

Abstract— In this paper, we present an efficient solution to

determine the best sequence of G commands of a set of holes
for a printed circuit board in order to find the hole-cutting
sequence that shortens the cutting tool travel path. A Parallel
proposal of Ant Colony Optimization was used to find an
optimal travel path, then the new G-codes sequence is used
instead the original sequence as part of the process program.
This application can be formulated as a special case of the
Traveling Salesman Problem (TSP).

Index Terms— Ant Colony Optimization, ACO, Computer
Numerical Control, CNC, Traveling Salesman Problem, TSP,
drilling.

I. INTRODUCTION

 omputer Numerical Control (CNC) refers to the
automation of machine tools, which is of primordial

importance in any automated industrial process for
manufacturing products. Today manual machine tools have
been largely replaced by CNC machines where all
movements of the machine tools are programmed and
controlled electronically rather than by hand [15], reducing
time and avoiding human errors. The productivity of CNC
machine tools is significantly improved by using Computer
Aided Design (CAD) and Computer Aided Manufacturing
(CAM) systems for automated Numerical Control (NC)
program generation. Currently, many CAD/CAM packages
that provide automatic NC programming have been
developed for various cutting processes, being one of those
process the hole – cutting operation or drilling.

There are several studies that focus on the study of
reducing the cutting time by optimizing some parameters
such as part geometry, material and tool type. This paper
analyzes the cutting time, which is the time that the cutting
tool moves with cutting speed in air or in material. A survey
of the literature shows that much research has been done on
minimizing the cutting time [1, 2]; however, there is a lack
of literature that studies the travel time between operations.
In order to minimize the travel time, the cutting tool travel
path between operations should be minimized.

Manuscript received July 10, 2011; and accepted August 15, 2011.

Nataly Medina Rodríguez is a PhD student in Intelligent Systems in
Instituto Politécnico Nacional - CITEDI. Av. del Parque 1310, Otay,
Tijuana, B.C., México. (e-mail: nmedina@citedi.mx).

Oscar H. Montiel Ross is with Instituto Politécnico Nacional - CITEDI.
(Corresponding author phone: 52(664)-623-1344;
e-mail: o.montiel@ieee.org.)

Roberto Sepúlveda is with Instituto Politécnico Nacional - CITEDI.
e-mail: r.sepulveda@ieee.org.

Oscar Castillo is with Tijuana Institute of Technology in the Department
of Computer Science in the Graduate Division. Calzada Tecnológico S/N,
Tijuana, B. C., México. (e-mail ocastillo@hafsamx.org).

This travel path can be formulated as a special case of the
traveling salesman problem (TSP) [3].

II. ANT COLONY OPTIMIZATION FOR THE TRAVELING

SALESMAN PROBLEM

The TSP problem [13][14] is the problem of a salesman
who, starting from his hometown, wants to find a shortest
tour that takes him through a given set of costumer cities
and then back home, visiting each customer city exactly
once. The TSP can be represented by a complete weighted
graph [4] with being the set of nodes
representing the cities, and being the set of arcs. Each arc

 has assigned a value (length) , which is the
distance between cities i and j.

Ant Colony Optimization was introduced by Marco
Dorigo [4]. Using very simple communication mechanisms,
an ant group is able to find the shortest path between any
two points by choosing the paths according to pheromone
levels.

After several years that ACO was introduced, many
papers have described applications that use this algorithm.

For example in robotic, in [16] the Simple ACO was
applied to obtain the optimal path for a mobile robot, here
was considered static and dynamic obstacle avoidance, a
memory capacity for the ants was proposed, and a fuzzy cost
function was used. In [17] and [18] the ACO was applied to
tune fuzzy parameters of a fuzzy logic controller for a
wheeled mobile robot, in [19] a comparison of ACO and
Genetic Algorithms applied to fuzzy system optimization
was presented.

ACO metaheuristics can be applied to the TSP, where the
pheromone trails are associated with arcs and therefore
refers to the desirability of visiting city j directly after city i.
The heuristic information is chosen as ; that is,
the heuristic desirability of going from city i to city j is
inversely proportional to the distance between the two cities.
For implementation purposes, pheromone trails are collected
into a pheromone matrix whose elements are the .

