
 

 
Abstract— This paper presents a methodology that reduces 

computing time of combinatorial optimization problems that 
can be applied to any population based algorithm such as: 
genetic algorithms, artificial immune systems, ant colony 
optimization, etc. To demonstrate the usefulness of the 
proposed methodology an Artificial Immune System was used 
since we used concepts derived from this paradigm. The 
proposed methodology was applied to solve the Traveling 
Salesman Problem (TSP) and it is introduced the concept of 
vaccination to reduce cities in the TSP. It is able to work 
practically with any optimization population based method in 
order to obtain optimal and suboptimal routes of the original 
problem. Comparative experimental results of several 
experiments with large number of cities (711 cities) are shown.     
 

Index Terms— Artificial Immune System, AIS, Automatic 
Handling of Expert, AHEK, Combinatorial Optimization 
Problem, COP, Knowledge, Optimization, Traveling Salesman 
Problem, TSP, Vaccines. 

I. INTRODUCTION 

OMBINATORIAL optimization problems (COPs) are 
until these days open problems. The amount of 

computational resources needed to solve these problems that 
go beyond a few elements is truly astonishing; hence the 
emphasis given to the development of algorithms that 
outperform the existing ones; providing us with faster and 
better solutions is a very important field of research in 
optimization [14].  

The inspiration to develop new algorithms has been 
obtained from various sources, including nature. In this 
work, computational paradigms inspired in the natural 
functions of the human immune system are explored, they 
are named Artificial Immune Systems (AIS) [3].  A novel 
methodology that improves the application of AIS to solve 
combinatorial problems (CPs), as well as concepts that help 
the AIS to perform better solving huge CPs, are presented.  

The Traveling Salesman Problem (TSP) is a classic 
example of a COP. The problem states that a salesman has 
to travel to an n number of cities in the shortest route length 
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possible, starting from his hometown visiting each city only 
once, and finally returning home. This CP at plain sight 
seems to have a very simple solution, but in practice, the 
solution itself presents a very complex problem with 
multiple implications regarding planning and execution that 
can become intractable for today’s computers.  

A solution for one case of the TSP can be represented as a 
permutation of the city’s indices, and the process of finding 
the optimal solution is an iterative process. The use of 
different techniques to develop new algorithms to solve 
more efficiently the TSP is very varied, and until these days 
is still an important topic of research. In general, there are 
two major methodologies to solve the TSP: by exact 
solution and by metaheuristics. 

In the field of finding exact solutions for the TSP there 
exist methods such as branch-and-bound and lineal 
optimization or programming [13][14]. In this field one of 
the most important algorithms is presented as a program 
named Concorde, which is considered by many as one of the 
best TSP solvers [6][7]. Concorde’s algorithm has many 
strengths when compared to other methods and has been 
able to handle a very large number of cities providing 
excellent results [7]. 

On the other hand, metaheuristics have contributed with 
many ways to solve the TSP, some of the main algorithms 
are genetic algorithms [8], ant colony optimization [9], 
neural networks [12]. In this branch, there are several works 
inspired in AIS metaheuristics that have been used 
successfully to solve the TSP, they use Clonal Selection [10] 
or cooperation mechanisms of the Th cells [11] mainly.  

In this paper a new methodology inspired in AIS is 
presented, the concept of vaccination to reduce complexity, 
hence computational time is presented. The proposal is 
supported with several experiments.  

This work is organized as follow:  In Section II the 
Human and Artificial Immune Systems are described. In 
Section III we define mathematically a Vaccine for COPs, 
and we explain how to implement this concept.  The criteria 
of designing the conducted experiments are explained in 
Section IV. The results are presented using graphs and 
tables in Section V. Finally, in Section VI the conclusions 
are given. 

II. HUMAN AND ARTIFICIAL IMMUNE SYSTEMS 

The human immune system is in charge of keeping our 
body healthy. It is monitoring our body constantly searching 
for any anomalies or foreign agents called pathogens. If the 
immune system is confronted with such threats it starts what 
is called an immune response. There are different types of 
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immune responses: the innate immune response and the 
adaptive immune response [1].   

The innate response constitutes the immune system 
ability to response to the imminent threat, even if it has 
never been dealt with it before. After it has started, the cells 
that have been activated undergo a series of cloning and 
mutations in order to better attack the pathogen and 
eventually exterminate it. 

The adaptive immune response constitutes the immune 
system’s ability to remember previously encountered 
pathogens. In order to do this, the immune system keeps 
alive for a period of time the cells responsible for 
eliminating a pathogen generated in innate response, thus 
providing a better more efficient immune response. 

