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 Abstract − This article presents further testing and verification 

results for a previously introduced new intelligent regulation 
method that controls the power-electronic Buck converter 
utilizing a small-signal model of the pulse width modulation 
(PWM) switch. The implemented intelligent control method uses 
a fuzzy-PID controller that is tuned using the global search 
method of genetic algorithm (GA). The presented results further 
verifies that the previously used intelligent hierarchical 
regulation method using the GA-tuned fuzzy-PID controller 
produces the desired Buck performance for wide spectrum of 
parameter values despite the occurrence of high amplitude noise.  

 
 Index Terms − Buck DC-to-DC converter, fuzzy control, 

genetic algorithms, intelligent regulation, switching-mode step-
down converter. 

 
1. INTRODUCTION 

 
     Small-signal modeling of the open-loop power converters 
has recently received an increasing attention, due to the fact 
that these models are the basis to extract accurate transfer 
functions which are essential in the feedback control design 
[7, 31]. They are used to design reliable high performance 
regulators, by enclosing the open loop DC-to-DC power 
converters in a feedback loop, to keep the function of the 
system as close as possible to the desired performance by 
counteracting the outside noise in the (a) source voltages, (b) 
pulse width modulator (PWM) duty ratio, and (c) load current.  

Power converters generally operate in (a) Continuous 
Conduction Mode (CCM) or (b) Discontinuous Conduction 
Mode (DCM) [7, 31]. The CCM mode is desirable, as the 
output ripple of the DC-to-DC power converter is very small 
when compared to the DC steady state output. A linearized 
small-signal model is constructed to examine the dynamic 
behaviors of the converter, due to the fact that noise is of small 
signal variations. 
 
 
This work was accomplished with the support from the Deanship of Academic 
Research (DAR) at The University of Jordan under financial grant number 
(733). 
 
 
A. N. Al-Rabadi (Corresponding Author) is currently an Associate Professor 
with the Computer Engineering Department at The University of Jordan, 
Amman-11942-Jordan; phone: +962 79 6445364; e-mail: 
a.alrabadi@ju.edu.jo; http://www.ju.edu.jo/sites/academic/a.alrabadi. 
 
M. A. Barghash is currently an Associate Professor with the Industrial 
Engineering Department at The University of Jordan; e-mail: 
mabargha@ju.edu.jo. 
 

Using this small-signal model, the necessary open-loop 
transfer functions can be determined and plotted using Bode 
plots in order to use compensation to the PWM power 
converters, to meet the desired nominal operating conditions, 
through the application of various control methods. These 
control methods include: (a) frequency analysis in the classical 
control theory [32], (b) time analysis in the modern control 
theory [32], (c) both frequency analysis and time analysis 
domains in the post modern (digital and robust) control theory, 
and (d) soft computing (e.g., fuzzy logic, neural networks, and 
genetic algorithms) in the intelligent control methodology [2-
4, 8, 10, 13-15]. These control methods can be applied to the 
models of power converters that usually work with only one 
specific control scheme which is PWM through either duty-
ratio control or current programming control [31]. In this 
research, the duty-ratio control is used, in which the switch 
ON-time is controlled externally by comparing a saw tooth 
ramp with the controller voltage [31].  

Several modeling approaches of the PWM power converters 
do exist. These approaches are separated into three main 
categories. The first modeling category aims towards 
modeling the whole PWM converters. Examples for this 
category are (a) volt-second and current-second (charge) 
balance approach and (b) state-space averaging approach [7, 
31]. These approaches suffer from inaccurate results in the 
high-frequency range. The second modeling category aims 
more specifically towards modeling what is called the 
converter cell, that includes modeling the basic cell of the 
PWM converter, and ignoring the input DC voltage source and 
the output RC filter in the model, where the cell includes the 
PWM switch with the inductors and the capacitors associated 
with it. An example for this category is the averaged modeling 
approach [7, 31]. This approach also suffers from inaccurate 
results in the high-frequency range. The third modeling 
category aims more specifically to model the PWM switch. 

In general, the previously mentioned modeling approaches 
utilize four techniques. The first technique is the sampled-data 
representation technique. The second technique is the 
averaged technique. The third technique is the exact small-
signal analysis technique [7, 31], and the fourth technique 
combines the averaged technique and the sampled-data 
technique [7, 31]. The averaged technique represents the 
easiest and the most widely used technique. It can be used to 
determine the various impedances and transfer functions for 
the converters. The basic characteristics of this technique are 
(1) it uses the averaging technique of voltages and currents 
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and (2) it gives accurate low-frequency results but inaccurate 
high-frequency results.  

The production of averaged models can be accomplished 
for the nonlinear PWM switch as well for the converter system 
as a whole. This switch is usually a single-pole double-throw 
(SPDT) switch. It is this switch which is responsible for 
switching the converter from one configuration to another 
during each switching period. These models, derived for the 
PWM switch, are usually easier than the derivation of 
converter models. Yet, it has the limitation of the fact that not 
all of the converter topologies have the same PWM switch 
arrangement [31].      

Exact small-signal technique [7, 31] is very accurate to a 
wide range of frequencies. This technique can be applied to 
any converter system that is (a) periodic, (b) time-varying, and 
(c) piecewise linear. The trade off for the high accuracy occurs 
in the complexity of the matrix manipulations and the time 
consumed to produce the exact results. Yet, it has a great 
advantage of being automated through the use of computer- 
aided design (CAD) software packages.  