Tours are constructed by applying the following simple
constructive procedure to each ant:

1. Each ant chooses, according to some criterion, a start

city at which the ant is positioned.
2. Each ant uses a pheromone and heuristic values to

probabilistically construct a tour by iteratively
adding cities that the ant has not visited yet, until
all cities have been visited.

3. Each ant goes back to the initial city.
4. After all ants have completed their tour, they may

deposit pheromone on the tours they have
followed.

Tool Path Optimization for Computer Numerical
Control Machines based on Parallel ACO

Nataly Medina-Rodríguez, Oscar Montiel-Ross, Roberto Sepúlveda, and Oscar Castillo

C

Engineering Letters, 20:1, EL_20_1_13

(Advance online publication: 27 February 2012)

__

In some cases, before adding pheromone, the tours
constructed by ants may be improved by the application of a
local search procedure. The above procedure can be
represented by the following pseudocode showed in Fig. 1:

Fig. 1 Tours are constructed by applying this simple constructive procedure
to each ant: ACO Metaheuristic.

A. Ant System

There are two main phases in the Ant System (AS)
algorithm [12]; these are the ants’ solution construction and
the pheromone update. In AS a good heuristic to initialize
the pheromone trails is to set them to a value slightly higher
than the expected amount of pheromone deposited by the
ants in one iteration; a rough estimate of this value can be
obtained by setting, , where m is
the number of ants, and is the length of a tour
generated by the nearest-neighbor heuristic.

B. Tour Construction

In AS, m ants concurrently build a tour of the TSP.
Initially, ants are put on randomly chosen cities. At each
construction step, ant k applies a probabilistic action choice
rule, called random proportional rule, to decide which city is
going to visit next.

The probability with which ant k, currently at city i,
chooses to go to city j is (1):

 (1)

Where is a heuristic value, and are two

parameters which determine the relative influence of the
pheromone trail and the heuristic information, and is the
feasible neighborhood of ant k when being at city i, that is,
the set of cities that ant k has not visited yet. The probability
of choosing a city outside is 0. The role of the
parameters and can be set by the following statements:

- If , the closest cities are more likely to be
selected (is parameter to regulate the influence of

).
- If , only pheromone amplification is used,

without any heuristic bias (is parameter to
regulate the influence of).

C. Update of pheromone trails

After all the ants have constructed their tours, the
pheromone trails are updated. This is done by first lowering
the pheromone value on all arcs by a constant factor, and
then adding pheromone on the arcs the ants have crossed in
their tours.

Pheromone evaporation is implemented by (2):

 (2)

Where is the pheromone evaporation rate. After
evaporation, all ants deposit pheromone on the arcs they
have crossed in their as shown in (3):

 (3)

Where is the amount of pheromone ant k deposits on

the arcs it has visited it is defined by (4):

 (4)

Where is the length of the tour built by the k-th

ant, is computed as the sum of the lengths of the arcs
belonging to .

III. PARALLEL IMPLEMENTATION OF ANT COLONY

OPTIMIZATION

The ACO algorithm can be formulated by the following
sequential implementation as shown in Fig. 2:

Fig. 2 Ant Colony Optimization extended sequential metaheuristic.

The availability of parallel architectures at low cost has

widened the interest for the parallelization of Ant Colony
Optimization algorithm. In order to parallelize the ACO, it is
more important to modify the structure of ACO to get better
optimization effect rather than to transfer the sequential
ACO into a parallelization schema [5].

The main purpose of parallel implementation of ACO is
to obtain the high speedup and efficiency while the
convergence and the ability of optimization are maintained
or even improved.

Some results on parallel Ant Colony algorithms have
been reported recently. Bullnheimer [6] proposed two
parallelization strategies of synchronous and asynchronous
for ACO using the Traveling Salesman Problem.
Piriyakumar in [7] introduced an asynchronous parallel
Max-Min ACO associated with the local search strategy.
Marcus Randal in [8] introduced a synchronous parallel

procedure ACO Metaheuristic
 Set parameters, initialize pheromone trails
 while (termination condition not met) do
 Construct Ant Solutions
 Apply Local Search
 Update Pheromones
 end
end

procedure ACO Sequential Metaheuristic
 begin
 Initialize Parameters
 for each cycle
 for each ant
 for each city
 Build a solution k
 Evaluate solution k
 end for
 end for

Save Best Solution
Update Trail

 end for
Print Best Solution
end

Engineering Letters, 20:1, EL_20_1_13

(Advance online publication: 27 February 2012)

__

strategy which assigns only one ant on each processor.
Marco Dorigo in [9] introduced a parallel ACO on the
hyper – cube architecture by modifying the rule of updating
the pheromone so as to limit the pheromone values within
the range of [0,1].