Although in reality the human immune system is much 
more complex than the general description given, we can 
see that it can be a very interesting source of inspiration for 
obtaining data, information and knowledge for present and 
future research in the fields of mathematics in computer 
science and optimization. This is in part because the human 
immune system, as well as other biological systems, exhibits 
extremely sophisticated capabilities for learning and 
processing data in its operations, which are characteristics 
we search to extrapolate into solving engineering problems. 

Because of the biological and medical importance of the 
immune system a great deal of information is available in 
regards to its operation. Even though the operation of the 
human immune system is highly complex, the general 
functions are very clear to us and because of this we have 
been able to learn from them, providing us with new insight 
into solving classic and new problems. 

The AIS are the extrapolation of the works of human 
immune system into the fields of mathematics, computer 
science and engineering [2]. The idea behind them is to take 
the main elements of the immune system and use them as a 
source of inspiration to solve problems. 

Some of the main characteristics of the immune system 
that are of particular interest to us are [3]: 

 
 Pattern recognition 
 Singularity 
 Diversity 
 Autonomy 
 Multilayer system 
 Fault detection 
 Adaptive capabilities 
 Robustness 
 Immune learning and memory 
 Distributed system 
 
Although we know the immune system has these 

attributes, how the immune system is able to achieve these 
characteristics is still a main area of research for 
immunologists everywhere. The idea that a natural system 
exists with such characteristics is a great source of 
inspiration, as our understanding of the immune system 
grows, extrapolation of the workings to our daily scientific 
and engineering lives will increase. 

Continuously researches everywhere are finding new 
ways and areas to apply AIS paradigms. There are some 
areas where AIS are particularly good because their direct 
relationship between the natural function and a 

computational task is natural. Some of the main applications 
of the AIS are [3]: 

 
 Pattern recognition 
 Fault detection and anomalies 
 Data mining and classification 
 Agent based systems 
 Scheduling 
 Machine learning 
 Autonomous control and navigation 
 Optimization and search 
 Artificial life 
 
The Vaccines are the immune terminology proposed in 

order to obtain Automatic Handling of Expert Knowledge 
(AHEK). This concept is taken from the idea that vaccines 
offer reinforcement to the immune system, providing agents 
that resemble the disease that you are trying to combat. The 
use of Expert Knowledge applied to combinatorial problems 
is not new [4], it has been utilized by other researchers in 
order to provide better solutions to optimization problems; 
however, the main disadvantage of them is that they require 
the human expert understanding of the problem, the way it 
behaves, how it is composed, and others. This presents a big 
disadvantage considering that as the CP escalates, the 
involvement of the expert will also escalate to an extent 
where it will be impossible to provide this knowledge 
without turning itself into a problem. For this reason, this 
article proposes that this expert knowledge should be 
handled automatically, which takes the burden off the 
expert. 

III. VACCINE DEFINITION AND IMPLEMENTATION 

The performance of the vast majority of algorithms 
designed to solve COPs decrease when the number of 
working elements grows. Usually this performance 
degradation is presented either in a reduction on the quality 
of the solutions themselves or in a substantial increase of the 
execution time needed to find a viable solution. This 
situation presents a very important challenge for all the 
developed algorithms and to find a methodology that helps 
alleviate this problem is the focus of this work. 

This paper presents a methodology that provides 
improvement in the performance of population based 
algorithms designed to solve COP in such a way that these 
algorithms do not need to be modified conceptually (they 
retain their original terminologies), or structurally (it is not 
necessary to modify the algorithm). In order to do this, the 
proposed methodology consists of creating an infrastructure 
around the original COP solving algorithm, the TSP in our 
case of study.   

The proposal is a three steps methodology, which first 
step is to reduce the number of nodes of a COP, for the TSP 
is to reduce the original city list. This modification is 
achieved by grouping and replacing elements (cities) which 
effectively provide a reduction of the original city list. In 
other words, the proposed algorithm tries to capture the 
essence of having an artificial “Expert” which decides what 
cities would take part in the grouping and replacement 
process. 

Once that the reduction has been carried out, in the 
second step, the COP solving algorithm works with this 
reduced set of nodes.   
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The goal of the third step is to recover the original 
quantity of nodes; i.e., the number of cities for the TSP, and 
connecting the omitted nodes (cities) to the path; i.e., the 
traveling path for the TSP.  

