all

available Mij(t) values.

4. If Pj(t) lengths are different, select longest available

length as music piece length with gradually decreased

loudness, starting the decrease with the shortest available

length.

The imitation parameters and their effect to imitation

performance are explained next:

w: This parameter is the main note generator. It uses the

note change information, which is stored in the N streams.

When a sufficient number, “w” percent of all samples, have

the same note change value within a time window of “p”

slots, the imitation process executes a note change (plays a

note) on ROMI. The effects of this parameter on imitation

performance is discussed in the next section.
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Fig. 8   Delta in N & M Number Streams Between the Original Score and the Played Sample in MSR

Fig. 7   N & M Number Streams for Played Sample in MSR

Fig. 6   N & M Number Streams for Original Score in MSR
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y: This parameter is the secondary note generator. It uses

loudness change information, which is stored in the M

streams in the same mechanism as explained for “w”. A new

time window parameter “r” had been defined other than “p”

in order to gain more control on imitation performance.

x: This parameter is used for generating notes that are in

the original score but were not produced by the note

generators explained above. This parameter is used to track

the changes in N and M streams and generate a note where

there has been sufficient changes in N and M streams to hint

the existence of a note. A new time window parameter “q”

had been defined other than “p” and “r” in order to gain

more control on imitation performance.

p: Due to slight tempo variations or less than perfect

teacher performances, some notes are sounded about 1/64
th

of a note before or after they are in the original score. This

parameter controls the width of a time window to group such

note values together. The control unit places the note at the

time slot where majority of the N values are situated. When

there is a draw, the first such slot is chosen.

r: Same as “p” but used for loudness variations. Is

effective on M streams.

q: Same as “p” but used for event changes.

IV. PARAMETER ESTIMATION

Our proposed parameter estimation process incorporates

an “Original Scores Collection” where each distinct musical

part is in the form of our MSR. Therefore, each musical part

has N, M and P number streams in this collection. This

original recording is considered as the “nominal” MSR for a

given musical part and the distance “Delta” for each

recorded sample by human teachers can be evaluated.

If identity of each human teacher is known a priori for

each sample, it is possible to track the performances of each

human musician; if not, this process becomes that of player

identification.

Original score information for each musical part enables

our proposed system to measure the “quality” of each

imitated sample j, for a musical part that exists in the

Original Scores Collection, the “nominal” sample, is

assumed to have the highest “quality” if imitation mode is

used but not during improvisation mode. The difference

between the MSR of the nominal sample and the MSR of

any given sample j yields difference “Delta Vector” for each

recorded sample j. All delta vectors for known musical parts

are stored in a separate “Delta Collection”.

The imitation process uses the six imitation parameters.

Three of these parameters, w, y, x, define an averaging

factor to be used in note reproduction by the imitation

process of ROMI. The other three, p, r, q, define a time

window in which this averaging function will be used.

Changing these parameters effect the output quality.

The idea used to calculate Delta, can be used in a similar

approach to estimate these user defined parameters

controlling the imitation process. For each recorded sample

set, collected from the same musician for a given part,

modifying the w, y, x, p, r, q parameters to find a minimum

for the associated Delta is possible. This is the output of the

3
rd

 line in the imitation algorithm given in the previous

section. Delta is not calculated for each separate sample but

it is calculated for all the available samples by the same

human teacher playing the same musical part.

At the end of studies, the parameter estimation step

showed us that there is no unique value set for minimizing

the delta for these parameters but a range of parameter

values has to be generated for very close Delta values. Our

studies also showed that choices for p, q, r parameters are

limited, since their value is in fact connected to the time

granularity, or resolution, of the MSR. The w, y, x

parameters can attain larger ranges.

Due to the structure of the imitation process these

parameters are not independent. The choice for one effects

the plausible values for the others. For the parameter

estimation process, samples for piano part Ecossais from

Ludwig von Beethoven has been recorded by ROMI from

different human teachers. This has been separately done for

the tubular bells and clavicord sections.

The effects of different values for the imitation parameters

are shown in the following figures. Each graph in these

figures have been generated using the imitated piano parts

musical reproduction, being compared with the original

score. Some imitation parameters are set to fixed values to

show the effects of changing others. Deltak values have been

used for one of the human teachers, total number of samples

processed is six.

Figures 9 and 10, show how Deltak values are effected by

changes in the main note generator parameters “y” and “w”.

Parameters “y” and “w” effect the imitation performance in a

similar way. Values below 20 for either parameter generate

many notes that are not in the original score, resulting in

high Deltak values. If either one of these parameters is kept

around 70-90 the imitation performance is of acceptable

quality. Note that, due to the nature of the calculation for

Deltak values, it is not possible to zero out the Deltak values.

