
 

 
Abstract— In this paper, we present an efficient solution to 

determine the best sequence of G commands of a set of holes 
for a printed circuit board in order to find the hole-cutting 
sequence that shortens the cutting tool travel path. A Parallel 
proposal of Ant Colony Optimization was used to find an 
optimal travel path, then the new G-codes sequence is used 
instead the original sequence as part of the process program.  
This application can be formulated as a special case of the 
Traveling Salesman Problem (TSP). 
 

Index Terms— Ant Colony Optimization, ACO, Computer 
Numerical Control, CNC, Traveling Salesman Problem, TSP, 
drilling. 

I. INTRODUCTION 

 omputer Numerical Control (CNC) refers to the 
automation of machine tools, which is of primordial 

importance in any automated industrial process for 
manufacturing products. Today manual machine tools have 
been largely replaced by CNC machines where all 
movements of the machine tools are programmed and 
controlled electronically rather than by hand [15], reducing 
time and avoiding human errors.  The productivity of CNC 
machine tools is significantly improved by using Computer 
Aided Design (CAD) and Computer Aided Manufacturing 
(CAM) systems for automated Numerical Control (NC) 
program generation. Currently, many CAD/CAM packages 
that provide automatic NC programming have been 
developed for various cutting processes, being one of those 
process the hole – cutting operation or drilling. 

There are several studies that focus on the study of 
reducing the cutting time by optimizing some parameters 
such as part geometry, material and tool type. This paper 
analyzes the cutting time, which is the time that the cutting 
tool moves with cutting speed in air or in material. A survey 
of the literature shows that much research has been done on 
minimizing the cutting time [1, 2]; however, there is a lack 
of literature that studies the travel time between operations. 
In order to minimize the travel time, the cutting tool travel 
path between operations should be minimized.  
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This travel path can be formulated as a special case of the 
traveling salesman problem (TSP) [3]. 

II. ANT COLONY OPTIMIZATION FOR THE TRAVELING 

SALESMAN PROBLEM 

The TSP problem [13][14] is the problem of a salesman 
who, starting from his hometown, wants to find a shortest 
tour that takes him through a given set of costumer cities 
and then back home, visiting each customer city exactly 
once. The TSP can be represented by a complete weighted 
graph [4]  with  being the set of nodes 
representing the cities, and  being the set of arcs. Each arc 

 has assigned a value (length) , which is the 
distance between cities i and j. 

Ant Colony Optimization was introduced by Marco 
Dorigo [4]. Using very simple communication mechanisms, 
an ant group is able to find the shortest path between any 
two points by choosing the paths according to pheromone 
levels.  

After several years that ACO was introduced, many 
papers have described applications that use this algorithm.  

For example in robotic, in [16] the Simple ACO was 
applied to obtain the optimal path for a mobile robot, here 
was considered static and dynamic obstacle avoidance, a 
memory capacity for the ants was proposed, and a fuzzy cost 
function was used. In [17] and [18] the ACO was applied to 
tune fuzzy parameters of a fuzzy logic controller for a 
wheeled mobile robot, in [19] a comparison of ACO and 
Genetic Algorithms applied to fuzzy system optimization 
was presented. 

ACO metaheuristics can be applied to the TSP, where the 
pheromone trails are associated with arcs and therefore  
refers to the desirability of visiting city j directly after city i. 
The heuristic information is chosen as ; that is, 
the heuristic desirability of going from city i to city j is 
inversely proportional to the distance between the two cities. 
For implementation purposes, pheromone trails are collected 
into a pheromone matrix whose elements are the . 

Tours are constructed by applying the following simple 
constructive procedure to each ant: 

 
1. Each ant chooses, according to some criterion, a start 

city at which the ant is positioned. 
2. Each ant uses a pheromone and heuristic values to 

probabilistically construct a tour by iteratively 
adding cities that the ant has not visited yet, until 
all cities have been visited. 

3. Each ant goes back to the initial city. 
4. After all ants have completed their tour, they may 

deposit pheromone on the tours they have 
followed. 

Tool Path Optimization for Computer Numerical 
Control Machines based on Parallel ACO 

Nataly Medina-Rodríguez, Oscar Montiel-Ross, Roberto Sepúlveda, and Oscar Castillo 

C 

Engineering Letters, 20:1, EL_20_1_13

(Advance online publication: 27 February 2012)

 
______________________________________________________________________________________ 



 

In some cases, before adding pheromone, the tours 
constructed by ants may be improved by the application of a 
local search procedure. The above procedure can be 
represented by the following pseudocode showed in Fig. 1: 

 

 
Fig. 1 Tours are constructed by applying this simple constructive procedure 
to each ant: ACO Metaheuristic. 
 