This methodology is inspired on the concept of 
vaccination applied to COP where there are a set of subpaths 
grouping a specific number of nodes using some criteria, 
and once the repertoire of vaccines has been created, the 
involved cities are removed from the original list, and then a 
new node that represents the removed nodes is created.  

Fig. 1 shows the conceptual representation of an artificial 
vaccine. For the step one, two different methods for creating 
vaccines are proposed: Vaccine Generation by Random 
Selector (VRS), see Fig. 2; and Vaccine Generation by 
Elitist Selector VES, see Fig. 3.  Once the reduced set of 
nodes has been optimized, we proceed with step 3 
expanding the vaccinated route using in order to recover the 
original set of nodes; this is shown in Fig. 4. 

The application of the aforementioned method applied to 
the TSP is straightforward, and in the next sections we are 
going to apply it to solve this classical optimization 
computational problem. 

A. Vaccine 

The vaccine is the building block for the proposed 
algorithm, we define it as a 7-tuple as is shown in (1) 

 
  (1) 
 
where,  

 
 Vaccine Identifier (VID): Each vaccine must have a 

unique identifier. 
 Node List (NL): Vaccines must have either the data 

that represents each node such as its coordinates, the 
original node list index and a unique identifier. 

 Number of nodes (NN): Additionally to the node list, 
the number of nodes must be available. 

 Initial Element (IE): The initial element of the vaccine 
must be clearly defined in terms of the original city list 
(original node list index). 

 Final Element (FE): The final element of the vaccine 
must be clearly defined in terms of the original city list 
(original node list index). 

  Geometrical Center (GC): This represents the 
location of the vaccine on the map. Because the nodes 
that are part of the vaccine are removed, it is necessary 
to add an equivalent representation of the vaccine on 
the map. For a 2D map the coordinates are calculated 
using (2) and (3).  

 

  (2) 

 

  (3) 

 
 Length (L): The tour length (sub-path length) of the 

cities contained in the vaccine. It can be calculated by 
the Euclidian distance using (4), 
 

  (4) 

Fig. 1 shows a scheme of how a vaccine should be 
organized from a computational point of view.  

 
 

 
Fig. 1 Conceptual representation of an artificial vaccine. The string is the 
original city list and ID is the city list index. 

B.  Vaccination Process 

We have named Vaccination Process to the systematic 
generation, application and removal of vaccines from a list 
of elements of a COP. 

The vaccination process consists of three steps. The first 
step is the generation of the vaccines and the application of 
them to the original node (city) list in order to produce a 
reduced (node) city list; in this way, we are proposing two 
algorithms for achieving such generation of vaccines, one is 
using the algorithm called VCR, and the second option is 
using the algorithm called VES, both algorithms are 
described in depth in the next section. 

Step two consists of using the reduced city list created on 
step one and solving the COP with an already established 
TSP optimization algorithm. Once an optimized route is 
created by this algorithm, it will be in terms of the reduced 
city list. Therefore, the aim of step three, which is called 
expansion of the vaccinated route, is to reconstruct this route 
but in terms of the original city list replacing the vaccinated 
elements with their original cities; this algorithm is also 
described in depth in a later section. Fig. 5 shows a general 
diagram that illustrates the whole vaccination process and 
how it is used as a shell of an optimization algorithm that 
helps to reduce computing time of the problem. 

C. Vaccine Generation by Random Selector (VRS) 

This is an efficient and fast method to generate vaccines. 
It is useful when information about node distribution is poor 
or nonexistent.  
To apply the Random Selector (RS) algorithm, we choose 
randomly the initial elements of the vaccines from which the 
rest of the vaccine is made. Once the element is selected, the 
Random Selector algorithm requires calculating the distance 
from the chosen node (city) to the rest of nodes (cities) with 
the aim of choosing the nearest one. The distance is 
calculated by Euclidean distance. This is an iterative process 
that finishes when we reach the amount of required 
vaccines; i.e., we have reached the number NN indicated in 
(1). Fig. 2 shows the pseudo-code to this process. 
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Fig. 2.  Generation of vaccines using VRS. Note that for the TSP we can 
use city, cities, Num. of Cities instead of node, nodes, and Number of 
Nodes.   

 
 

 
Fig. 3.  Generation of vaccines using VES. 
 

