
 

 

 

 

Abstract—This paper presents the optimization of the Fuzzy 

C-Means algorithm by evolutionary or bio-inspired methods, this 

in order to automatically find the optimal number of clusters and 

the weight exponent. Optimization methods used to realization of 

this paper were genetic algorithms and particle swarm 

optimization. The results obtained by both methods are presented, 

and a comparison between both methods to observe if one method 

is better than the other. 

 
Index Terms—Cluster validity, clustering number, comparison 

between methods, genetic algorithms, optimization, and particle 

swarm optimization.  

 

I. INTRODUCTION 

Clusters of data arise from the need to find interesting 

patterns or groups of data with similar characteristics within a 

given data set. Fuzzy clustering aims at partitioning a data set 

into homogeneous fuzzy clusters. The most widely used 

algorithm to realize fuzzy clustering is the Fuzzy C-Means 

(FCM) algorithm proposed by Bezdek (1981) [1]. This 

algorithm has been the base to developing other clustering 

algorithms. 

Although the fuzzy c-means algorithm is good in data 

clustering it has the inconvenient that finding the optimal 

number of clusters within a dataset is difficult, and the number 

of clusters has to be set arbitrarily, i.e. the number of clusters to 

be created by the clustering algorithm must be set manually on 

each algorithm execution, this is done again and again until 

finding the optimal number of clusters. Other factor that 

influences the performance of fuzzy c-means algorithm is the 

parameter m that is a weight exponent in the fuzzy membership, 

this parameter is normally m = 2 and works to find the optimal 

clusters number in some datasets but in other datasets not, 

which mean to each dataset the weight exponent is different. 

Because of this, it is necessary to validate each of the fuzzy 
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c-partitions once they are found, with different number of 

clusters and see which number of c-partitions is the optimal for 

a particular dataset. This evaluation process is called clustering 

validation. Currently there are many methods that have been 

proposed for the evaluation of fuzzy partitions, some of the 

methods of cluster validation which have been used in different 

works are: Partition Coefficient, Partition Entropy, Xie-Benis's 

Index, among others, mentioned in [1][2][3][4][5][6]. 

Due to that in the clustering algorithms is needed to 

predefine the number of clusters, and weight exponent m = 2, is 

not optimal for any dataset, and due to the importance that 

acquired the optimization, with evolutionary methods. In this 

research performed the optimization of fuzzy c-means 

algorithm, in order to find the optimal number of clusters and 

weight exponent to different datasets of automatic way. 

Evolutionary methods used for optimization of the fuzzy 

c-means algorithm are genetic algorithms (GA) [7][8] and 

particle swarm optimization (PSO) [9][10], these evolutionary 

methods of optimization are used to find the optimal number of 

clusters and the weight exponent for different synthetics 

datasets.  

II. FUZZY C-MEANS ALGORITHM 

The Fuzzy C-Means algorithm is a clustering unsupervised 

method widely used in different pattern recognition works; this 

algorithm makes soft partitions where a datum can belong to 

different clusters with a different membership degree to each 

cluster. This clustering method is an iterative algorithm which 

uses the necessary condition to achieve the minimization of the 

objective function Jm represented by the following equation 

[1][3][4]: 

 

𝐽𝑚  𝑈, 𝑉 =    𝑢𝑖𝑗
𝑚 ∥ 𝑥𝑗 − 𝑣𝑖 ∥2, 𝑚 > 1𝑛

𝑗 =1
𝑐
𝑖=1                       (1) 

 

Where n is the total number of patterns in a given data set and c 

is the number of clusters, which can be found from 2ton-1, X = 

{x1, x2, …, xn} ⊂R
s
 and V = {v1, v2,…, vn}⊂R

s
 respectively are 

data characteristics and the centers of the clusters, and U= 

[uij]c×n is a fuzzy partition matrix, which contains the 

membership degree of each dataset X to each cluster V. ||xj - vj||
2
 

is the Euclidean distance between each data xj of the dataset and 

the centers vj of clusters, m is the weighting exponent which  

can influence the performance of the Fuzzy C-Means 

algorithm. 

 The corresponding centers of the clusters and membership 

degree to each respective data to solve the optimization 

problem with the constraints in (1) are given by equations (2) 
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and (3) which provide an iterative procedure. The aim is to 

improve a sequence of fuzzy clusters until no further 

improvement in Jm(U, V) can be performed [1][3][4]: 

 

𝑣𝑖 =  
  𝜇 𝑖𝑗  

𝑚
𝑥𝑗

𝑛
𝑗=1

  𝜇 𝑖𝑗  
𝑚𝑛

𝑗=1

,           1 ≤ 𝑖 ≤ 𝑐.                                         (2) 

 

𝜇𝑖𝑗 =     
∥𝑥𝑗−𝑣𝑖∥

2

∥𝑥𝑗−𝑣𝑘∥2
 

2/(𝑚−1)
𝑐
𝑘=1  

−1

, 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑛.(3) 

 

The Fuzzy C-Means algorithm consists of the following steps 

[3][5]: 

 

1. Given a pre-selected number of clusters c and a chosen value 

for m, initialize the fuzzy partition matrix uij of xj belonging to 

cluster I such that: 

 

 𝜇𝑖𝑗
𝑐
𝑖=1 = 1,                                                                          (4) 

 

2. Calculate the center of the fuzzy cluster, vj for i=1, 2,..., c 

using equation (2). 