A. Ant System 

There are two main phases in the Ant System (AS) 
algorithm [12]; these are the ants’ solution construction and 
the pheromone update. In AS a good heuristic to initialize 
the pheromone trails is to set them to a value slightly higher 
than the expected amount of pheromone deposited by the 
ants in one iteration; a rough estimate of this value can be 
obtained by setting, , where m is 
the number of ants, and  is the length of a tour 
generated by the nearest-neighbor heuristic. 

B. Tour Construction 

In AS, m ants concurrently build a tour of the TSP. 
Initially, ants are put on randomly chosen cities. At each 
construction step, ant k applies a probabilistic action choice 
rule, called random proportional rule, to decide which city is 
going to visit next. 

The probability with which ant k, currently at city i, 
chooses to go to city j is (1): 
   

  (1) 

 
Where  is a heuristic value,  and  are two 

parameters which determine the relative influence of the 
pheromone trail and the heuristic information, and  is the 
feasible neighborhood of ant k when being at city i,  that is, 
the set of cities that ant k has not visited yet. The probability 
of choosing a city outside  is 0. The role of the 
parameters  and  can be set by the following statements: 
 

- If , the closest cities are more likely to be 
selected (  is parameter to regulate the influence of 

). 
- If , only pheromone amplification is used, 

without any heuristic bias ( is parameter to 
regulate the influence of ). 

 

C. Update of pheromone trails 

After all the ants have constructed their tours, the 
pheromone trails are updated. This is done by first lowering 
the pheromone value on all arcs by a constant factor, and 
then adding pheromone on the arcs the ants have crossed in 
their tours.  

Pheromone evaporation is implemented by (2): 
 
  (2) 
 
Where  is the pheromone evaporation rate. After 
evaporation, all ants deposit pheromone on the arcs they 
have crossed in their as shown in (3): 
 

  (3) 

 
Where  is the amount of pheromone ant k deposits on 

the arcs it has visited it is defined by (4): 
 

  (4) 

 
Where  is the length of the tour  built by the k-th 

ant, is computed as the sum of the lengths of the arcs 
belonging to .  

III. PARALLEL IMPLEMENTATION OF ANT COLONY 

OPTIMIZATION 

The ACO algorithm can be formulated by the following 
sequential implementation as shown in Fig. 2: 

 

 
Fig. 2  Ant Colony Optimization extended sequential metaheuristic. 

 
The availability of parallel architectures at low cost has 

widened the interest for the parallelization of Ant Colony 
Optimization algorithm. In order to parallelize the ACO, it is 
more important to modify the structure of ACO to get better 
optimization effect rather than to transfer the sequential 
ACO into a parallelization schema [5]. 

The main purpose of parallel implementation of ACO is 
to obtain the high speedup and efficiency while the 
convergence and the ability of optimization are maintained 
or even improved. 

Some results on parallel Ant Colony algorithms have 
been reported recently. Bullnheimer [6] proposed two 
parallelization strategies of synchronous and asynchronous 
for ACO using the Traveling Salesman Problem. 
Piriyakumar in [7] introduced an asynchronous parallel 
Max-Min ACO associated with the local search strategy. 
Marcus Randal in [8] introduced a synchronous parallel 

procedure ACO Metaheuristic 
 Set parameters, initialize pheromone trails 
 while (termination condition not met) do 
   Construct Ant Solutions 
   Apply Local Search  
   Update Pheromones 
  end 
end 

procedure ACO Sequential Metaheuristic 
 begin 
 Initialize Parameters 
 for each cycle 
  for each ant 
   for each city 
                Build a solution k 
     Evaluate solution k 
    end for 
   end for 

Save Best Solution 
Update Trail 

 end for 
Print Best Solution 
end 
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strategy which assigns only one ant on each processor. 
Marco Dorigo in  [9] introduced a parallel ACO on the 
hyper – cube architecture by modifying the rule of updating 
the pheromone so as to limit the pheromone values within 
the range of [0,1].  

In this paper, we present a parallel implementation of 
ACO for CNC Tool path optimization generating a set of G 
commands. The general procedure consists on the 
interpretation of a DXF file as input, detecting commands 
related to the coordinates of all points; then this information 
is optimized by using Ant Colony Optimization and finally, 
our system generates the best route found by ants so we 
interpret this route by generating a set of G commands.  