The range of Deltak values are effected by the number of

samples processed with larger number of samples resulting

in higher Deltak values. However this does not change the

shape of the given graphs with the local minimum still being

achieved around 70-90 for these parameters. Values above

95 for either parameter generate less notes than the original

score resulting in higher Deltak values.

Figure 11 shows the effects of parameter “x” on imitation

performance. This parameter has less impact on imitation

performance compared to “w” and “y” parameters. This is

understandable since the imitation algorithm generates notes

based on N, M and P streams in this order. This results in

most of the notes already being produced by the N and M

streams with P stream having fewer opportunity to generate

a note and effect the imitation performance. For values

below 25 this parameter generates notes that are not in the

original score. For values above 95 it generates less notes

than the original score. Figure 12 shows the effects of

parameter “p”. Graphs for parameter “r” and “q” have the

same shape and effect the imitation performance in a similar

way as explained here for parameter “p”. The parameter “p”

used by the first note generator using N streams and has the

greatest impact on note production.
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Fig. 9   Deltak for Varying y Values with 10 Different w Values

Fig. 11   Deltak for Varying y Values with 10 Different x Values

Fig. 10   Deltak for Varying w Values with 10 Different y Values
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A value of 1 will produce less notes than the original

score. Values of 2 and 3 are optimal. Values above 3

produce more notes than the original score by combining

two consecutive notes into one, increasing Deltak. The

second jump in Deltak at “p” value of 8 is due to the fact that

more notes that is not in the original score are produced for

every note shorter or equal to a quarter note within the time

window defined by “p”. Even bigger jumps in Deltak should

be expected for values of 12 and 16 for this parameter.

V. IMPROVISATION BY RELAXATION OF IMITATION

PARAMETERS

In our studies we have seen that it is possible to use

Improvisation by Relaxation of Imitation Parameters (IRIP)

as a low level improvisation tool; whose parameters are

defined within time intervals controlled by a higher level

improvisation algorithm. The final results are presented in

this section. The values of imitation parameters that

minimize Deltak produce an output very similar to the

original score, or the median of the samples. Improvisation

can be achieve with limited success, by relaxation of the

imitation parameters that result in non-minimum Deltak.

Most of the imitation parameters give higher Deltak if used

below or above certain values.

Our studies showed that the values that produce less notes

than the original score are less suitable for improvisation.

The following example illustrates this. Figure 13 shows the

N & M streams for a test sample generated with relaxed

imitation parameters resulting in less notes than the original

score. In this example, this is achieved by setting y and w

parameters to 100 and the other parameters are set at their

near optimal imitation values of  x=55, p=3, r=3, q=4. As

seen from Figure 13, there are less notes than the original

score given in Figure 6. The Deltak is however higher than

that of the sample given in Figure 7. This can be seen if the

Delta Vector for Improvisation Sample 1, given in Figure

14, is compared with the lower value Deltak sample given in

Figure 8.

Please note that Improvisation Sample 1, is one of the

random samples available. There are many distinct output

samples resulting if imitation parameters are relaxed. Some

produce even higher Deltak values. The sample given in this

example is one with an average Deltak for the imitation

parameter set given. On its own it can not be classified as an

improvisation but as a bad imitation sample.

Experimenting with other parameters where the resultant

output has fewer notes than the original score give similar

results. For example if y and w are kept at their near optimal

imitation values of 85 and p and r are set to 2 with x=55,

q=4; the result is an output with high Deltak value due to the

fact that the output sample has considerably less notes than

the original score.

In order to achieve better improvisation by relaxation of

the imitation parameters; using values that result in non-

minimum Deltak with values that produce more notes than

the original score are more suitable. The following example

illustrates this. Figure 15, shows the N & M streams for a

test sample generated with relaxed imitation parameters

resulting in more notes than the original score.

In this example, this is achieved by setting y and w

parameters to 75 and the other parameters are set at their

near optimal imitation values of  x=55, p=3, r=3, q=4. As

seen from Figure 15, there are more notes than the original

score given in Figure 6. The Deltak is similar to the sample

given in Figure 7. This can be seen if the Delta Vector for

Improvisation Sample 2, given in Figure 16, is compared

with the lower value Deltak sample given in Figure 8. Again,

Improvisation Sample 2 is one of the random samples

available.

There is limited success in improvisation for this sample.