3. Use equation (3) to update the fuzzy membership uij. 

4. If the improvement in Jm(U, V) is less than a certain 

threshold(ε), then stop, otherwisegotostep2. 

 

III. CLUSTER VALIDATION 

One of the main topics in data clustering is to evaluate the 

result of clustering algorithms. The problem is called cluster 

validation. More precisely, the cluster validation problem is to 

find an objective criterion to determine how good a partition 

generated by a clustering algorithm is. Since most clustering 

algorithms require a pre-assumed number of clusters, a 

validation criterion to find an optimal number of clusters would 

be very beneficial. Exist different validation index such as 

Partition Entropy, Partition Coefficient, Xie-Beni's index 

among other mentioned in [1][2][3][6]. 

We present our validation index for the Fuzzy C-Means 

algorithm. The index consists of two terms, the first term is a 

modification of the partition entropy index (13), this 

modification consist in squaring the first term to make a 

distinguishable variation of data between fuzzy partitions, 

figure 1 shows the behavior of the modified partition entropy, 

and figure 2 shows the behavior of partition entropy index; for a 

synthetic dataset with 2 dimensions and 2 clusters to find, from 

2 to c numbers of clusters  

 

𝐼𝑀𝑃𝐸 = −
1

𝑛
  𝜇𝑖𝑗

2 log2 𝜇𝑖𝑗
𝑛
𝑗 =1

𝑐
𝑖=1                                       (13) 

 

The second term is the sum of distances between the means 

of the fuzzy partitions (14); this measures the separation 

between fuzzy partitions of the fuzzy partitions matrix. The 

lower the value of the sum of the distances, the more separated 

fuzzy partitions of the partition matrix are. Figure 2 shows the 

behavior of the separation term on a synthetic dataset with 2 

dimensions and 2 clusters to find, from 2 to c number of 

clusters. 

 

𝐷𝑀𝑘
=  ∥ 𝑀𝑖 − 𝑀𝑗 ∥2𝑘

𝑖 ,𝑗 =1
𝑖≠𝑗

, 𝑘 = 1, … , 𝑐                                   (14) 

 

Where Mk is the mean of the fuzzy partitions generated by 

the Fuzzy C-Means algorithm, which is defined by the 

following equation 

 

𝑀𝑘 =
 𝜇 𝑖𝑗

𝑘
𝑖=1

𝑛
, 𝑘 = 1, … , 𝑐, 1 ≤ 𝑗 ≤ 𝑛                                        (15) 

 

Where n is the total number of data into the dataset. The 

index proposes the addition of the results of equations (13) and 

(14). The proposed validation index is defined by the following 

equation: 

 

𝐼𝑀𝑃𝐸−𝐷𝑀𝐹𝑃 = 𝐼𝑀𝑃𝐸 + 𝐷𝑀                                                        (16) 

 

In general, we can define an optimal number of clusters c* for 

the solution min2≤c≤n-1 IMPE-DMFP to produce a better performance 

by grouping the dataset X. Fig. 1 shows the behavior of the 

proposed validation index for a synthetic dataset with 2 

dimensions and 2 clusters to finds, from 2 to c numbers of 

clusters. 

 

 
 

Fig. 1. Behavior of the modified partition entropy index 

 

Fig. 1, shows the behavior of the modified partition entropy 

index, for this case the number of clusters found by the Fuzzy 

C-Means algorithm is 199 clusters with an index = 0.002832, 

This is because the closer the number of clusters to the number 

of data set, the smaller the value of modified partition entropy 

index is. 
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Fig. 2. Behavior of separation, based in the sum of distances between means of 

the fuzzy partitions of the matrix fuzzy partition 

 

Figure 2, shows the behavior of separation and we can notice 

than the number of clusters is the correct one, which is 2 with an 

index = 0.0029057, and tell us that the sum of distances 

between means of fuzzy partitions is a validation index. This 

measure does not always finds the number of clusters because 

at times it met fuzzy partitions that are not well separated, but 

may improve the index of modified partition entropy to find the 

optimal number of clusters, keeping the maximum number of 

clusters for a data set is the one that gets the lowest validation 

index. 

 

 

 

Fig. 3. Behavior of the proposed index. 

 

In Fig. 3, we can see the behavior of the proposed index, and 

we can appreciate that the number of clusters is 2 which is 

correct with an index =0.016081, to avoid that the number of 

clusters is more closely to number of data, which is the lowest 

index number validation. 

 

IV. OPTIMIZATION OF FUZZY C-MEANS ALGORITHM 

Optimization of Fuzzy C-Means algorithm is performed in 

order to find clustering number and weight exponent optimal, 

this due that these Fuzzy C-Means parameters are predefined to 

execution of algorithm.  