Sampled data technique is based on the generation of a 
difference equation that describes the propagation of a point 
on a converter waveform from one cycle to another. It is 
usually used to derive an accurate response for the PWM 
current mode control. Yet, the price is paid again through the 
limitation of the upper-frequency range, to be limited to half 
of the switching frequency. The fourth modeling technique 
combines the averaged technique and the sampled-data 
technique, in an effort to gain the main benefits of each 
technique. However, this technique, while improved, is also 
inaccurate [7, 31].  

Thus, it can be observed that there is a need to develop a 
model applicable to various regulating schemes, including the 
most used scheme which is the PWM duty ratio and current 
mode control scheme. Therefore, a small-signal modeling 
approach which is applicable to any power converter system 
represented as a two-port network has been introduced [7]. 
This was done through the modeling of the nonlinear part in 
the power converter system, which is the PWM switch.  

To deal with reasoning, that is approximate rather than 
exact, fuzzy logic is used which is a form of many-valued 
logic and is derived from fuzzy set theory. In contrast with 
"crisp logic", where binary sets have two-valued logic, fuzzy 
logic variables may have a truth value that ranges in degree 
between “0” and “1”. In another formulation, one can point 
out that fuzzy logic is a superset of the conventional (Boolean) 
logic that has been extended to handle the concept of partial 
truth which is the truth values between completely true and 
completely false. In addition, when linguistic variables are 
used, these degrees can be managed by specific functions.  

Fuzzy logic has been applied successfully into several fields 
in social and technical sciences such as in social psychology, 
expert systems, artificial intelligence, control theory and 
engineering [1, 6, 14, 17, 19-20, 25, 28, 34-35, 38-39, 43, 45, 
47] that lead to the design of many variants of fuzzy 
controllers that effectively control noisy systems. 

The global search heuristic called genetic algorithm (GA) 
mimics the process of natural evolution. This heuristic 
algorithm is frequently used to generate useful solutions to 
several optimizations and search problems that are widely 
used in many applications such as in bioinformatics, 
computational sciences, economics, mathematics, physics, and 
engineering [13-14, 18, 21-22, 24, 26-27, 29, 33, 36, 41-42, 
44, 48, 50]. Genetic algorithms belong to the larger class of 
evolutionary algorithms (EA), which generate solutions to 
optimization problems using naturally-inspired operations 
such as inheritance, mutation, selection, and crossover.  

A typical GA requires (a) a genetic representation of the 
solution domain and (b) a fitness function to evaluate the 
solution domain. In GA, a population of strings called 
chromosomes or genotype of the genome, which encode 
candidate solutions to an optimization problem (called 
individuals, creatures, or phenotypes), evolves toward better 
solutions. Usually, solutions are represented as strings of “0”s 
and “1”s, but other encoding schemes are also used. The 
evolution usually starts from a population of randomly 
generated individuals and occurs in generations, where, in 
each generation, the fitness of each individual in the 
population is evaluated, multiple individuals are stochastically 
selected (based on their fitness), and then modified using the 
corresponding GA operations to form a new population. The 
new population is then used in the next iteration of the GA, 
where usually the GA terminates when either a maximum 
number of generations have been produced or a satisfactory 
fitness level for the population has been reached. 

Fig. 1 illustrates the layout of the Buck-based control 
method that is used in this article. In Fig. 1, the first layer 
presents the state-space representation of the Buck converter, 
the second layer presents the GA-based settings to achieve the 
needed dynamic performance, and the third layer presents the 
implemented fuzzy-based PID controller.  

 
Fuzzy-PID Control 
GA-Based Settings 

Buck Converter: {[A], [B], [C], [E]} 

 
Fig. 1. Buck power-electronic converter hierarchical control 
method which is used in this article. 

 
Although several previous approaches have been presented 

for the purpose of controlling switching-mode converters [5, 
9, 11-12, 16, 30-31], the intelligent control method which is 
presented in this research using GA-settings of the fuzzy-PID 
controller presents further additional testing and verification 
results to the previously obtained ones [13, 14] using 
intelligent Buck regulation for wide spectrum of parameter 
values despite the existence of high-amplitude noise. 
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The remainder of this article is organized as follows: 
Section 2 presents basic background on the Buck power 
converter, fuzzy logic, and genetic algorithms. Section 3 
presents the illustration of the used method of the genetic 
algorithm-based settings of the fuzzy-PID controller for 
controlling the utilized Buck converter. Section 4 presents the 
simulation results for the application of GA-tuned fuzzy-PID 
controller on the state-space model of the Buck converter for 
both of the input-to-output and control-to-output transfer 
functions in the existence of high-amplitude noise. 
Conclusions and future work are presented in Section 5.    

 

2. BACKGROUND 
 

Important background on the DC-to-DC step-down Buck 
converter, fuzzy logic and genetic algorithms, that will be 
utilized in later sections, is presented in this section. 

 

2.1. Switching Mode Power Supply: The Application of the 
Averaged Modeling Approach and the New Small-Signal 
Model for the PWM Converters  

Various averaged modeling techniques used to model the 
PWM converters do occur. These techniques include (a) volt-
second and current-second balance approach, and (b) state-
space averaging approach [7, 31]. These techniques are used 
to model the converter systems as a whole, as well as to model 
the pulse width modulation (PWM) switch by itself. Yet, these 
techniques are valid for the low-frequency range, and they 
give inaccurate results for the dynamic behaviors of the power 
converters in the high-frequency ranges [7, 31]. Another 
modeling approach that focuses on modeling the converter-
cell, instead of the converter as a whole, is used to get 
averaged models for the PWM converters. This approach is 
also useful for the low-frequency ranges, but not useful for the 
high-frequency ranges. One major advantage of these 
techniques is the fact that they are easy to implement, and the 
results obtained are not in complicated forms. 