Experimenting with other parameters where the resultant

output has more notes than the original score give similar

results. For example if y and w are kept at their near optimal

imitation values of 85, p and r are set to 5 with x=55, q=4;

the result is an output with high Deltak value due to the fact

that the output sample has more notes than the original

score.
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Fig. 12   Deltak for Varying p Values with 10 Different y Values
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Fig. 13   N & M Number Streams for Improvisation Sample 1

Fig. 15   N & M Number Streams for Improvisation Sample 2

Fig. 14   Delta in N & M Number Streams Between the Original Score and Improvisation Sample 1
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Our studies have showed that if imitation parameters are

further relaxed the system tends to drift too much out of the

original scores’ note frequency range. The resultant

improvisation is more exiting due to higher variations but

the overall musical part becomes fuzzy. We propose to use a

partial application for the improvisation if the imitation

parameters are further relaxed. For example, a mask as

shown in Figure 17, can be applied. In this mask the white

slots represent where the original score will be played back

by the imitation algorithm and the black slots represent

where the imitation parameters are very relaxed. For

example the “black” slots set imitation parameters at y=50,

w=50, x=50, p=2, r=2, q=3; and imitation parameters for the

“white” slots set at y=85, w=85, x=55, p=3, r=3, q=4.

There can be many other choices for defining such a

mask. For example, there can be masks with not only two

sets of imitation parameter values (one for imitation and one

for improvisation) but with more sets of varying values.

Such an approach will add even more variations into the

musical part. But then the obvious question is what controls

the selection of such masks?

The answer is; a higher level of improvisation algorithm.

There is a rule set that we have formulated based on our

studies. These rules are:

1. Short periods of IRIP does sound like a wrong note has

been played. Therefore we suggest that the minimum

duration for an IRIP part must be at least 1 seconds.

This value depends on the bpm of the musical piece.

2. Long periods of IRIP tend to drift out of the scale of the

musical piece being played due to our MSR. The most

common result of the IRIP is the addition of the same

note at a very close time interval of the original note.

Since MSR is a difference representation, this addition

of new notes in improvisation drift the note sequences

out of the scale of the musical piece. To limit this effect,

these intervals should not be larger than 2 seconds and

at certain intervals the musical piece could be returned

to one absolute note value.

3. The starting time of an IRIP should be snapped to a grid

of 1/8
th

 note durations. This helps to ensure that the

IRIP has the same tempo as the musical piece.

4. The duration of an IRIP should be multiples of 1/8
th

note durations. This helps to ensure that the IRIP has the

same tempo as the musical piece.

5. If more than one IRIP is going to played in a musical

piece. We advice to put imitation parts between them

that are at least the same length of the last IRIP being

played. This gives the listener the necessary clues at

what the modal of the musical piece is.

Figure 18, helps to visualize these ground rules. In this

mask white slots represent where the original score will be

played back by the imitation algorithm and the black slots

represent where the imitation parameters are very relaxed.

The gray slots are where we recommend the start of an IRIP

should be snapped to.

Fig. 17   Mask for Improvisation Intervals, Black Slots Represent Where Imitation Parameters are Very Relaxed

Fig. 16   Delta in N & M Number Streams Between the Original Score and Improvisation Sample 2
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VI. CONCLUSION

We experimented with our MSR to increase its

performance in fast notes. The idea was to increase the time

granularity of the system by defining a smaller time window;

for example each time slot is a 1/128
th

 note. However, if

granularity of the discrete time model is increased, in order

to pinpoint notes, our system shows a strong tendency to

produce extra notes that were not intended. To limit this

tendency p, r, q values can be increased. However this

essentially reduces the system to one with lower granularity,

not resulting in any gain in fast note performance.

Our system uses the note and loudness change information

rather than the absolute values of notes. This enables our

system to trace the melody and rhythm in a musical part

implicitly. If the imitation algorithm is changed to evaluating

the loudness changes before the note changes, then the

system becomes more sensitive to filter performance. If such

a change is made, then the bandpass and lowpass filters in

Figure 5, used for acoustic signal conditioning, must have

gain controls. If the original loudness for different samples

are not very close without any adjustment, then our system

tends to create additional notes in the opening parts of the

imitation that are not present in the original score.

Some improvisation algorithms produce high performance

results for some musical parts while they do not for others.

There seems to a implicit link between the musical parts

unseen musical properties and the improvisation algorithm

in use. The success of EMI may be in the fact that it only

works with Bach chorales. Therefore, we believe that a joint

study in musical arts and computer programming aiming to

model implicit musical attributes for improvisation can be of

value. Our proposed control architecture does not delete the

high delta samples and it also does not delete the generated

improvisations with low ratings. This adds a memory to our

system. If our sole goal was to imitate then these samples

would be unnecessary. The memory however can be used to

generate more improvisations.

Since improvisation is a subjective topic, a tool for

evaluating results is necessary. We followed a similar

approach that other studies have followed so far; gathering a

listener group and asking them to rate different

improvisations. The average of ratings given by the group of

listeners are used as the rating for a given improvisation

sample. This approach is not able to pinpoint musically

superior improvisations since the listener group is usually

not composed of professional musicians.