Purpose of optimization Fuzzy C-Means algorithm is find 

the clustering number and the weight optimal of automatic way. 

To achieve this objective we used the optimization methods 

genetic algorithms (GA) and particle swarm optimization 

(PSO). Below show the methodology used for optimization of 

Fuzzy C-Means algorithm with optimization methods 

mentioned previously. 

 

A. Optimization of Fuzzy C-Means algorithm with GA 

Performance optimization using genetic algorithms is given by 

a sequence of steps, which are [7][8][11][12]: 

1. Generate initial population. 

2. Evaluate population 

3. Selection. 

4. Crossover. 

5. Mutation. 

6. Reinsertion of new individuals to the population. 

From step 2 to step 6, it performs an iterative process until a 

stopping criterion is met, in Fig. 4 we can see the Scheme of GA 

for optimization of the Fuzzy C-Means algorithm (FCM). 

In this figure we can observe that population evaluation is 

done by FCM algorithm, but for us to know how good some 

individuals need something that does not indicate the fitness of 

these, to measure aptitude of individuals evaluated by FCM, we 

use the proposed validation index mentioned in section III. 

Individuals evaluated by the FCM algorithm, are formed 

only by two parameters as shown in Fig. 5, which are the 

number of clusters and the exponent of weight. 

 

 
 

Fig. 4. Scheme of GA to optimization of Fuzzy C-Means algorithm 
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Fig. 5. Representation of an individual of the pobalcion. 

 

Tests performed to optimization of the FMC algorithm with 

GAs, were done with synthetic data with dimensions from 2 to 

8 and from 2 to 8 clusters for each number of dimensions, 

giving a total of 49 synthetic data sets, the results obtained for 

each tested dataset are shown in Table I. The parameters of the 

GA used to obtain these results are: 

 

 Number of Individuals: 50. 

 Number of generations: 25. 

 Selection type: Stochastic Universal. 

 Recombination Type: Discrete. 

 Type of mutation: No Uniform. 

 Selection rate: 0.90. 

 Recombination rate: 0.90. 

 Mutation rate: 0.10. 

 Search space: Lower Limit: [2, 1.1], and High Limit: 

[√ (2 & n), 2.2], where n is the number of instances 

that make up data or data set. 

B. Optimization of Fuzzy C-Means algorithm with PSO 

The operation of the particles swarm optimization algorithm 

[9][10][13]-[18],is given by a sequence of steps, which are: 

1. Generate initial swarm of particles. 

2. Evaluating the particles swam. 

3. Update particle velocity. 

4. Calculate new positions of the particles. 

From step 2to step 4, begins an iterative process until a 

stopping criterion is met, in Fig. 6 we can see the Scheme of the 

PSO for optimization of Fuzzy C-Means algorithm. 

In this figure we can observe that particles’ swarm evaluation 

is done by FCM algorithm, but for us to know how good some 

individuals need something that does not indicate the fitness of 

these, to measure aptitude of individuals evaluated by FCM, we 

use the proposed validation index mentioned in section III, the 

same way as in GA. 

Particles evaluated by the FCM algorithm, are formed only 

by two parameters as shown in Fig. 7, which are the number of 

clusters and the exponent of weight. 

Tests performed for the optimization of the FMC algorithm 

with PSO, were made with the same synthetic data sets used 

with GA, this in order to perform a fair comparison between the 

optimizations methods. The results obtained for each dataset 

tested with the PSO are shown in Table II. The parameters of 

the PSO used to obtain these results are: 

 

 Number of Particles: 50. 

 Number of Iterations: 25. 

 Cognitive acceleration constant: 2. 

 Social acceleration constant: 2. 

 Constriction Factor: 1. 

 Type of inertia: Decrease linear. 

 

 

 

Fig. 6. Scheme of PSO to optimization of Fuzzy C-Means algorithm 

 

 

Fig. 7. Representation of a particle swarm. 

 

 

Tables of results obtained with both used methods of 

optimization, contain the following information: 

 

 Mean and standard deviation of validation index. 

 Mean and standard deviation of clustering number. 

 Mean and standard deviation of weight exponent. 

 Average time of execution. 
 

The averages and standard deviations for the validation rate, the 

number of clusters, the exponent of fuzzification and the 

average execution times are obtained from 30 executions of the 

optimization methods. As we now from statistics, the averages 

and standard deviations of 30 tests are sufficient to allow using 

t student statistical tests, which may help us establish if there 

significant differences between the GA and PSO for the 

problem of optimizing the fuzzy clustering method. Tables I 

and II contain the results for each of the 49 synthetic data sets 

that were considered in the experiments. 
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Table I. Table of results obtained from FCM algorithm optimization with GA. 

Dataset 
Validation Index Clustering Number Weight Exponent Average 

Time Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation 

Data2d2c 4.64E-13 2.05E-28 2.00 0.00 1.10 0.00 00:07.2 seg. 

Data3d2c 3.53E-13 1.54E-28 2.00 0.00 1.10 0.00 00:09.7 seg. 