 

2.1.1. The Averaged Modeling Approach and its 
Application upon the Buck DC-to-DC Power Converter 

Averaged modeling approach aims to produce an averaged 
model for a specific cell of the PWM converters. This cell is 
shown in Fig. 2, where this basic cell is used to explore the 
DC behaviors and the AC small-signal dynamic behaviors of 
the PWM Buck converter. 

       
Fig. 2. The fundamental cell of the PWM converter. 

 

 
 

Fig. 3. The DC and AC small-signal averaged model of the 
converter-cell that was shown in Fig. 2. 
 

 The DC and AC small-signal averaged model of the 
converter-cell which is shown in Fig. 2, can be produced as 

shown in Fig. 3, where D is the DC value of the duty ratio, d̂  
is the small-signal perturbation of the duty ratio, and V32 is the 
DC voltage between terminals 3 and 2.  

The AC small-signal and DC averaged model, shown in 
Fig. 3, will be used to derive the corresponding control-to-
output, input-to-output, input impedance, and the control-to-
input current transfer functions for the Buck converter. Also, 
the averaged model will be used to derive the input-to-output, 
control-to-output, input impedance, and control-to-input 
current average transfer functions for the PWM Buck 
converter. Fig. 4 shows a typical Buck converter. 

One assumes a small-signal perturbation gv̂ , in the DC 

voltage source Vg, and that |ˆ||| gg vV  . After the 

implementation of the averaged model that was shown 
previously, we get the following small-signal model for the 
PWM Buck converter as shown in Fig. 5. 

By nulling the input gv̂ , we get the following control-to-

output transfer function [7]: 

2)/(1

1
ˆ

ˆ

LCssRL
V

d

v
g
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                                   (1) 

Also, by nulling the input d̂ , we get the following input-to-
output transfer function [7]: 

 
 

 
 

Fig. 4. The DC-to-DC power-electronic Buck converter. 
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Fig. 5. The AC small-signal model of the Buck converter 
operating in the continuous conduction mode. 
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There are other transfer functions of interest for the Buck 
converter such as input impedance and control-to-input current 

transfer functions. To get the input impedance ( ivg
ˆ/ˆ ), we 

null the input d̂ , so we get the following equation [7]: 
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To obtain the control-to-input current transfer function ( di ˆ/1̂ ), 

we null the input gv̂ , so we get the transfer function [7]:    
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2.1.2. New Method for Obtaining an Exact Model of the 
PWM Switch in the Duty Ratio Programming Mode 

A new approach is developed to formulate a new model for 
the PWM nonlinear switch [7] within this subsection. The 
Buck converter will be used now as the basic model to extract 
the corresponding two-port network parameters. The main 
reason that the Buck is used over the other PWM converters is 
the fact that the Buck converter is a second order system with 
a simple structure. This will be reflected upon the simplicity of 
the results that will be obtained. 

Due to the fact that the ripple voltage is comparatively 
much smaller than the DC voltage across the output capacitor 
(as the Buck converter is operating in the CCM), the capacitor 
will be replaced with a constant DC voltage source Vc´p. This 
is illustrated in Fig. 6. 

As can be observed from Fig. 6, the two-port augmented 
equations can be written as follows: 

 
Fig. 6. An alternative Buck configuration. 

 

 
Fig. 7. Circuit model for Equations (5) and (6). 

 

               divyvyi idpcioapia
ˆˆˆˆ

'                                         (5)                  

dvvgizv odapvfcopc
ˆˆˆˆ '                                                                      (6) 

As observed from Fig. 7, a circuit model for the two-port 
augmented equations, which are represented by Equations (5) 
- (6), can be constructed. 

Developing a new model for the PWM switch, which is the 
nonlinear part of the PWM converter, is the main objective. 
This model can be constructed directly by replacing the values 
of the parameters {yi, yio, iid, zo, gvf, vod} in their simplest form 
[7] in Equations (5) - (6). Thus, the mathematical model will 
be as follows [7]:  
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                                   (8) 

One can note that the parameter zo represents an inductor. 
Thus, we can “pull” the zo parameter outside the circuit model, 
which is equivalent to the mathematical model which is 
represented by Equations (7) - (8), as the zo parameter is 
merely an inductor impedance, which is then multiplied by the 

corresponding path current cî , to form a voltage source (zo cî ) 

in series with the voltage sources (gvf apv̂ ) and (vod d̂ ). The 

result of this process is shown in Fig. 8. 

 
Fig. 8. A derived new circuit model. 
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Fig. 9. Circuit model for the PWM switch. 

 
As observed from Fig. 8, we can recognize that the circuit 

model between terminals {a, p, c} is merely the switch 
between these terminals in the original Buck converter circuit. 
So, the equivalent switch model in terms of the perturbations 

{ apv̂ , 
pc

v 'ˆ , d̂ } is shown in Fig. 9. Now we need to obtain the 

switch model in terms of the perturbations { apv̂ , cpv̂ , d̂ } 

instead of the perturbations { apv̂ , 
pc

v 'ˆ , d̂ }. To do so, we note 

from Fig. 8 that: 

ccppc
iLjvv ˆˆˆ '                                                                                 (9) 

 
As can be seen from Fig. 8, we note that the common node 

(c´) corresponds to the node (c´) in the Buck converter in Fig. 
6. After multiplying both sides of Equation (9) by the 
parameter yio, we get:  

ccpiopcio iDvyvy ˆˆˆ '                                                                     (10) 

Therefore, we can replace the term {
ccpio iDvy ˆˆ  } instead 

of the term {yio pc
v 'ˆ } in the previously derived switch model 

shown in Fig. 9, in order to make the new model contains the 

perturbations { apv̂ , cpv̂ , d̂ } instead of the perturbations 

{ apv̂ , 
pc

v 'ˆ , d̂ }. The new switch model will be constructed as 

shown in Fig. 10. 
  To reduce the number of the dependent current sources 

that appear in the new switch model, which are four dependent 
current sources, we will try to reduce the number of terms in 
the previous mathematical switch model. One has:  

 

 
Fig. 10. Alternative circuit model for the PWM switch. 