IV. PARALLEL IMPLEMENTATION: PROBLEM FORMULATION 

The sequential algorithm contains a high degree of natural 
parallelism [6], the behavior of a single ant during one 
iteration is totally independent of the behavior of all other 
ants during that iteration. We will discuss a strategy called 
“synchronous (fork – join) algorithm”. 

A straight forward parallelization strategy for ACO is to 
compute the TSP tours in parallel; this would result in a fork 
– join structure as shown in Fig. 3. 
 

 
Fig. 3 Parallel implementation of Ant Colony Optimization in a message 
passing model. 

 
An initial process (master) would spawn a set of 

processes, one for each ant. After distributing initial 
information about the problem, each process can generate a 
single solution for each ant k. After finishing this procedure, 
the result is sent from each process back to the master 
process. The master process updates the trail levels by 
calculating the intensity of the trails and checks for the best 
tour found so far. A new iteration is initiated by sending out 
the updated trail levels. 
 Bullnheimer [6] says that ignoring any communication 
overhead, this approach would imply optimum (asymptotic) 
speedup as (5), assuming that an infinite number of 
processing elements (workers) is available, i.e., one process 
is assigned to one worker. In (5) m is the quantity of ants of 
the colony. 
 
 

 (5) 

 
 

Where  the computational complexity 
of the sequential algorithm for problem is size  and 

 is the computational complexity of 
the parallel algorithm for problem size m and for infinite 
system size. 

Communication overhead certainly cannot be disregarded 
and has to be taken into account, and further the system size 
(number of processing elements N) is restricted and is 
typically smaller than the problem size (number of ants m).  

Balancing the load among the workers is easily 
accomplished by assigning to worker  the 
processes (ants)   according to 

, thus each worker holds about the same 
number of processes and each process is of the same 
computational complexity [6]. 

When considering communication overhead, the ratio of 
the amount of computation assigned to a worker and the 
amount of data to be communicated has to be balanced [6].  

After each iteration, all completed tours and their lengths 
have to be sent to a central process (master). Then the new 
trail levels need to be computed and then broadcasted to 
each worker which only then can start a new iteration. 

 

A. Parallel Ant Colony Algorithm Framework 

In our parallel ACO, the ants are divided equally into P 
groups which are allocated into P processors. The ants in 
each group search for the best solution in its own processor 
independently as shown in Fig. 4. 
 

 
Fig. 4 Parallel Ant Colony Optimization framework. 

 
The main part of the algorithm is complexity   and 

the generation of one solution is complexity   where n 
is the number of jobs; these two operations are independent 
for each ant of a given cycle so they can be easily 
parallelized. 

Fig. 3 shows the behavior of our implementation of the 
ACO based on the parallel synchronous Ant System in a 
message passing model. At the beginning of the algorithm, a 
master process initializes the information, spawns k 
processes (one for each ant k), and broadcasts the 
information. At the beginning of a cycle the  matrix (the 
pheromone trail) is sent to each process and the 
computations such generation and evaluation of solutions, 
are done in parallel. Then, the solutions and their 
evaluations are sent back to the master, the  matrix is 
updated and a new cycle begins by the broadcasting of the 
updated  matrix. 

begin  
 An initial process initializes the pheromone 
matrix and some other control parameters. 
 while (not terminate) do 
  for each processor do in parallel 
   for each ant do 
    Build a solution k  

Evaluate solution k 
   end for 

end for
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V. CNC TOOL PATH GENERATION 

The TSP and Parallel ACO have been incorporated to find 
the shortest cutting tool travel path to operate the holes in 
the next figures. Fig. 5 shows our GUI developed with .NET 
Framework. 
 

 
Fig. 5 CNC Tool path optimization GUI. 

 
A number of commercial CAD/CAD packages that 

provide automatic NC programming have been developed 
and applied to various cutting processes. To cut any process 
using CNC machine tools, a tool path for the cutting tool 
should be determined [3]. 

The total production time to cut any part using CNC 
machine tools consist of travel time [3], which is the time to 
move the CNC machine spindle between operations, switch 
time which is the time to change the cutting tool for next 
operation and the cutting time, the time that the cutting tool 
moves with cutting speed in air or in material. Our purpose 
is minimize the cutting time based on Parallel Ant Colony 
Optimization. 

In order to minimize the cutting time, the cutting tool 
travel path (CTTP) [3] between operations should be 
minimized. We were working on a continuous travel path, in 
which the start point and the end point of each operation are 
the same, and it mainly appears in hole – cutting operations 
such as drilling, reaming and tapping. 