We used a group of 20 students from METU in our

studies. We placed some original improvisation recordings

form known composers into the listening evaluations to

control the responses of the listeners. A rating was

considered as valid only if it included high ratings for these

improvisations.

Applying the IRIP rules with a higher level of AI is the

next step in our studies. We have two areas of investigation.

One is to develop an improvisation algorithm based on n-

grams including velocity information. The second one is to

develop a patching algorithm which will analyze the current

imitation and the generated improvisation and decide where

to patch the improvisation. In this way our work will have a

new approach to improvisation. Our current idea of how this

patching could be implemented is to analyze the imitation

and improvisation as a signal and match the slopes of

imitation and improvisation signals at the entry and exit

points of the improvisation.

APPENDIX

Relevant Musical Information

After many trial and errors we arrived at the conclusion

that a musical state representation where only note and

loudness delta values are stored in a discrete time model will

suit our improvisation needs best. With the addition of the

starting note and loudness values, the absolute note and

loudness values can also be obtained from the delta values,

but our model does not make use of the absolute values. If

the goal was to playback music, then perhaps the absolute

value stream would have been a better candidate.

When dealing with improvisation, the absolute note

values are of little help. Both melody and rhythm are directly

in conjunction with the delta values of notes and loudness. In

fact a musical attribute can make this more clear: an average

listener can differentiate between two consecutive note

differences easily. However, an average listener can not tell

the difference between two performances of the same

melody if one is played one note higher or lower than the

other. This clearly shows that the human ear is more

sensitive to note changes rather than note values.

From most important to least important; note duration,

loudness, silence, relative note pitch and starting note has

been considered in the musical state representation design.

Note duration is usually denoted as 1, ½, ¼ of a whole

Fig. 18   Visualization of ground rules for successful implementation of IRIP

Engineering Letters, 20:1, EL_20_1_05

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



note, but the whole note duration is not an absolute value. It

depends on the tempo of the musical part, which may even

be altered within a singe musical part.

The tempo of a part will typically be written at the start of

a musical notation and in modern music is usually indicated

in beats per minute (BPM). This means that a particular note

value (for example, a quarter note or crotchet) is specified as

the beat and the marking indicates that a certain number of

these beats must be played per minute. The greater the

tempo, the larger the number of beats that must be played in

a minute. Mathematical tempo markings of this kind became

increasingly popular during the first half of the 19
th

 century,

after the metronome had been invented by Johann Nepomuk

Mälzel, although early metronomes were somewhat

inconsistent. Beethoven was the first composer to use the

metronome. We use 120 BPM default for ROMI with user

adjustment. So each quarter note lasts 0.5 seconds. The

importance of note duration (or tempo) is apparent in

musical nomenclature. No special names or attributes have

been given to note values but as shown by the following

classification of tempo has emotional results on human

listeners.

Largamente — very, very, very slow (10bpm)

Lento — very slow (40–60 bpm)

Andante — at a walking pace (76–108 bpm)

Moderato — moderately (108–120 bpm)

Allegro moderato — moderately quick (112–124 bpm)

Allegro — fast and bright (120–168 bpm)

Presto — very fast (168–200 bpm)

Prestissimo — extremely fast (more than 200bpm)

Another example of the lesser importance of note values

is as follows: two notes with fundamental frequencies in a

ratio of any power of two (e.g. half, twice, or four times) are

perceived as very similar. Because of that, all notes with

these kinds of relations can be grouped under the same pitch

class. In traditional music theory pitch classes are

represented by the first seven letters of the Latin alphabet

(A, B, C, D, E, F and G). The eighth note, or octave, is given

the same name as the first, but has double its frequency. The

name octave is also used to indicate the span of notes having

a frequency ratio of two.

To differentiate two notes that have the same pitch class

but fall into different octaves, the system of scientific pitch

notation combines a letter name with an Arabic numeral

designating a specific octave. For example, the now-standard

tuning pitch for most Western music, 440 Hz, is named a' or

A4 (la).

Loudness (or velocity) of a note is more apparent to a

human listener than the note values. The following

classification of loudness is used by classical western music

producers.

The two basic dynamic indications in music are:

p or piano, meaning "soft."

ƒ or forte, meaning "loud" or "strong".

mp, standing for mezzo-piano, meaning "moderately soft"

mƒ, standing for mezzo-forte, meaning "moderately loud".

Loudness is represented by “velocity” numbers in digital

music sequencers. These numbers are dB values with regard

to whispering noise. The figure below shows one such

number scale for a specific sequencer called Logic Pro.
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