 
 

 
 

Fig. 11. The new small-signal model of the PWM switch. 
 

apapcp vDdVv ˆˆˆ                                                                              (11) 

and as ( dvvgizv odapvfcopc
ˆˆˆˆ '  ), we obtain: 

capappc
iLjvDdVv ˆˆˆˆ '                                                    (12) 

        

To develop the first reduced mathematical switch model, we 

note that divyvyi idpcioapia
ˆˆˆˆ

'  . Substituting Equation 

(12) in Equation (5), and after the collection of the similar 
terms, we get the following reduced-form equation:  
 

cioidapioapioia iLjydiVyvDyyi ˆˆ)(ˆ)(ˆ      (13)  

 
One obtains the following equation [7] by substituting the 

values of {yi, yio, iid} in Equation (13):  
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Equation (11) is the other equation of the model. So, 

Equations (11) and (14) represent the final reduced 
mathematical model of the PWM switch, replacing the model 
represented in Fig. 9. The final equivalent circuit model of the 
switch mathematical model (which is represented by 
Equations (11) and (14)) is as shown in Fig. 11 [7], where: 
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    Figure 11 shows the new switch model which is expected to 
be an exact small-signal model since the mathematical 
equations, upon which the whole derivation process was built, 
are exact. Also, one notes that two of the dependent current 
sources are frequency-dependent, which is uncommon for 
current or voltage dependent sources. 
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Fig. 12. Equivalent circuit model of the PWM Buck converter, 
which is obtained through the application of the new small-
signal model of the PWM switch. 

 
2.1.3. Examining the New Small-Signal Model: The 
Implementation of the New Small-Signal Model of the 
PWM Switch on the Buck DC-to-DC Power Converter  

The new small-signal model of the PWM switch, that was 
developed in the previous sub-section, will be examined in 
this subsection on the PWM Buck converter. The control-to-
output, input-to-output, input impedance, and control-to-input 
current transfer functions will be derived for the Buck 
converter, using the new small-signal model of the PWM 
switch. These transfer functions will be compared to the 
corresponding transfer functions for the averaged modeling 
approach and the exact transfer functions for the Buck 
converter. 

Applying the PWM switch model that was developed 
previously for the Buck power converter, one obtains the 
equivalent circuit model as shown in Fig. 12. 

One assumes that the input DC voltage source, Vg, has 
small-signal perturbation, gv̂ , and that |ˆ||| gg vV  . To 

determine the system quadruple {[A], [B], [C], [E]} for the 

Buck model shown in Fig. 12, for the inputs d̂ and gv̂ , we 

null the DC voltage source Vg. Then, the following equations 
can be developed for the Buck model shown in Fig. 12, where 

lî  is the inductor current, cî  is the capacitor current, and oî  is 

the output current that flows in the output resistor. Hence, we 
have the following equations:  
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The corresponding output equation is ( co vvy ˆˆ  ). For the 

converter states x and inputs u, where x =
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the system quadruple {[A], [B], [C], [E]} will be [7]: 
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We null the input gv̂  in order to obtain the control-to-

output transfer function. The new system quadruple {[A], [B], 
[C], [E]} will be as follows [7]: 

A= 










1/RC  1/C

1/L         0
                                                  (21) 

B= 







0    

/LV  g
                                                            (22) 

C=  1       0                                                              (23) 

E=  0                                                                      (24) 
 

In order to find the control-to-output transfer function from 
the system quadruple represented by Equations (21) - (24), we 
apply the Laplace transformation to both sides of the state and 
output equations represented by system state-space equations 

)()()( tButAxtx   and )()()( tEutCxty  . After re-

arranging the resulting terms, we get the following general 
input-to-output transfer function: 

EBAsC
u

y
 1)( Ι                                            (25) 

Applying Equations (21) - (24) in Equation (25), for the 
circuit values of {Vg = 15 V, R = 18.6  , D = 0.4, fs = 40.3 
kHz, D´ = 1 – D = 0.6, L = 58 µH, C = 5.5 µF}, and to 
investigate the accuracy of the new PWM switch model, we 
compare the control-to-output frequency response plots of the 
PWM Buck converter, which is obtained through the 
application of the new PWM switch small-signal model, with 
both of the exact and the averaged control-to-output frequency 
responses, as shown in Fig. 13. 

We null the input d̂  in order to obtain the input-to-output 
transfer function. The system quadruple {[A], [B], [C], [E]} 
will be as follows [7]: 

A= 










1/RC  1/C

1/L         0
                                                  (26) 

B = 







0   

D/L
                                                            (27) 

C =  1       0                                                            (28) 

E =  0                                                                    (29) 
By the application of Equations (26) - (29) in  Equation 

(25), for the circuit values of {R = 18.6  , D = 0.4, fs = 40.3 
kHz, D´ = 1 – D = 0.6, L = 58 µH, C = 5.5 µF}, and to 
investigate the accuracy of the new PWM switch model, we 
compare the input-to-output frequency response plots of the 
PWM Buck converter, which is obtained through the 
application of the new PWM switch small-signal model, with 
both of the exact and the averaged input-to-output frequency 
responses, as shown in Fig. 14. 
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Fig. 13. The control-to-output magnitude and phase frequency response of the Buck converter operating in CCM: exact (solid 
line), averaged (dotted line), and the new model (dashed line), where inner parallel lines correspond to the values in plots. 
 