 

A. System Development: Tool path programming 
optimization strategy. 

To exchange files between CAD/CAM packages, it is 
necessary a translator, which takes place through 
intermediate files, as show in Fig. 6. These files can be any 
of the following standard formats: Drawing Exchange Files 
(DXF), IGES files and STEP files [10]. 

 

 
Fig. 6 Exchange files between CAD/CAM packages. 

 
 

Our system reads an input DXF file to obtain a set of 
commands and coordinates for any part designed in a 
CAD/CAM commercial package; this input DXF file is now 
being processed by the Parallel Ant Colony Optimization 
algorithm to generate a sequence of G commands for a CNC 
drilling tool path. This implementation can be represented as 
shown in Fig 7. 
 

 
Fig. 7 CNC Tool path optimization for a drilling process. 

 

B. DXF file interpretation 

For an input DXF file, i.e., as shown in Fig 8. a translation 
procedure must be done.  
 

 
Fig. 8 3D CAD drawing. 

 
In Fig. 9 a script containing a set of DXF commands that 

represent a single hole of Fig. 8 is shown. This hole is 
located at X = 1.06516 and Y = -1.5176 with a diameter of 
1/8” in. The interpretation procedure can be represented by 
the pseudocode showed in Fig. 10. 
 

 
Fig. 9 DXF script describing a hole and its location.  

 

0 
SECTION 
2 
ENTITIES 
0 
CIRCLE 
5 
48 
330 
1F 
100 
AcDbEntity 
8 
0

Continuous 
62 
7 
370 
15 
100 
AcDbCircle 
10 
-1.0651610148 
20 
-1.5176053881 
30 
0.0 
40 
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Fig. 10 DXF interpretation procedure.  

 

C. G code generation for the Cutting Tool Travel Path 

The following procedure represents the generation of G 
code sequence for the cutting tool travel path: 

 
- Step 1. Read the coordinate of each node of the 

optimized CTTP based on Parallel ACO. 
- Step 2.  Code the traverse motion command G00 and 

then the X and Y coordinates of the first hole in the 
CTTP. 

- Step 3. For each coordinate in solution k, code G00 
rapid move and then X and Y coordinates for the 
next node. 

- Step 4. If a change in tool is needed, then code M6 
for a tool change and repeat steps 1 to 3. If no 
change in tool is needed, then proceed with steps 1 
to 3 until the cutting tool reaches the last hole in the 
cutting travel tool path. 

 
Our system generates this output file and then the user 

can save this file with .NC extension. 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we show the test results of our parallel 
ACO algorithm on some PCB boards with a different 
number of holes. The parameters in the test are set as 
follows:  
 

 Evaporation coefficient. 
 Parameter to regulate the influence of . 

 Parameter to regulate the influence of . 
 

The number of ants is equal to the number of holes and the 
number of processors is 6. Our experiment performs 50 
trials on each problem. The experimental results are shown 
in Figures 12, 14, and 15, where three TSP problems are 
tested based on Parallel ACO and they are compared with a 
classical ACO algorithm by using a single processor. 
 

A. Parallel Implementation of ACO Analysis 

1) Experiment I. PCB with 10 holes. 
Table I shows the parameters values used in the first 
experiment which consists of a PCB board with 10 holes. 
Fig. 11 shows the first experiment, generating the optimized 
tool path and Fig. 12 shows a graph representing these 
experimental results. We can observe that the convergence 
point for three different values of  and  is given by using 
more than four processors while by using less than four 
processors we can observe an average difference of 30mS. 
After these points, further iterations do not provide 

significant improvements in the execution time, considering 
that we have only used six processors for all these three 
experiments. 
 

 
 

 
Fig. 11 Graphical results for experiment 1.  

 
Fig. 12 Execution time according to the number of processors in 
experiment 1.  

2) Experiment II. PCB with 27 holes. 
Table II shows the parameters values used in the second 
experiment consisting in the optimization of the tool path of 
a PCB board with 27 holes, and Fig. 13 shows the second 
experiment, generating the optimizing tool path; Fig. 14 
shows a graph representing these experimental results. 
 