In this paper, we present a parallel implementation of
ACO for CNC Tool path optimization generating a set of G
commands. The general procedure consists on the
interpretation of a DXF file as input, detecting commands
related to the coordinates of all points; then this information
is optimized by using Ant Colony Optimization and finally,
our system generates the best route found by ants so we
interpret this route by generating a set of G commands.

IV. PARALLEL IMPLEMENTATION: PROBLEM FORMULATION

The sequential algorithm contains a high degree of natural
parallelism [6], the behavior of a single ant during one
iteration is totally independent of the behavior of all other
ants during that iteration. We will discuss a strategy called
“synchronous (fork – join) algorithm”.

A straight forward parallelization strategy for ACO is to
compute the TSP tours in parallel; this would result in a fork
– join structure as shown in Fig. 3.

Fig. 3 Parallel implementation of Ant Colony Optimization in a message
passing model.

An initial process (master) would spawn a set of

processes, one for each ant. After distributing initial
information about the problem, each process can generate a
single solution for each ant k. After finishing this procedure,
the result is sent from each process back to the master
process. The master process updates the trail levels by
calculating the intensity of the trails and checks for the best
tour found so far. A new iteration is initiated by sending out
the updated trail levels.
 Bullnheimer [6] says that ignoring any communication
overhead, this approach would imply optimum (asymptotic)
speedup as (5), assuming that an infinite number of
processing elements (workers) is available, i.e., one process
is assigned to one worker. In (5) m is the quantity of ants of
the colony.

 (5)

Where the computational complexity
of the sequential algorithm for problem is size and

 is the computational complexity of
the parallel algorithm for problem size m and for infinite
system size.

Communication overhead certainly cannot be disregarded
and has to be taken into account, and further the system size
(number of processing elements N) is restricted and is
typically smaller than the problem size (number of ants m).

Balancing the load among the workers is easily
accomplished by assigning to worker the
processes (ants) according to

, thus each worker holds about the same
number of processes and each process is of the same
computational complexity [6].

When considering communication overhead, the ratio of
the amount of computation assigned to a worker and the
amount of data to be communicated has to be balanced [6].

After each iteration, all completed tours and their lengths
have to be sent to a central process (master). Then the new
trail levels need to be computed and then broadcasted to
each worker which only then can start a new iteration.

A. Parallel Ant Colony Algorithm Framework

In our parallel ACO, the ants are divided equally into P
groups which are allocated into P processors. The ants in
each group search for the best solution in its own processor
independently as shown in Fig. 4.

Fig. 4 Parallel Ant Colony Optimization framework.

The main part of the algorithm is complexity and

the generation of one solution is complexity where n
is the number of jobs; these two operations are independent
for each ant of a given cycle so they can be easily
parallelized.

Fig. 3 shows the behavior of our implementation of the
ACO based on the parallel synchronous Ant System in a
message passing model. At the beginning of the algorithm, a
master process initializes the information, spawns k
processes (one for each ant k), and broadcasts the
information. At the beginning of a cycle the matrix (the
pheromone trail) is sent to each process and the
computations such generation and evaluation of solutions,
are done in parallel. Then, the solutions and their
evaluations are sent back to the master, the matrix is
updated and a new cycle begins by the broadcasting of the
updated matrix.

begin
 An initial process initializes the pheromone
matrix and some other control parameters.
 while (not terminate) do
 for each processor do in parallel
 for each ant do
 Build a solution k

Evaluate solution k
 end for

end for

Engineering Letters, 20:1, EL_20_1_13

(Advance online publication: 27 February 2012)

__

V. CNC TOOL PATH GENERATION

The TSP and Parallel ACO have been incorporated to find
the shortest cutting tool travel path to operate the holes in
the next figures. Fig. 5 shows our GUI developed with .NET
Framework.