 

One can note, from the previous frequency response plots 
for both of the control-to-output and the input-to-output 
transfer functions of the PWM Buck converter which is 
operating in the CCM, that an excellent match occurs between 
the exact and the new model results, as well as between the 
averaged and the new model results.  

The observed results indicate, for the time being, that the 
newly utilized small-signal model of the PWM switch is, in 
fact, an accurate model [7].  

The effect of the new source coefficients h1 and h2 that exist 
in the new model of the PWM switch, does not appear in the 
case of the control-to-output and input-to-output transfer 
functions. So, we need the input impedance and the control-to-
input current transfer functions to investigate the effect of the 
new source coefficients h1 and h2, respectively. 

Referring to Fig. 12, and considering the input current aî  to 

be the output, we get the following output equation aiy ˆ . 

For the converter states x and the inputs u, where 
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u , the system quadruple {[A], [B], [C], [E]} will 

be as follows [7]: 
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A , 










0           0  

/LV   D/L g
B ,    0       DC , 

 21 h       hE .  
 

One nulls the input gv̂  in order to find the control-to-input 

current transfer function. Thus, the new system quadruple 
{[A], [B], [C], [E]} will be as follows [7]: 

 













1/RC  1/C

1/L         0
A                                                  (30) 











0    

/LV  g
B                                                            (31) 

 
 0       DC                                                          (32) 

 2hE                                                                   (33) 
 

                      
 

Fig. 14. The input-to-output magnitude and phase frequency response of the Buck converter operating in CCM: exact (solid 
line), averaged (dotted line), and the new model (dashed line), where inner parallel lines correspond to the values in plots. 
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Fig. 15. The control-to-input current magnitude and phase frequency response of the Buck converter operating in CCM: exact 
(solid line), averaged (dotted line), and the new model (dashed line), where inner parallel lines correspond to the values in plots. 
 

One uses the general input-to-output transfer function which 
is represented by Equation (25) in order to find the control-to-
input current transfer function from the system quadruple 
represented by Equations (30) - (33).  

Applying Equations (30) - (33) in Equation (25), for the 
circuit values of {Vg = 15 V, R = 18.6  , D = 0.4, fs = 40.3 
kHz, D´ = 1 – D = 0.6, L = 58 µH, C = 5.5 µF}, and to 
investigate the accuracy of the new PWM switch model, we 
compare the control-to-input current frequency response plots 
of the PWM Buck, which is obtained through the application 
of the new PWM switch small-signal model, with both of the 
exact and the averaged control-to-input current frequency 
responses, as shown in Fig. 15. 

In order to obtain the input impedance transfer function, we 

null the input d̂ . Thus, the system quadruple {[A], [B], [C], 
[E]} will be as follows [7]: 













1/RC  1/C

1/L         0
A                                                 (34) 











0   

D/L
B                                                              (35) 

 0       DC                                                          (36) 

 1hE                                                                   (37) 
 
 Applying Equations (34) - (37) in Equation (25), for the 

circuit values of {Vg = 15 V, R = 18.6 , D = 0.4, fs = 40.3 
kHz, D´ = 1 – D = 0.6, L = 58 µH, C = 5.5 µF}, and to 
investigate the accuracy of the new PWM switch model, we 
compare the input impedance frequency response plots of the 
PWM Buck, which is obtained through the application of the 
new PWM switch small-signal model, with both of the exact 
and the averaged input impedance frequency responses, as 
shown in Fig. 16. 

 We see, from the previous frequency response plots of the 
transfer functions of the PWM Buck converter operating in the 
CCM, that a good match occurs between the exact and the  

 

 
new model results, as well as between the averaged and the 
new model results, for the frequency range up to half of the 
switching frequency [7], although a mismatch occurs between 
the exact and the new model results, as well as between the 
averaged and the new model results, for the frequency range 
higher than half of the switching frequency [7].  

In an overall performance evaluation, the new small signal 
model behaves in a much accurate response than the older 
averaged modeling approach.  
 

2.2. Fuzzy Logic  
Computational fuzzy logic is considered as an efficient tool 

for embedding structured human knowledge into useful 
algorithms that has a large number of existing applications in 
human sciences, natural sciences and engineering applications 
[1, 6, 14-15, 17, 19-20, 23-25, 28, 34-35, 37-40, 43-47, 49]. It 
is a precise engineering tool developed to do a good job of 
trading off precision and significance. As in human reasoning 
and inference, the truth of any statement, measurement, or 
observation is a matter of degree. This degree is expressed 
through membership functions that quantify (i.e., measure) the 
degree of belonging of some (crisp) input to given fuzzy 
subsets. Fig. 17 shows the difference between crisp set used in 
crisp logic and fuzzy set used in fuzzy logic. 

Membership or belonging is considered as a fundamental 
concept within the field of set theory. In the classical crisp 
convention, there are two possibilities that x belongs to A or it 
does not. This can be compared to fuzzy notion where a 
membership function describes the degree of belonging. Thus, 
crisp sets all have precise boundaries, where fuzzy sets have 
imprecise boundaries. The membership µ is “0” or “1” for the 
crisp sets and ( 10   ) for the fuzzy sets. For Fig. 17(a), the 

set is crisp in that:  

  


 


otherwise,0

,1 41 xxx
                                             (38) 

and for Fig. 17(b), the set is fuzzy in that:  
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Fig. 16. The input impedance magnitude and phase frequency response of the Buck converter operating in CCM: exact (solid 
line), averaged (dotted line), and the new model (dashed line), where inner parallel lines correspond to the values in plots. 
 