Data4d2c 8.79E-12 4.93E-27 2.00 0.00 1.10 0.00 00:10.5 seg. 

Data5d2c 5.16E-14 3.85E-29 2.00 0.00 1.10 0.00 00:10.9 seg. 

Data6d2c 4.54E-14 1.28E-29 2.00 0.00 1.10 0.00 00:09.7 seg. 

Data7d2c 1.42E-15 3.95E-17 2.00 0.00 1.10 0.00 00:09.3 seg. 

Data8d2c 1.47E-13 2.57E-29 2.00 0.00 1.10 0.00 00:07.2 seg. 

Data2d3c 3.21E-02 3.45E-04 3.00 0.00 1.33 0.02 00:18.0 seg. 

Data3d3c 6.46E-10 3.53E-09 3.00 0.00 1.10 0.01 00:13.6 seg. 

Data4d3c 8.61E-16 6.02E-31 3.00 0.00 1.10 0.00 00:13.6 seg. 

Data5d3c 3.08E-08 1.69E-07 3.00 0.00 1.11 0.03 00:14.3 seg. 

Data6d3c 2.81E-15 4.01E-31 3.00 0.00 1.10 0.00 00:14.4 seg. 

Data7d3c 6.46E-11 1.31E-26 3.00 0.00 1.10 0.00 00:20.2 seg. 

Data8d3c 2.38E-10 2.10E-25 3.00 0.00 1.10 0.00 00:15.3 seg. 

Data2d4c 8.81E-08 6.73E-23 4.00 0.00 1.10 0.00 00:20.8 seg. 

Data3d4c 3.00E-06 1.52E-05 4.00 0.00 1.10 0.02 00:25.9 seg. 

Data4d4c 1.40E-03 5.48E-03 2.13 0.51 1.14 0.13 00:26.1 seg. 

Data5d4c 5.24E-08 2.87E-07 3.93 0.37 1.10 0.00 00:31.1 seg. 

Data6d4c 4.24E-15 3.60E-17 4.00 0.00 1.10 0.00 00:31.8 seg. 

Data7d4c 7.37E-10 4.04E-09 4.03 0.18 1.10 0.01 00:25.4 seg. 

Data8d4c 7.09E-09 3.88E-08 3.93 0.37 1.10 0.00 00:26.0 seg. 

Data2d5c 2.03E-01 7.11E-03 2.00 0.00 1.11 0.04 00:22.7 seg. 

Data3d5c 1.94E-02 3.10E-02 4.90 0.55 1.21 0.23 00:34.2 seg. 

Data4d5c 4.71E-02 7.41E-04 5.00 0.00 1.20 0.04 00:42.5 seg. 

Data5d5c 6.98E-03 3.42E-02 4.93 0.58 1.16 0.12 00:43.5 seg. 

Data6d5c 8.91E-03 3.49E-02 4.93 0.58 1.15 0.18 00:48.4 seg. 

Data7d5c 7.75E-14 5.37E-19 5.00 0.00 1.10 0.00 00:36.9 seg. 

Data8d5c 8.17E-06 4.47E-05 5.00 0.00 1.11 0.04 00:41.1 seg. 

Data2d6c 8.82E-02 8.13E-02 5.33 1.52 1.39 0.42 00:40.5 seg. 

Data3d6c 1.09E-02 1.09E-02 5.73 1.01 1.19 0.12 00:46.3 seg. 

Data4d6c 1.43E-03 2.85E-03 2.67 1.52 1.14 0.09 00:42.4 seg. 

Data5d6c 1.76E-06 5.67E-06 6.00 0.00 1.10 0.01 01:01.3 seg. 

Data6d6c 2.45E-03 1.34E-02 5.87 0.73 1.11 0.03 00:55.2 seg. 

Data7d6c 2.66E-04 1.46E-03 5.90 0.55 1.10 0.00 00:50.2 seg. 

Data8d6c 3.23E-08 1.77E-07 5.90 0.55 1.10 0.00 00:57.9 seg. 

Data2d7c 2.14E-02 3.56E-02 6.80 1.35 1.20 0.21 00:52.6 seg. 

Data3d7c 3.62E-02 2.78E-02 6.20 1.92 1.17 0.11 00:48.1 seg. 

Data4d7c 1.00E-02 3.62E-02 6.73 1.31 1.14 0.12 01:13.6 min. 

Data5d7c 4.12E-03 2.05E-02 6.87 0.94 1.12 0.06 01:25.1 min. 

Data6d7c 2.31E-03 1.23E-02 7.03 0.18 1.16 0.15 01:10.8 min. 

Data7d7c 4.88E-07 2.63E-06 7.03 0.18 1.11 0.05 01:02.7 min. 

Data8d7c 8.16E-03 3.11E-02 6.67 1.27 1.11 0.03 01:05.0 min. 

Data2d8c 8.25E-02 1.95E-02 3.43 1.28 1.36 0.08 00:56.4 seg. 