 

reader = ReadFromFile(file.dxf) 
 

while(line2 ¡= “EOF”) 
if line1 = 0 and line2 = “LINE” 

LineModule(reader); 
else if line1 = 0 and line2 = “CIRCLE” 

CircleModule(reader); 
GetLineCouple(); 

TABLE I 
PARAMETERS FOR EXPERIMENT I 

Description I-A I-B I-C 

Num. Holes 10 10 10 
Num. Ants 30 30 30 
Iterations 30 30 30 

Alpha 1 2 2.5 

Beta 4 4.5 4 

 

TABLE II 
PARAMETERS FOR EXPERIMENT II 

Description 2 – A 2 – B 2 – C 

Num. Holes 27 27 27 
Num. Ants 30 30 30 
Iterations 30 30 30 

Alpha 1 2 2.5 

Beta 4 4.5 4 
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Fig. 13. Visual representation of the resulting toolpath of the experiment 2. 
 
 

 
Fig. 14. Execution time according to the number of processors in 
experiment 2. 

 
 

In this experiment, we can observe that there is no 
difference using these three different values for  and ; 
however, the execution time consistently decreases as the 
number of processors used increases. 
 
 

3) Experiment III. PCB with 45 holes. 
Table III shows the set of parameters that were used in the 

third experiment which consists of a PCB board with 45 
holes. The execution time according to the number of 
processors for this experiment is showed in Fig. 15. 

 
 

 

 
Fig. 15. Execution time according to the number of processors in 
experiment 3. 
 

In experiment III, we can observe a similar trend line as 
experiment II, but we note that we have less execution time 
difference between these three cases than in experiment I. 
We can observe that for a 45 holes PCB,  and  can still 
being the same as in experiment II.  

It can easily be seen from Figures 12, 14 and 15 that 
Parallel ACO computation is reduced due the parallel 
computation. The reason for Parallel ACO’s high 
optimization ability is that it can accelerate the convergence 
by dividing the ants into smaller groups allocated in the 
processors. 
 We can observe that when the number of processors is 
increased, the computing time can be reduced due to the 
fewer ants assigned on each processor. But due to the 
overhead of communication which increases the total time 
of algorithm, the speedup of our algorithm cannot increase 
linearly with the increasing of processor exactly, but there is 
an excellent linear trend as shown in Fig. 16. This is in 
conformity with the Amdahl’s Law [11]. 

In experiment 1 we can see that a difference occurs until 
three processors are used, more than three processors may 
not present a real difference between experiments. In 
experiment 2 we can see that there is no difference between 
experiments by changing the control parameters,  and .  
 

TABLE III 
PARAMETERS FOR EXPERIMENT III 

Description 3 – A 3 – B 3 – C 

Num. Holes 45 45 45 
Num. Ants 70 70 70 
Iterations 70 70 70 

Alpha 1 2 2.5 

Beta 4 4.5 4 
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Fig. 16. Speedup analysis. 

B. Tool path optimization analysis 

For a tool path optimization analysis, we present two cases 
in which the PCB board area is very important; this means 
that for a larger area, there is more difference on 
manufacturing times. Figure 17 shows a HAAS 
Automation® CNC machine used for our experiments. The 
main idea is to compare our results against those obtained 
using commercial software such as MasterCam®. 
 
 

 
Fig. 17. HAAS Automation® CNC Machine. 

The three experiments were achieved using two different 
sizes of PCBs in order to use different lengths between 
holes; so, we have the case A that consist of a PCB with an 
area of , and the case B is a PCB with an area of 

.  For the case A, Fig. 18 shows a plot of cutting 
time vs. number of holes. We can see that for 10 holes, there 
is a difference of 1.6 minutes between a route generated by a 
commercial package and our implemented algorithm; 
furthermore, for a 35 holes to 45 holes PCB we can see a 
reduction in the difference between these two algorithms.  
In Fig. 19 the case B is shown, in the plot can be observed 
that for a bigger area, more difference between these two 
CAD/CAM systems for automatic NC programming. 

 
Fig. 18. Manufacturing time analysis in case A. 

 
Fig. 19. Manufacturing time analysis in case B. 

VII. CONCLUSION 

In this paper we presented a parallel implementation of 
Ant Colony Optimization, to improve the efficiency by 
means of increasing the speed up. The availability of 
parallel architectures at low cost has widened the interest for 
the parallelization of ACO algorithm. 

Furthermore, the development of computer aided machine 
tool programming has facilitated a great reduction in 
manufacturing times. This paper finds an efficient sequence 
of operation for a set of holes located in a PCB board that 
achieves the shortest tool path. This path was formulated as 
an application of the TSP. The incorporation of an algorithm 
based on Parallel Ant Colony Optimization and TSP can be 
applied to any similar problem, such welding and tapping, 
and this can be included in commercial CAD/CAM 
packages to optimize these tool paths during automatic 
generation of CNC machine programs. 
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