 













otherwise,0

,1
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32

4321
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                 (39) 

 

As in crisp sets, fuzzy sets are subject to set operations such 
as union, intersection and complement. There are many 
functions that describe the union and intersection operations, 
where the mostly used ones in fuzzy logic are the max and min 
functions as follows: 

 
       Union:    )](),(max[)()( xxxx BABAC          (40) 

    Intersection:
  

)](),(min[)()( xxxx BABAC       (41) 
 

Fuzzy logic, as previously stated, is based on representing 
human reasoning as a classical binary relation. The concept of 
relation is general; it is based on the concept of ordered pairs 
(a, b), where a relation from A to B (or between A and B) is 

any subset   of the Cartesian product A x B. We say that 

{ BbAa  , } are related by .  

Usually, fuzzy logic is expressed in terms of (if … and … 
then) form.  Fig. 18 shows an example of this (if … and … 
then) rule where the actual meaning of the (if … and … then) 
rules is (if x is Ai and y is Bj then z is Ck). 

 

 
 

                     (a)                                            (b) 
Fig. 17. An example of two types of sets: (a) crisp set and (b) 
fuzzy set. 

 

 
 

The mathematical fuzzy interpretation of AND is the 
intersection. For example, the intersection of Ai and Bj is 
treated using the min function as follows: 

 

  ),min(
jiji BABA                                  (42) 

 

The membership value α is called the power of the rule or the 
firing power. This part is then intersected with Cij to simulate 
the “then” part of the (if…and…then) rule. This intersection is 
expressed as a clipped fuzzy rule as shown in Fig. 19. 

A crisp input can cause the firing of several rules. This is 
interpreted as the aggregation or union of these rules, where 
the final part of the aggregation of the rules is usually 
interpreted as the max operation. An example of rule 
aggregation is shown in Fig. 20, and Fig. 21 shows an 
example of firing rules within fuzzy logic.  

Defuzzification is the final part that is usually utilized 
within fuzzy implementation. The defuzzification process has 
several techniques including the center of area method where 
we divide the area into equally spaced rectangles and for each 
we find the membership function. This is shown for the rule 
aggregation in Fig. 20 as follows: 
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An Cn,1 … Cn,j Cn,j+1 … Cn,m 

 

Fig. 18. An example of a decision table which is represented 
by (if … and … then) rules. 
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When implementing defuzzification using the center of area 

method, one obtains, for the above example, the following 
defuzzified value: 
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2.3. Genetic Algorithms 
    Basic background for the evolutionary-based algorithms is 
presented in this subsection. In general, evolutionary 
computing (EC) is one type of “black box” global 
optimization methods that has been successfully implemented 
to solve for many difficult nonlinear problems. An EC 
implements the idea which was proposed by Darwin as an 
explanation of the biological world surrounding us which is 
the "Evolution by Natural Selection". By evolution, we mean 
the change of the genes that produce a structure. The result of 
this evolution is the survival of the fittest and the elimination 
of the unfit. Darwin's theory of evolutionary selection states 
that variation within species occurs randomly and that the 
survival or extinction of each organism is determined by that 
organism's ability to adapt to its environment. 

This powerful and simple EC idea has been implemented in 
algorithms such as in genetic algorithms (GA) and genetic 
programming (GP), and found wide spectrum of applications 
in several natural and applied fields [13-14, 18, 21-22, 24, 26- 
27, 29, 33, 36, 41-42, 44, 48, 50].  

The difference between GA and GP is the representation of 
the problem and consequently the set of genetic operators used 
to obtain the solution; GA uses string representation and the 

 

 
                            (a)                                              (b) 
Fig. 19. Clipped triangular and trapezoidal membership 
functions. 

 
consequent genetic operators, while GP uses tree 
representation and the consequent genetic operators. Fig. 22(a) 
represents the general optimization using the EC method, 
where iterations on this flow diagram are made until the actual 
output matches exactly the desired output (i.e., without error) 
or the actual output mismatches the desired output within an 
acceptable range of error. 

The idea of genetic algorithms is based on the simulation of 
life, where the first step is usually to represent the problem 
variables as chromosomes also called genomes. The common 
operations within a GA are as follows (cf. Fig. 22(b)):  
(a) Initialization: within this step, the chromosomes are 
generated randomly to cover the search space and in some 
special cases the population is seeded with special solution or 
optimal solutions. 
(b) Selection: there are several types used for selection such 
as: (1) fitness proportionate selection or roulette-wheel 
selection (a single random number is used), (2) stochastic 
universal sampling (multiple random numbers are generated 
for selection), (3) tournament selection (best individuals are 
always selected), (4) truncation selection (a portion of the 
population is selected), and (5) elitism or elitist selection 
(where the best individual(s) are always selected). 
(c) Crossover: this operation involves the combination of 
genes from two parents to produce offsprings. There are 
several variants of crossover: (1) single point crossover where 
a fixed position is selected in both parents and then the 
contents beyond that crossover point are swapped, (2) multiple 
crossover points, (3) cut and slice crossover (change in length 
between the parents and the children), and (4) uniform 
crossover where a random number is generated and, if it is 
greater than a threshold value, then swapping is performed. 
(d) Mutation: this process involves the reproduction of an 
erroneous copy of the individual, in which a random number is 
generated where if it is greater than a threshold value then the 
zero binary value is changed to one. This part is added to 
increase the diversity. 
(e) Copying: this process involves the reproduction of an exact 
copy of the individual. 
(f) Termination: where a certain number of generations is 
reached, or an acceptable solution is reached, or no change in 
the optimal solution is reached. 
 