Fig. 5 CNC Tool path optimization GUI.

A number of commercial CAD/CAD packages that

provide automatic NC programming have been developed
and applied to various cutting processes. To cut any process
using CNC machine tools, a tool path for the cutting tool
should be determined [3].

The total production time to cut any part using CNC
machine tools consist of travel time [3], which is the time to
move the CNC machine spindle between operations, switch
time which is the time to change the cutting tool for next
operation and the cutting time, the time that the cutting tool
moves with cutting speed in air or in material. Our purpose
is minimize the cutting time based on Parallel Ant Colony
Optimization.

In order to minimize the cutting time, the cutting tool
travel path (CTTP) [3] between operations should be
minimized. We were working on a continuous travel path, in
which the start point and the end point of each operation are
the same, and it mainly appears in hole – cutting operations
such as drilling, reaming and tapping.

A. System Development: Tool path programming
optimization strategy.

To exchange files between CAD/CAM packages, it is
necessary a translator, which takes place through
intermediate files, as show in Fig. 6. These files can be any
of the following standard formats: Drawing Exchange Files
(DXF), IGES files and STEP files [10].

Fig. 6 Exchange files between CAD/CAM packages.

Our system reads an input DXF file to obtain a set of
commands and coordinates for any part designed in a
CAD/CAM commercial package; this input DXF file is now
being processed by the Parallel Ant Colony Optimization
algorithm to generate a sequence of G commands for a CNC
drilling tool path. This implementation can be represented as
shown in Fig 7.

Fig. 7 CNC Tool path optimization for a drilling process.

B. DXF file interpretation

For an input DXF file, i.e., as shown in Fig 8. a translation
procedure must be done.

Fig. 8 3D CAD drawing.

In Fig. 9 a script containing a set of DXF commands that

represent a single hole of Fig. 8 is shown. This hole is
located at X = 1.06516 and Y = -1.5176 with a diameter of
1/8” in. The interpretation procedure can be represented by
the pseudocode showed in Fig. 10.

Fig. 9 DXF script describing a hole and its location.

0
SECTION
2
ENTITIES
0
CIRCLE
5
48
330
1F
100
AcDbEntity
8
0

Continuous
62
7
370
15
100
AcDbCircle
10
-1.0651610148
20
-1.5176053881
30
0.0
40

Engineering Letters, 20:1, EL_20_1_13

(Advance online publication: 27 February 2012)

__

Fig. 10 DXF interpretation procedure.

C. G code generation for the Cutting Tool Travel Path

The following procedure represents the generation of G
code sequence for the cutting tool travel path:

- Step 1. Read the coordinate of each node of the

optimized CTTP based on Parallel ACO.
- Step 2. Code the traverse motion command G00 and

then the X and Y coordinates of the first hole in the
CTTP.

- Step 3. For each coordinate in solution k, code G00
rapid move and then X and Y coordinates for the
next node.

- Step 4. If a change in tool is needed, then code M6
for a tool change and repeat steps 1 to 3. If no
change in tool is needed, then proceed with steps 1
to 3 until the cutting tool reaches the last hole in the
cutting travel tool path.

Our system generates this output file and then the user

can save this file with .NC extension.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we show the test results of our parallel
ACO algorithm on some PCB boards with a different
number of holes. The parameters in the test are set as
follows:

 Evaporation coefficient.
 Parameter to regulate the influence of .

 Parameter to regulate the influence of .

The number of ants is equal to the number of holes and the
number of processors is 6. Our experiment performs 50
trials on each problem. The experimental results are shown
in Figures 12, 14, and 15, where three TSP problems are
tested based on Parallel ACO and they are compared with a
classical ACO algorithm by using a single processor.

A. Parallel Implementation of ACO Analysis

1) Experiment I. PCB with 10 holes.
Table I shows the parameters values used in the first
experiment which consists of a PCB board with 10 holes.
Fig. 11 shows the first experiment, generating the optimized
tool path and Fig. 12 shows a graph representing these
experimental results. We can observe that the convergence
point for three different values of and is given by using
more than four processors while by using less than four
processors we can observe an average difference of 30mS.
After these points, further iterations do not provide

significant improvements in the execution time, considering
that we have only used six processors for all these three
experiments.