Data3d8c 1.65E-01 2.04E-02 5.03 3.09 1.68 0.18 00:52.3 seg. 

Data4d8c 4.37E-04 8.69E-04 7.40 1.57 1.14 0.08 01:22.6 min. 

Data5d8c 2.78E-02 7.28E-02 7.60 1.54 1.21 0.23 01:42.3 min. 

Data6d8c 4.22E-04 7.78E-04 6.60 2.58 1.11 0.02 01:24.3 min. 

Data7d8c 1.03E-08 4.03E-08 8.00 0.00 1.11 0.02 01:34.6 min. 

Data8d8c 8.91E-04 2.56E-03 7.30 1.95 1.11 0.03 01:33.3 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table II. Table of results obtained from FCM algorithm optimization with PSO. 

Dataset 
Validation Index Clustering Number Weight Exponent Average 

Time Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation 

Data2d2c 4.64E-13 2.05E-28 2.00 0.00 1.10 0.00 00:04.1 seg. 

Data3d2c 3.53E-13 1.54E-28 2.00 0.00 1.10 0.00 00:05.7 seg. 

Data4d2c 8.79E-12 4.93E-27 2.00 0.00 1.10 0.00 00:06.7 seg. 

Data5d2c 5.16E-14 3.85E-29 2.00 0.00 1.10 0.00 00:05.9 seg. 

Data6d2c 4.54E-14 1.28E-29 2.00 0.00 1.10 0.00 00:11.7 seg. 

Data7d2c 1.56E-15 3.40E-17 2.00 0.00 1.10 0.00 00:05.7 seg. 

Data8d2c 1.47E-13 2.57E-29 2.00 0.00 1.10 0.00 00:05.2 seg. 

Data2d3c 3.20E-02 1.43E-06 3.00 0.00 1.32 0.00 00:16.1 seg. 

Data3d3c 7.06E-13 2.05E-28 3.00 0.00 1.10 0.00 00:12.0 seg. 

Data4d3c 8.61E-16 6.02E-31 3.00 0.00 1.10 0.00 00:10.5 seg. 

Data5d3c 3.97E-15 1.66E-17 3.00 0.00 1.10 0.00 00:12.2 seg. 

Data6d3c 2.81E-15 4.01E-31 2.97 0.18 1.10 0.18 00:14.5 seg. 

Data7d3c 6.46E-11 1.31E-26 3.00 0.00 1.10 0.00 00:17.1 seg. 

Data8d3c 2.38E-10 2.10E-25 3.00 0.00 1.10 0.00 00:15.0 seg. 

Data2d4c 8.81E-08 6.73E-23 4.00 0.00 1.10 0.00 00:20.3 seg. 

Data3d4c 2.16E-07 2.85E-19 4.00 0.00 1.10 0.00 00:23.5 seg. 

Data4d4c 3.74E-07 2.69E-22 2.00 0.00 1.10 0.00 00:13.7 seg. 

Data5d4c 1.05E-07 3.99E-07 3.87 0.51 1.10 0.51 00:27.1 seg. 

Data6d4c 4.25E-15 1.91E-17 4.00 0.00 1.10 0.00 00:31.3 seg. 

Data7d4c 6.66E-06 2.53E-05 3.87 0.51 1.10 0.51 00:21.2 seg. 

Data8d4c 1.42E-08 5.40E-08 3.90 0.55 1.10 0.55 00:33.6 seg. 

Data2d5c 2.01E-01 2.90E-10 2.00 0.00 1.10 0.00 00:12.1 seg. 

Data3d5c 7.25E-03 1.38E-06 5.00 0.00 1.10 0.00 00:34.1 seg. 

Data4d5c 6.13E-02 8.04E-02 4.90 0.55 1.24 0.55 00:38.2 seg. 

Data5d5c 6.25E-03 3.42E-02 4.90 0.55 1.10 0.55 00:37.5 seg. 

Data6d5c 1.04E-02 3.95E-02 4.80 0.76 1.11 0.76 00:41.9 seg. 

Data7d5c 7.75E-14 0.00E+00 5.00 0.00 1.10 0.00 00:44.3 seg. 

Data8d5c 6.55E-03 3.59E-02 4.83 0.59 1.10 0.59 00:47.0 seg. 

Data2d6c 9.92E-02 9.63E-02 4.87 1.78 1.39 1.78 00:24.4 seg. 

Data3d6c 6.63E-03 2.54E-03 4.93 1.80 1.13 1.80 00:26.9 seg. 

Data4d6c 1.37E-04 1.44E-12 2.00 0.00 1.10 0.00 00:22.1 seg. 

Data5d6c 5.80E-05 2.18E-04 5.73 1.01 1.10 1.01 00:46.1 seg. 

Data6d6c 2.68E-11 2.16E-19 6.00 0.00 1.10 0.00 00:50.6 seg. 

Data7d6c 3.32E-14 3.38E-20 6.00 0.00 1.10 0.00 01:01.0 min. 

Data8d6c 3.23E-08 1.77E-07 5.90 0.55 1.10 0.55 00:47.5 min. 