 
Fig. 20. An example of fuzzy rule aggregation with firing 
powers α1 = 2/3 and α2 = 1/6. 
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Fig. 21. Several rules applied in fuzzy logic with various firing powers τi. 
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(b)  

 

Fig. 22. Evolutionary computation (EC) and GA: (a) block diagram showing the mechanism of problem solving utilizing EC, 
and (b) flow graph of a generally-used GA. 
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A general flow diagram of a GA is illustrated in Fig. 22(b), 
where Run is the current run number, N is the maximum 
number of runs, Gen. is the current generation number, M is 
the population size, i is the current individual in the 
population, Pr is the probability of reproduction, Pc is the 
probability of crossover, Pm is the probability of mutation 
where (Pr + Pc + Pm = 1.0). In Fig. 22(b), the result of looping 
over Gen. is the best-of-run individual, the result of looping 
over Run is the best-of-all individual, and the result of looping 
over i is the best-of-generation individual. Iterations in Fig. 
22(b) continue until an optimal solution is obtained. Since the 
EC algorithms are try-and-check (i.e., try-and-error) 
probabilistic search algorithms (i.e., depends on the reduction 
of error in the search process to produce a solution), the EC 
program may have to perform so many iterations (as in Fig. 
22(b)) to produce the desired solution to a problem. Thus, and 
although EC methods produce in many occasions new 
solutions that humans never made before, it is in general 
highly advisable to consider EC as one final option for 
problem solving (i.e., when other methods fail to solve the 
problem), since EC acts like a “black box” that produces 
solutions without showing a detailed step-by-step method. 

From Fig. 22(b), the evolutionary algorithm has many 
variants. Yet, a canonical form for all of these variants exist. 
Fig. 23 illustrates one possible canonical diagram for 
evolutionary computing, where selecting survivors means (1) 
selection of parents and (2) generation of offspring. 

The EC canonical diagram, shown in Fig. 23, characterizes 
the canonical implementation of various types of EC such as 
GA, and as stated previously, the only difference between GA 
and other EC (such as the GP) will be in (1) the internal 
representation of chromosomes operated upon and (2) the 
types of internal operations used accordingly. Fig. 24 shows 
an example of several important GA operations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
 
 

Fig. 23. A canonical flow graph for evolutionary methods. 

3. GENETIC–BASED SETTINGS FOR THE 
BUCK–BASED FUZZY CONTROL 

 
Basic Simulink and MATLAB setups, and the GA-based 

settings of the fuzzy controller, that will be used in Section 4 
to obtain the fuzzy-PID control results, are presented in this 
section. 

 
3.1. Simulink and MATLAB Setups 

Within MATLAB, solvers are divided into two main types 
of (a) fixed-step solvers and (b) variable-step solvers. Both 
types of solvers compute the next simulation time as the sum 
of the current simulation time and a quantity known as the step 
size. With a fixed-step solver, the step size remains constant 
throughout the simulation. On the contrast, with a variable-
step solver, the step size can vary from step to step, depending 
on the model's dynamics. In particular, a variable-step solver 
reduces the step size when the model's states are changing 
rapidly in order to maintain accuracy and increases the step 
size when the system's states are changing slowly in order to 
avoid taking unnecessary steps.  

Control type within the Simulink solver configuration 
allows selecting either of these two types of solvers. Fixed-
step solvers have lower chances of missing an event in the 
model as compared to a variable-step solver that may cause 
the simulation to miss error conditions that can occur on a 
real-time computer system. Thus, for this work, fixed-step 
solvers are used for a step size of 0.001s to ensure capturing 
all of the dynamics occurring in the Buck system. If the step 
size is chosen less than this value, it will be highly time 
consuming for the GA code to run as the model will take large 
amount of time to run. Other step-size values such as 0.01s 
were tested but the model results were not as accurate as that 
of 0.001s.  

Other configurations for the MATLAB solvers are (a) 
continuous time and (b) discrete time, where continuous time 
solvers can handle both of the discrete and continuous blocks 
which is the case for the analyzed system.  

Therefore, we have chosen the continuous solvers. Within 
the prospect of continuous systems, we can use (a) implicit 
solvers or (b) explicit solvers by using implicit or explicit 
functions. The implicit solvers are more time consuming than 
explicit solvers, and thus explicit solvers were used with the 
Runge-Kutta (RK4) model because of the optimization part. 

  
3.2. Genetic–Based Settings for the Centers of Fuzzy 
Membership Functions 

In this case, the centers within Fig. 25 for the inputs and 
outputs can be set by the GA algorithm and not the gains {ke, 
kde, Alpha, Beta}. The Simulink is then executed with the 
generated fuzzy logic variable. The sum-of-square error (SSE) 
is calculated as the fitness value.  

 Evaluate 
 Fitness 

 Select 
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   Randomly 
   Vary  
   Individuals 

 Initialize  
 Population 
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Fig. 24. An illustrative example of important GA operations. 
 
 
 
 

 
 

Fig. 25. The GA settings for the centers of the inputs and outputs within the Buck system. 
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Fig. 26. The utilized Simulink block diagram for the GA-based settings of the fuzzy variables within the Buck system. 

 
 
The GA, which was explained earlier, then regenerates a 

new population using the selection, crossover and mutation 
genetic operators. However, this can lead to lengthy GA runs 
and thus the convergence time for the GA could be very high. 
Therefore, this setup was not used in this research.  

 
3.3. Fuzzy-PID Case: Genetic–Based Settings for the Fuzzy 
Variables 

Alternative to the method shown in sub-section 3.2, Fig. 26 
shows the Simulink block diagram that is used in this work for 
the GA settings of the fuzzy-PID variables, where GA changes 
the chromosomes for the settings of the fuzzy variables (cf. 
Fig. 28). The fuzzy-PID method shown in Fig. 26 is a standard 
commonly used PID control form which is utilized in several 
other applications [15, 24, 44]. 