Fig. 11 Graphical results for experiment 1.

Fig. 12 Execution time according to the number of processors in
experiment 1.

2) Experiment II. PCB with 27 holes.
Table II shows the parameters values used in the second
experiment consisting in the optimization of the tool path of
a PCB board with 27 holes, and Fig. 13 shows the second
experiment, generating the optimizing tool path; Fig. 14
shows a graph representing these experimental results.

reader = ReadFromFile(file.dxf)

while(line2 ¡= “EOF”)
if line1 = 0 and line2 = “LINE”

LineModule(reader);
else if line1 = 0 and line2 = “CIRCLE”

CircleModule(reader);
GetLineCouple();

TABLE I
PARAMETERS FOR EXPERIMENT I

Description I-A I-B I-C

Num. Holes 10 10 10
Num. Ants 30 30 30
Iterations 30 30 30

Alpha 1 2 2.5

Beta 4 4.5 4

TABLE II
PARAMETERS FOR EXPERIMENT II

Description 2 – A 2 – B 2 – C

Num. Holes 27 27 27
Num. Ants 30 30 30
Iterations 30 30 30

Alpha 1 2 2.5

Beta 4 4.5 4

Engineering Letters, 20:1, EL_20_1_13

(Advance online publication: 27 February 2012)

__

Fig. 13. Visual representation of the resulting toolpath of the experiment 2.

Fig. 14. Execution time according to the number of processors in
experiment 2.

In this experiment, we can observe that there is no
difference using these three different values for and ;
however, the execution time consistently decreases as the
number of processors used increases.

3) Experiment III. PCB with 45 holes.
Table III shows the set of parameters that were used in the

third experiment which consists of a PCB board with 45
holes. The execution time according to the number of
processors for this experiment is showed in Fig. 15.

Fig. 15. Execution time according to the number of processors in
experiment 3.

In experiment III, we can observe a similar trend line as
experiment II, but we note that we have less execution time
difference between these three cases than in experiment I.
We can observe that for a 45 holes PCB, and can still
being the same as in experiment II.

It can easily be seen from Figures 12, 14 and 15 that
Parallel ACO computation is reduced due the parallel
computation. The reason for Parallel ACO’s high
optimization ability is that it can accelerate the convergence
by dividing the ants into smaller groups allocated in the
processors.
 We can observe that when the number of processors is
increased, the computing time can be reduced due to the
fewer ants assigned on each processor. But due to the
overhead of communication which increases the total time
of algorithm, the speedup of our algorithm cannot increase
linearly with the increasing of processor exactly, but there is
an excellent linear trend as shown in Fig. 16. This is in
conformity with the Amdahl’s Law [11].

In experiment 1 we can see that a difference occurs until
three processors are used, more than three processors may
not present a real difference between experiments. In
experiment 2 we can see that there is no difference between
experiments by changing the control parameters, and .

TABLE III
PARAMETERS FOR EXPERIMENT III

Description 3 – A 3 – B 3 – C

Num. Holes 45 45 45
Num. Ants 70 70 70
Iterations 70 70 70

Alpha 1 2 2.5

Beta 4 4.5 4

Engineering Letters, 20:1, EL_20_1_13

(Advance online publication: 27 February 2012)

__

Fig. 16. Speedup analysis.

B. Tool path optimization analysis

For a tool path optimization analysis, we present two cases
in which the PCB board area is very important; this means
that for a larger area, there is more difference on
manufacturing times. Figure 17 shows a HAAS
Automation® CNC machine used for our experiments. The
main idea is to compare our results against those obtained
using commercial software such as MasterCam®.

Fig. 17. HAAS Automation® CNC Machine.

The three experiments were achieved using two different
sizes of PCBs in order to use different lengths between
holes; so, we have the case A that consist of a PCB with an
area of , and the case B is a PCB with an area of

. For the case A, Fig. 18 shows a plot of cutting
time vs. number of holes. We can see that for 10 holes, there
is a difference of 1.6 minutes between a route generated by a
commercial package and our implemented algorithm;
furthermore, for a 35 holes to 45 holes PCB we can see a
reduction in the difference between these two algorithms.
In Fig. 19 the case B is shown, in the plot can be observed
that for a bigger area, more difference between these two
CAD/CAM systems for automatic NC programming.