D. Vaccine Generation by Elitist Selector (VES) 

This method generates a vaccine repertoire with decision 
criteria named Elitist Selector. The main objective of Elitist 
Select is to select the best initial elements from which a 
vaccine will be build.  The application of this algorithm 
requires calculating the matrix of distances corresponding to 
the distance from each one of the elements to the rest with 
the aim of sorting by shortest distance. This guarantees that 
the shortest route vaccines are picked. Fig. 3 shows the 
pseudo-code to this process. 

 

E. Expansion of vaccinated route 

The expansion algorithm is needed to convert the 
optimized route of the reduced node list by VRS or VES, to 
the original node (city) list.  

The temporally removed cities linked with sub-paths are 
reinserted into the list together with the reduced optimized 
set of nodes. Therefore, we obtain the whole set of nodes 
(cities) with an optimized path that may be optimal or 
suboptimal. Fig. 4 shows the pseudo-code to this process. 

IV. EXPERIMENTS 

For testing the proposed method, we used the TSP because 
there are extensive researches with known results that have 
been stored in public repositories. We used five TSP 
problems from the public library TSPLIB with a range of 
cities from 131 to 711. 

 
Fig. 4.  Algorithm to expand the Reduced Node List to the Original Node 
List. 
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Fig. 5. Vaccination Process. 

  

1. Input: Original Node List (ONL), Reduced Node List (RNL), 
               Vaccine List (VL), Optimum Route (OR) 
2. Select first Link (L) from (OR) 
3. Obtain first Node (SN) from L 
4. for each Link in the Optimum Route 

4.1. if SN is not Vaccine 
4.1.1. Add SN to Expanded Node List (ENL) 

4.2. else SN is Vaccine 
4.2.1. Find the Vaccine (V) in VL equal to SN 

4.2.2. Calculate distance d1 and d2 which represent the   
           distance from the SN to the Initial  
           Node (IN) and Final Node (FN) of V. 
4.2.3. if d1  d2 

4.2.3.1. Add to the ENL the IN (index 0) 
4.2.3.2. Add rest of the Nodes from V starting from 

index 1 to n-1 
4.2.4. else 

4.2.4.1. Add to ENL  the Final Node (index n) 
4.2.4.2. Add rest of the Nodes from V starting from 

index n-1 to 0 
4.2.5. Select SN based on the following Node defined by 

the Link 
5. Output ENL (order of elements is the route) 

1. Input: Original Node List (ONL), Num. of vaccines (NV) and 
Num. of nodes per vaccine (NNV) 

2. Copy ONL to Reduced node List (RNL) 
3. Generate distance matrix for ONL by taking each node and 

calculating as many nearest neighbors are NNV states. 
4. Sort  the ONL by shortest distance to the nearest neighbor 
5. for each Node in ONL 

5.1. if  NV is not met 
5.1.1. Take the corresponding nearest neighbors for the 

Node 
5.1.2. Generate the two possible routes (from left-right  
            and from right-left) 
5.1.3. if (left-right and right-left route) are not in Vaccine List

5.1.3.1. Generate a vaccine with the given route 
5.1.3.2. Calculate geometrical center of the vaccine 
5.1.3.3. Add vaccine to Vaccine List (VL) 
5.1.3.4. Remove the implicated nodes that form the

vaccine from the RNL 
5.1.3.5. Add a new Node with the vaccine’s

geometrical center to the RNL 
5.1.4. else 

5.1.4.1. Do nothing 
5.2. else 

5.2.1. Stop for each loop 
6. Output VL and RNL 

1. Input: Original Node List (ONL), Num. of vaccines (NV), Num. 
of nodes per vaccine (NNV) 

2. Copy ONL to Available node list (ANL) 
3. Copy ONL to Reduced node List (RNL) 
4. while NV is not met 

4.1. Randomly choose a node (NR) from ANL 
4.2. Calculate the route of the nearest nodes from the 

selected node. The route length is equal to NNV 
4.3. Generate a vaccine with the given route 
4.4. Calculate geometrical center of the vaccine 
4.5. Add vaccine to Vaccine List (VL) 
4.6. Remove the implicated nodes that form the vaccine 

from the RNL 
4.7. Add a new Node with the vaccine’s geometrical center 

to the RNL 
4.8. Remove from the ANL the randomly selected node NR 

5. Output VL and RNL 
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We are presenting three experiments that embrace a big 
diversity of comparative situations that will help to conclude 
about the usefulness of the method. This was achieved 
optimizing the TSP for 131, 237, 395 and 436 cities using a 
Genetic Algorithm (GA).  With the aim of obtaining some 
benchmarks and be able of achieving comparisons, in 
Experiment 1 we did not use the proposed method. In 
Experiment 2 the vaccines were generated using the 
Random Selector, and in Experiment 3 the vaccines were 
generated using the Elitist Selector. For the three 
experiments the GA ran about 10 millions of generations, 
we recorded results every 500,000 generations, as it is 
shown in Fig.s 6 to 11. For the three experiments, we used a 
convergence value (stuck point), it was chosen such as the 
algorithm did not provided any significant advance (less 
than 1% of improvement compared the previous 
generation). 