Data2d7c 1.46E-02 3.10E-02 6.67 1.27 1.13 1.27 00:55.8 seg. 

Data3d7c 3.95E-02 2.44E-02 5.03 2.53 1.20 2.53 00:56.8 seg. 

Data4d7c 1.43E-02 4.36E-02 6.53 1.55 1.10 1.55 01:00.4 min. 

Data5d7c 1.40E-02 3.61E-02 6.33 1.73 1.11 1.73 01:09.2 min. 

Data6d7c 1.51E-10 4.16E-19 7.00 0.00 1.10 0.00 01:22.5 min. 

Data7d7c 5.09E-16 8.93E-20 7.00 0.00 1.10 0.00 00:58.5 seg. 

Data8d7c 4.21E-03 2.30E-02 6.83 0.91 1.10 0.91 01:12.1 min. 

Data2d8c 8.10E-02 4.50E-02 2.93 0.25 1.39 0.25 00:25.5 seg. 

Data3d8c 1.71E-01 2.09E-02 3.80 2.80 1.71 2.80 00:35.0 seg. 

Data4d8c 1.07E-03 2.58E-03 7.03 2.14 1.10 2.14 00:32.2 seg. 

Data5d8c 2.33E-02 7.00E-02 7.20 1.92 1.10 1.92 00:32.1 seg. 

Data6d8c 6.03E-05 3.30E-04 7.80 1.10 1.10 1.10 01:41.1 min. 

Data7d8c 4.98E-05 1.90E-04 7.63 1.54 1.10 1.54 01:20.8 min. 

Data8d8c 2.80E-04 1.54E-03 7.80 1.10 1.10 1.10 01:29.3 min. 
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V. COMPARISON BETWEEN OPTIMIZATIONS METHODS 

This section presents a comparative study regarding the 

optimization methods used for the automation of FCM 

algorithm. Studies to compare the optimization methods used 

were based on the validation index, execution time. This 

comparison is because the results presented in the tables above, 

we note that the results are very similar, which is why the 

realization of the comparison. 

To perform this comparison we used the results of both 

optimization methods to which is applied the T-Student test, 

which will tell us that based on the results of the sample of GA 

and to result sample of PSO optimization, if these methods are 

linearly separable, i.e. if there is a significant difference 

between the optimization methods (Tables III and IV). 

 
Table III. Results of T-studentbased validation indices. 

Dataset 
GA  PSO T-Student 

Mean Std. Deviation Mean Std. Deviation T-Value P-Value Significant Diff. 