Fig. 18. Manufacturing time analysis in case A.

Fig. 19. Manufacturing time analysis in case B.

VII. CONCLUSION

In this paper we presented a parallel implementation of
Ant Colony Optimization, to improve the efficiency by
means of increasing the speed up. The availability of
parallel architectures at low cost has widened the interest for
the parallelization of ACO algorithm.

Furthermore, the development of computer aided machine
tool programming has facilitated a great reduction in
manufacturing times. This paper finds an efficient sequence
of operation for a set of holes located in a PCB board that
achieves the shortest tool path. This path was formulated as
an application of the TSP. The incorporation of an algorithm
based on Parallel Ant Colony Optimization and TSP can be
applied to any similar problem, such welding and tapping,
and this can be included in commercial CAD/CAM
packages to optimize these tool paths during automatic
generation of CNC machine programs.

Engineering Letters, 20:1, EL_20_1_13

(Advance online publication: 27 February 2012)

__

ACKNOWLEDGEMENT

We would like to thank CETYS Universidad campus
Tijuana for supporting this research, providing access to
manufacturing equipment specifically a HAAS
Automation® CNC machine and training.

REFERENCES
[1] K. Castelino, P. K. Wright., “Tool path optimization for minimizing

airtime during machining”, Journal of Manufacturing Systems, Vol.
22, No. 3, pp. 173-180, 2003.

[2] F. Kolahan., and M. Liang, “Optimization of hole-making operations:
a Tabu-search approach”, International Journal of Machine Tools &
Manufacture, Vol.40, No. 12, pp. 1735-1753, 2000.

[3] J. E. A. Qudeiri, Al-Momani Raid, Mohamed Anouar Jamali and
Hidehiko Yamamoto, “Optimization Hole-cutting Operations
Sequence in CNC Machine Tools Using GA”. International
Conference on Service Systems and Service Management
(ICSSSM06), Troyes, France, 2006, pp.:501,506.

[4] M. Dorigo, T. Stützle. Ant Colony Optimization. MIT Press,
Cambridge, MA. 2004.

[5] L. Chen, Hai-Ying Sun, Shu Wang. “Parallel Implementation of Ant
Colony Optimization on MPP”. Proceedings of the Seventh
International Conference on Machine Learning and Cybernetics
Kunming: 2008

[6] B. Bullnheimer, G. Kotsis, C. Steauss, “Parallelization strategies for
the ant system”. High Performance and Algorithms and Software in
Nonlinear Optimization, Applied Optimization: 1998.

[7] Douglas Antony Louis Piriyakumar, Paul Levi. “A new approach to
exploiting parallelism in Ant Colony Optimization”. Proceedings of
2002 International Symposium on Micromechatronics and Human
Science: 2002.

[8] M. Randall. “A parallel implementation of Ant Colony Optimization”.
Parallel and Distributed Computing: 2002.

[9] C. Blum, M. Dorigo. “The Hyper – Cube Framework for Ant Colony
Optimization”. IEEE Transactions on SMC: 2004.

[10] P. Radhakrishnan, S. Subramanyan, V. Raju. “CAD/CAM/CIM”.
New Age International Publishers, 2000.

[11] L. Null, J. Lobur. The essentials of computer organization and
architecture. Jones and Barlett Publishers. 2006.

[12] M. Dorigo, V. Maniezzo, A. Colomi, “Ant System: Optimization by a
Colony of Cooperating Agents.” IEEE Transactions on Systems, Man
and Cybernetics-Part B. 1996.

[13] M. Dorigo, L.M. Gambardella., “Ant Colony System: a cooperative
learning approach to the traveling salesman problema.” IEEE Trans.
On Evolutionary Computation. 1997.

[14] M. Dorigo, L.M. Gambardella, “Ant colonies for the traveling
salesman problem”. BioSystems. 1997.

[15] M. Mattson. “CNC Programming: Principles and Applications.”
Delmar Cengage Learning. 2010.