Experiment 1 - Obtaining benchmarks: This set of 
experiments consisted in obtaining the control data to be 
used as benchmarks in order to achieve comparisons. The 
behavior of the GA optimizing the TSP for different amount 
of cities can be seen in Figs. 6 to 11. 

Experiment 2 - Vaccination with Random Selector 
(VRS): In this set of experiments vaccination using VRS on 
the City List was used; i.e., we applied the algorithm shown 
in Fig. 2.  

Experiment 3 - Vaccination using the Elitist Selector 
(VES): The algorithm described in Fig. 3 was applied to 
obtain a reduced set of cities. Similarly to Experiment 2, 
after reducing the set of cities, the GA was used to obtain 
the shortest path, and then the expansion of the vaccinated 
route using the algorithm explained in Fig. 4 was achieved. 

V. EXPERIMENTAL RESULTS 

In Fig. 6 the data for TSP with 131 cities is presented. We 
can observe that the convergence point for the GA is at 
3,000,000 millions of generations while for the RS and ES 
are at 2,000,000. After these points, further iterations do not 
provide significant improvements in the solution. The final 
route value shows that the paths obtained by the application 
of the RS and ES are worse solutions than applying the GA 
alone, the percentage differences are -6.37% for the RS and 
-1.27%  for the ES algorithm.  

Fig. 7 shows data corresponding to the TSP with 237 
cities. The convergence points are at 6,500,000 millions of 
generations for the GA and 4,000,000 for the RS and ES 
algorithms. Once again we notice a tendency of the 
vaccination algorithms to provide faster convergence points 
than the GA alone. The final route values obtained are better 
by 0.89% for the RS and 5.69% worse for the ES compared 
to the GA. At this point start to appear a tendency that 
shows that with a higher city count, the vaccination method 
(RS and ES) will provide better solutions than using the GA 
alone. 

Fig. 8 shows the data for the TSP of 395 cities. Here the 
observation made on Fig. 7 is clearer, since the tendency 
about obtaining the best routes (shortest paths) using few 
generations becomes evident. The convergence point using 
the vaccination method with RS is 7,500,000 millions of 
generations, while for the ES algorithm is 6,500,000. The 
GA with no vaccination did not converge until 10 millions 
of generations. The final route value for the RS is 3.27% and 
ES is 8.78% better than the obtained using the standalone 
GA. 

 
Fig. 6.  Comparison of the 3 experiments for the TSP with 131 Cities. 

 
Fig. 9 shows the data for the TSP 436 with cities. We 

observed that always the best results were obtained using 
any of the vaccination methods. For the RS algorithm, the 
point of convergence is about 8 millions of generations, 
while for the ES algorithm is 6.5 millions. Once again, the 
GA did not converged before 10 millions of generations 
giving the worst times. The final route solutions obtained by 
the use of the vaccination algorithms were better by 10.18% 
for the RS and 17.33% for the ES, than the obtained with the 
GA algorithm. 
 

 
Fig. 7.  Comparison of the 3 experiments for the TSP with 237 Cities. 
 

Finally, we studied the TSP using 711 cities. This is the 
highest number of cities TSP studied and it shows very 
interesting results. At this number of cities none of the 3 
experiments showed a convergence point before 10 millions 
of generations. However, by analyzing the graph in Fig. 10, 
it is clear that the vaccination algorithms, RS and ES, will 
converge faster than the alone GA. The final route values for 
the RS and ES were better than the GA by 37.65% and 
44.71% respectively.  

 

 
Fig. 8.  Comparison of the 3 experiments for the TSP with 395 Cities. 
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Fig. 9.  Comparison of the 3 experiments for the TSP with 436 Cities. 

 
 

 
Fig. 10.  Comparison of the 3 experiments for the TSP with 711 Cities. 