Data2D2C 4.64E-13 1.03E-28 4.64E-13 1.03E-28 0.00 1.00 No 

Data3D2C 3.53E-13 1.03E-28 3.53E-13 1.03E-28 0.00 1.00 No 

Data4D2C 8.79E-12 3.29E-27 8.79E-12 3.29E-27 0.00 1.00 No 

Data5D2C 5.16E-14 1.93E-29 5.16E-14 1.93E-29 0.00 1.00 No 

Data6D2C 4.54E-14 0.00E+00 4.54E-14 0.00E+00 0.00 1.00 No 

Data7D2C 1.42E-15 3.95E-17 1.56E-15 3.40E-17 14.80 0.00 Yes 

Data8D2C 1.47E-13 0.00E+00 1.47E-13 0.00E+00 0.00 1.00 No 

Data2D3C 3.21E-02 3.45E-04 3.20E-02 1.43E-06 1.80 0.08 No 

Data3D3C 6.46E-10 3.53E-09 7.06E-13 4.11E-28 1.00 0.32 No 

Data4D3C 8.61E-16 4.01E-31 8.61E-16 4.01E-31 0.00 1.00 No 

Data5D3C 3.08E-08 1.69E-07 3.97E-15 1.66E-17 1.00 0.32 No 

Data6D3C 2.81E-15 4.01E-31 2.81E-15 4.01E-31 1.00 0.32 No 

Data7D3C 6.46E-11 0.00E+00 6.46E-11 0.00E+00 0.00 1.00 No 

Data8D3C 2.38E-10 5.26E-26 2.38E-10 5.26E-26 1.00 0.32 No 

Data2D4C 8.81E-08 5.38E-23 8.81E-08 5.38E-23 0.00 1.00 No 

Data3D4C 3.00E-06 1.52E-05 2.16E-07 2.86E-19 1.00 0.32 No 

Data4D4C 1.40E-03 5.48E-03 3.74E-07 2.15E-22 1.40 0.17 No 

Data5D4C 5.24E-08 2.87E-07 1.05E-07 3.99E-07 0.58 0.56 No 

Data6D4C 4.24E-15 3.60E-17 4.25E-15 1.91E-17 1.40 0.17 No 

Data7D4C 7.37E-10 4.04E-09 6.66E-06 2.53E-05 1.44 0.16 No 

Data8D4C 7.09E-09 3.88E-08 1.42E-08 5.40E-08 0.58 0.56 No 

Data2D5C 2.03E-01 7.11E-03 2.01E-01 2.90E-10 1.14 0.26 No 

Data3D5C 1.94E-02 3.10E-02 7.25E-03 1.38E-06 2.16 0.04 Yes 

Data4D5C 4.71E-02 7.41E-04 6.13E-02 8.04E-02 0.97 0.34 No 

Data5D5C 6.98E-03 3.42E-02 6.25E-03 3.42E-02 0.08 0.93 No 

Data6D5C 8.91E-03 3.49E-02 1.04E-02 3.95E-02 0.15 0.88 No 

Data7D5C 7.75E-14 5.37E-19 7.75E-14 0.00E+00 1.21 0.23 No 

Data8D5C 8.17E-06 4.47E-05 6.55E-03 3.59E-02 1.00 0.32 No 

Data2D6C 8.82E-02 8.13E-02 9.92E-02 9.63E-02 0.48 0.63 No 

Data3D6C 8.82E-02 1.09E-02 6.63E-03 2.54E-03 2.08 0.04 Yes 

Data4D6C 8.82E-02 2.85E-03 1.37E-04 1.44E-12 2.49 0.02 Yes 

Data5D6C 8.82E-02 5.67E-06 5.80E-05 2.18E-04 1.41 0.16 No 

Data6D6C 8.82E-02 1.34E-02 2.68E-11 2.16E-19 1.00 0.32 No 

Data7D6C 8.82E-02 1.46E-03 3.32E-14 3.38E-20 1.00 0.32 No 

Data8D6C 8.82E-02 1.77E-07 3.23E-08 1.77E-07 0.00 1.00 No 

Data2D7C 2.14E-02 3.56E-02 1.46E-02 3.10E-02 0.79 0.43 No 

Data3D7C 3.62E-02 2.78E-02 3.95E-02 2.44E-02 0.49 0.63 No 

Data4D7C 1.00E-02 3.62E-02 1.43E-02 4.36E-02 0.42 0.68 No 

Data5D7C 4.12E-03 2.05E-02 1.40E-02 3.61E-02 1.31 0.20 No 

Data6D7C 2.31E-03 1.23E-02 1.51E-10 4.16E-19 1.03 0.31 No 

Data7D7C 4.88E-07 2.63E-06 5.09E-16 8.93E-20 1.02 0.31 No 

Data8D7C 8.16E-03 0.00E+00 4.21E-03 2.30E-02 0.56 0.58 No 

Data2D8C 8.25E-02 1.95E-02 8.10E-02 4.50E-02 0.17 0.87 No 

Data3D8C 1.65E-01 2.04E-02 1.71E-01 2.09E-02 1.12 0.27 No 

Data4D8C 4.37E-04 8.69E-04 1.07E-03 2.58E-03 1.27 0.21 No 

Data5D8C 2.78E-02 7.28E-02 2.33E-02 7.00E-02 0.24 0.81 No 

Data6D8C 4.22E-04 7.78E-04 6.03E-05 3.30E-04 2.34 0.02 Yes 

Data7D8C 1.03E-08 4.03E-08 4.98E-05 1.90E-04 1.44 0.16 No 

Data8D8C 8.91E-04 2.56E-03 2.80E-04 1.54E-03 1.12 0.27 No 

 

 

 

 

 

 
Table IV. Results of T-student based execution time. 

Dataset 
GA  PSO T-Student 

Mean Std. Deviation Mean Std. Deviation T-Value P-Value SignificantDiff. 