[16] M. A. Porta García, O. Montiel, O. Castillo, R. Sepúlveda, P. Melin,
“Path planning for autonomous mobile robot navigation with ant
colony optimization and fuzzy cost function evaluation.” Appl. Soft
Comput. 9(3): 1102-1110 (2009)

[17] O. Castillo, R. Martinez-Marroquin, J. Soria, “Parameter Tuning of
Membership Functions of a Fuzzy Logic Controller for an
Autonomous Wheeled Mobile Robot Using Ant Colony
Optimization”. SMC 2009: 4770-4775

[18] R. Martínez-Soto, O. Castillo, J. Soria: “Optimization of Membership
Functions of a Fuzzy Logic Controller for an Autonomous Wheeled
Mobile Robot Using Ant Colony Optimization.” Evolutionary Design
of Intelligent Systems in Modeling, Simulation and Control 2009: pp.
3-16, 2009

[19] A. C. Martinez, O. Castillo, O. Montiel, “Comparison between Ant
Colony and Genetic Algorithms for Fuzzy System Optimization.” Soft
Computing for Hybrid Intelligent Systems 2008: pp. 71-86, 2008

Nataly Medina Rodríguez. She received his Engineering title in
Cybernetic Electronics from Centro de Enseñanza Técnica y Superior
(CETYS) and she obtained her M. Sc. Degree from the Instituto Politécnico
Nacional – CITEDI. Currently she is a professor at CETYS Universidad
campus Tijuana and a Ph.D. student in Computer Science in the field of
Intelligent Systems at Instituto Politécnico Nacional. She has published
papers about Ant Colony Optimization applied to combinatorial
optimization problems and robotics. Her research interests include
optimization, intelligent systems, robotics, neuroscience, human interface
devices, computer graphic, software design and electronics.

Oscar Humberto Montiel Ross. He received the M. Sc. From the Tijuana
Institute of Technology, Tijuana, México, and the Ph. D. degree in the
Universidad Autónoma of Baja California, Tijuana, México, both in
Computer Science, in 2000 and 2006 respectively. He has published papers
about evolutionary computation, Mediative Fuzzy Logic, Ant Colonies,
type-2 fuzzy systems, embedded systems, and mobile robotic. He works as
a researcher at the Centro de Investigación y Desarrollo de Tecnología
Digital (CITEDI) of the Instituto Politécnico Nacional. His research
interests include optimization, intelligent systems, and robotics. Dr. Montiel
is co-founder and an active member of HAFSA (Hispanic American Fuzzy
Systems Association), and the Mexican Chapter of the Computational
Intelligence Society (IEEE), he is member of the International Association
of Engineers (IANG).

Roberto Sepúlveda Cruz. He received the M. Sc. from the Tijuana
Institute of Technology, Tijuana,México, and the Ph. D. degree in the
Universidad Autónoma of Baja California, Tijuana, México, both in
Computer Science, in 1999 and 2006 respectively. He has published papers
about type-2 fuzzy systems, embedded type-1 and type-2 fuzzy logic
controllers, mobile robot navigation. He works as a researcher at the Centro
de Investigación y Desarrollo de Tecnología Digital of the Instituto
Politécnico Nacional. His research interests include type-2 fuzzy systems,
intelligent systems, and robotics. Dr. Sepúlveda is co-founder and an active
member of HAFSA (Hispanic American Fuzzy Systems Association), and
the Mexican Chapter of the Computational Intelligence Society (IEEE), he
is member of the International Association of Engineers (IANG).

Oscar Castillo. He holds the Doctor in Science degree (Doctor Habilitatus)
in Computer Science from the Polish Academy of Sciences (with the
Dissertation “Soft Computing and Fractal Theory for Intelligent
Manufacturing”). He has published over 130 research papers, u authored
books, 10 edited books, and 200 papers in conferences proceedings about
Soft Computing. He is a Professor of Computer Science in the Graduate
Division, Tijuana Institute of Technology, Tijuana, México. In addition, he
is serving as Research Director of Computer Science and head of the
research group on fuzzy logic and genetic algorithms. President of IFSA
(International Fuzzy Systems Association); he is also Vice-Chair of the
Mexican Chapter of the Computational Intelligence Society (IEEE).

Engineering Letters, 20:1, EL_20_1_13

(Advance online publication: 27 February 2012)

__