 
Table I gives us the concentrated values of the length of 

each optimized final tour. For the first TSP which has 131 
cities we can observe that the final value of the GA is better 
than using vaccination with RS and ES. However, this is not 
the case with the next TSP with 237 cities, as the results of 
ES are actually better, while the RS is slightly behind of the 
GA. As the number of cities per TSP grows, the final values 
obtained with the vaccination algorithms provide much 
better results, as can be noticed in the TSP with 395 and 436 
cities. In the last TSP with 711 cities we have a very 
important difference between the GA and the vaccination 
algorithms with an 18.82% and 22.35% closer solution 
respectably. 

 
TABLE I 

CONCENTRATED VALUES OF THE THREE DIFFERENT ALGORITHMS AND 

PERCENTAGE OF IMPROVEMENT  

 GA RS ES 
TSP L L % L % 
131 604.50 645.63 -6.37 612.25 -1.27 
237 1161.40 1231.50 -5.69 1151.19 0.89 
395 1668.35 1615.60 3.27 1533.75 8.78 
436 2053.47 1863.80 10.18 1750.15 17.33 
711 6232.00 4527.55 37.65 4306.65 44.71 

 

In Table I, GA is Genetic Algorithm, RS is Vaccination 
by Random Selector and ES is vaccination by Elitist 
Selector. The length L denotes the best route for each 
experiment and the symbol “%” is the percentage of the 
corresponding final length value of experiments 2 and 3 in 
comparison with the final value of experiment 1. 

Fig. 11 shows a graph that compares the execution time 
for each of the TSP solved by the three different algorithms 
GA, RS and ES. In this graph we can see that the execution 
times have been improved significantly in all the studied 
problems independently of the number of cities using the 
vaccination proposed method. 

 
Fig. 11.  Comparison of the average execution time for each TSP solved by 
the three different algorithms. 

 
The improvements in execution time are attributed to the 

effective reduction of nodes (cities) that the optimization 
algorithm has to work in order to provide the optimal (or 
suboptimal) solution. The improvements are determined by 
(5) that produces a Set of Reduced Nodes (SRN) that will 
depend on the parameters selection. 

  
  (5) 

    
Where NC is number of cities, NV is number of vaccines 

and EV is elements per vaccine. With this formula in Table 
II we present the effective reductions for each TSP with 
40% vaccination and 2 elements per vaccine. 
 

TABLE II 
NUMBER OF ELEMENTS AFTER VACCINATION 

Problem Formula Final Elements 
TSP 131 131-((131*.4)*2)+(131*.4) 79 
TSP 237 237-((237*.4)*2)+(237*.4) 142 
TSP 395 395-((395*.4)*2)+(395*.4) 237 
TSP 436 436-((436*.4)*2)+(436*.4) 256 
TSP 711 711-((711*.4)*2)+(711*.4) 427 

NV = NC * 0.4 and EV = 2. 

VI. CONCLUSIONS 

A new methodology to reduced computational time of 
COPs inspired in the concept of immunization and based on 
the artificial immune system was presented. In order to test 
the proposal we choose highly complex examples of the 
TSP.  

Basically the methodology consists of three steps. The 
first step is to reduce the original quantity of node of a graph 
problem by the application of vaccination using random 
selector (VRS), or vaccination using elitist selector (VES). 
The second step consists in working with the reduced set of 
nodes, in our case for the TSP. The third step is to return to 
the original Set of nodes providing short-optimal-paths that 
introduced the global path.  

This methodology can be applied to any population based 
COP without modifying the optimization algorithm to which 
is applied since it work as a shell. Hence, we applied it to a 
GA.  

The achieved experiments were conducted to demonstrate 
the usefulness of the proposal by optimizing several 
complex examples of the TSP without using the method in 
order to obtain benchmarks about shortest paths and 
execution times.  

Then we applied VRS and VES, and it was demonstrated 
that the vaccination methods improved results of execution 
time in all the cases; however, obtaining optimal paths only 
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was possible for problems bigger than 131 cities for the 
TSP, in our test for the case of 237 cities.  

For problems bigger than 237 cities this proposal always 
outperformed the GA alone considering obtaining the 
shortest path and execution time. 

A formula to obtain the Reduced Set of Nodes (RSN) was 
developed; it is important because it provides a tool that 
allows estimating beforehand the actual reduction in the 
number of nodes therefore the reduction in execution time 
can be known before testing which can be tedious and time 
consuming. The formula takes into consideration 
vaccination parameters such as the Number of Vaccine 
(NV) and Elements per Vaccine (VE) which provides 
flexibility. 

Finally, comparing VRS and VES, VRS is the faster 
algorithm, and VES provides the best routes. The difference 
in the experiments is substantially small but exists. 
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