Data2D2C 00:07.2 00:01.0 00:04.6 00:00.4 13.42 0.00 Yes 

Data3D2C 00:09.7 00:03.5 00:05.6 00:00.4 6.33 0.00 Yes 

Data4D2C 00:10.5 00:01.4 00:06.4 00:00.5 15.65 0.00 Yes 

Data5D2C 00:10.9 00:02.7 00:07.1 00:02.7 5.44 0.00 Yes 

Data6D2C 00:09.7 00:01.7 00:07.7 00:03.7 2.70 0.01 Yes 

Data7D2C 00:09.3 00:02.2 00:05.4 00:00.6 9.19 0.00 Yes 

Data8D2C 00:07.2 00:01.0 00:05.3 00:00.7 9.16 0.00 Yes 

Data2D3C 00:18.0 00:01.2 00:16.7 00:01.9 3.31 0.00 Yes 

Data3D3C 00:13.6 00:02.4 00:13.2 00:01.7 0.70 0.49 No 

Data4D3C 00:13.6 00:02.0 00:12.3 00:01.5 2.92 0.00 Yes 

Data5D3C 00:14.3 00:01.5 00:13.4 00:02.0 2.10 0.04 Yes 

Data6D3C 00:14.4 00:01.8 00:15.3 00:02.2 0.70 0.49 No 

Data7D3C 00:20.2 00:02.2 00:18.1 00:02.7 3.38 0.00 Yes 

Data8D3C 00:15.3 00:01.8 00:14.0 00:01.9 0.70 0.49 No 

Data2D4C 00:20.8 00:02.2 00:19.9 00:01.5 1.95 0.06 No 

Data3D4C 00:25.9 00:02.3 00:25.6 00:01.9 0.44 0.66 No 

Data4D4C 00:26.1 00:07.6 00:13.2 00:01.1 9.21 0.00 Yes 

Data5D4C 00:31.1 00:02.9 00:25.9 00:04.4 5.43 0.00 Yes 

Data6D4C 00:31.8 00:03.6 00:31.2 00:03.3 0.72 0.48 No 

Data7D4C 00:25.4 00:04.1 00:24.2 00:03.7 1.23 0.22 No 

Data8D4C 00:26.0 00:02.7 00:27.8 00:05.7 1.56 0.12 No 

Data2D5C 00:22.7 00:06.0 00:14.1 00:01.3 7.65 0.00 Yes 

Data3D5C 00:34.2 00:04.3 00:32.3 00:02.8 1.99 0.05 No 

Data4D5C 00:42.5 00:02.9 00:38.1 00:04.3 4.63 0.00 Yes 

Data5D5C 00:43.5 00:05.2 00:35.8 00:04.7 6.10 0.00 Yes 

Data6D5C 00:48.4 00:06.8 00:41.7 00:07.2 3.73 0.00 Yes 

Data7D5C 00:36.9 00:02.6 00:41.7 00:02.7 6.89 0.00 Yes 

Data8D5C 00:41.1 00:03.3 00:40.7 00:06.1 0.37 0.71 No 

Data2D6C 00:40.5 00:06.1 00:37.0 00:08.6 1.79 0.08 No 

Data3D6C 00:40.5 00:06.1 00:34.5 00:10.1 5.48 0.00 Yes 

Data4D6C 00:40.5 00:17.0 00:20.3 00:02.5 7.06 0.00 Yes 

Data5D6C 00:40.5 00:03.6 00:47.8 00:08.4 8.15 0.00 Yes 

Data6D6C 00:40.5 00:04.0 00:51.3 00:05.1 3.28 0.00 Yes 

Data7D6C 00:40.5 00:05.1 00:48.7 00:05.0 1.13 0.26 No 

Data8D6C 00:40.5 00:07.0 00:49.9 00:06.7 4.55 0.00 Yes 

Data2D7C 00:52.6 00:09.7 00:49.0 00:08.6 1.52 0.13 No 

Data3D7C 00:48.1 00:08.1 00:41.6 00:11.8 2.51 0.02 Yes 

Data4D7C 01:13.6 00:11.4 00:58.9 00:12.9 4.66 0.00 Yes 

Data5D7C 01:25.1 00:12.9 01:08.2 00:16.7 4.39 0.00 Yes 

Data6D7C 01:10.8 00:04.5 01:16.4 00:12.2 2.37 0.02 Yes 

Data7D7C 01:02.7 00:06.8 01:06.8 00:11.0 1.75 0.09 No 

Data8D7C 01:05.0 00:01.0 01:06.9 00:10.9 0.85 0.40 No 

Data2D8C 00:56.4 00:10.5 00:43.1 00:05.7 6.13 0.00 Yes 

Data3D8C 00:52.3 00:14.1 00:49.0 00:22.9 0.67 0.51 No 

Data4D8C 01:22.6 00:18.6 01:11.2 00:17.2 2.46 0.02 Yes 

Data5D8C 01:42.3 00:16.9 01:41.1 00:28.5 0.19 0.85 No 

Data6D8C 01:24.3 00:20.1 01:31.1 00:15.5 1.46 0.15 No 

Data7D8C 01:34.6 00:05.8 01:35.3 00:19.7 0.18 0.86 No 

Data8D8C 01:33.3 00:17.0 01:37.0 00:18.2 0.80 0.42 No 

 

VI. CONCLUSION 

In this research work was performed optimization of FCM 

algorithm, where by the optimization methods used are seeking 

to find the optimal number of clusters and the exponent of 

fuzzification.   

In the presented results with different optimization methods, 

it was possible to observe that in most of the averages of groups 

of data sets, the average number of clusters is approximately the 

number of clusters and in some cases the group average is the 

number clusters containing the data set, showing that for some 

cases, both the GA and PSO are efficient for optimization of 

FCM algorithm. 

Because it is not seen clearly significant differences between 

the optimization methods used in the presented results, we 

made a t-student test, this in order to know if there was a 

significant difference between the optimization methods used 

for optimization the FCM algorithm. 
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Where we can observe in the result in terms of validation 

index show in Table III, only 10% (5/49 datasets) of data sets 

used in which there is a significant difference and 90% (44/49 

datasets) of sets data in which there is no significant difference, 

therefore, based on this statistical test we can say that both 

optimization methods are good, the optimization of the FCM 

algorithm. 

In Table IV we can observe in the result in terms of execution 

time that 59% (29/49 datasets) of data sets used in which there 

is a significant difference and 49% (20/49 datasets) where no 

significant difference, based on this we can say that one method 

is better than another in terms of speed of execution, from our 

point of view PSO is faster than GA because PSO performs 

fewer operations than GA. 
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