 
4. GENETIC–BASED SETTINGS FOR THE 

FUZZY VARIABLES OF THE BUCK 
CONVERTER 

 
The simulation results for the GA settings of the fuzzy 

variables for both of the input–to–output and control–to–
output Buck transfer functions are presented in this section. 

 
4.1. Genetic–Based Settings for the Fuzzy Variables for the 
Input-to-Output Buck Transfer Function 

The error is calculated, in Fig. 26, first using the summing 
function as the difference between the input and the output. 
Followed to that, the proportional part and the derivative part 
are calculated and multiplied by the counterpart gain {ke, kde}.  

 

 
Fig. 27. Fuzzy sets for the error, derivative and the output. 
 
 
 

 
 

 
 

Fig. 28.  Block diagram that presents the utilized interaction 
between the GA-based settings and fuzzy-PID controller. 
 
    After that, this is used as an input to a multiplexer, and then 
these two inputs (i.e., proportional and derivative) are used as 
an input to the fuzzy logic part. These are then fuzzified using 
the fuzzy sets and membership functions shown in Fig. 27.   

Fuzzified variables are then processed using the Mamdani-
type fuzzy system using the rules in Table (1). The centroid 
type defuzzification system is then estimated. The output is 
then multiplied by the corresponding gains {Alpha, Beta} and 
then integration is used. 

As illustrated, Fig. 28 shows the block diagram of the 
interaction between the genetic algorithm part and the fuzzy-
PID controller part that is used in this work, and Fig. 29 
illustrates a sample run for the utilized fuzzy control. The GA 
is based on representing the different parameters {ke, kde, 
Alpha, Beta} as a chromosome. The fuzzy-PID controller runs 
the model with the selected values for these parameters and 
passes the output to an M-file which estimates the sum of the 
square error (SSE). This in turn is treated as the fitness 
function. The GA then performs the genetic operations of 
selection, crossover and mutation on the chromosomes and 
produces a new population which in turn uses the fuzzy-PID 
controller model to estimate the fitness. This cycle continues 
until a suitable minimum value is reached for termination. 
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Fig. 29. A sample run for the used fuzzy control method. 

 
 
 

 Fig. 30 presents the simulation results for the input-to-
output Buck transfer function using the state-space matrices 

{A = 









1/RC  1/C

1/L         0
, B = 








0   

D/L
, C =  1       0 , E =  0 }, 

with noisy inputs for one step function and three square 

wave functions, where the noise in the first square wave is 
0.1:1 of the signal, the noise in the second square wave is 
1:1 of the signal, and the noise in the third square wave is 
10:1 of the signal. 

 
 
 

Table 1. Rules for the utilized Mamdani-type fuzzy system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Engineering Letters, 20:2, EL_20_2_08

(Advance online publication: 26 May 2012)

 
______________________________________________________________________________________ 



 

   

 
 
 
 
 
 

0 5 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

R
es

po
ns

e

0 5 10
-2

0

2

Time

R
es

po
ns

e

0 5 10
-2

0

2

Time

R
es

po
ns

e

0 5 10
-2

0

2

Time

R
es

po
ns

e

0 5 10
-2

0

2

Time

R
es

po
ns

e

0 5 10
-2

0

2

Time

R
es

po
ns

e

0 5 10
-2

0

2

Time

R
es

po
ns

e

      
0 5 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

R
es

po
ns

e

0 5 10
-2

-1

0

1

2

Time

R
es

po
ns

e

0 5 10
-2

-1

0

1

2

Time

R
es

po
ns

e

0 5 10
-2

-1

0

1

2

Time

R
es

po
ns

e

0 5 10
-2

-1

0

1

2

Time

R
es

po
ns

e

0 5 10
-2

-1

0

1

2

Time

R
es

po
ns

e

0 5 10
-2

-1

0

1

2

Time

R
es

po
ns

e

 
 
                    (I)                          (II)                     (III)                                    (I)                         (II)                     (III) 
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                       (I)                     (II)                      (III)                                    (I)                            (II)                      (III) 
 

                                                     (c)                                                                                                (d) 
 

Fig. 30. Simulation results for the Buck input-to-output: (a) using system values {D = 0.4, R = 18.6 , L = 5.8 H, C = 0.55 
mF}, (b) using system values {D = 0.4, R = 18.6 , L = 580 mH, C = 55 µF}, (c) using system values {D = 0.4, R = 18.6 ,  
L = 30 mH, C = 55 µF}, and (d) using system values {D = 0.4, R = 18.6 , L = 58 mH, C = 55 µF}. 
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To ensure that the system is tested well, different type of 

inputs were used including (a) step input in Figs. 30(I), (b) 0.2 
Hz pulse input with noise levels {0.1:1, 1:1, 10:1} in Figs. 
30(II), and (c) 0.4 Hz pulse input with noise levels {0.1:1, 1:1, 
10:1} in Figs. 30(III). The different noise levels are used to 
test the ability of this system to reject the existing noise.  

Fig. 30 shows that the system has good robustness against 
noise and possesses good accuracy for the steady-state 
reponse. However, the settling time is somewhat high, where 
these values are obtained as a result of the optimization 
process and shows the best obtained performace that the 
system can perform under the aforementioned condititions. 

The system shows a low steady-state error, but 
comparatively bad noise rejection especially for high noise 
level of 10:1 when compared to the signal. The system gets 
worse for higher frequency values as the final steady-state 
value might not be reached for the used step time. 

 
4.2. Genetic–Based Settings for the Fuzzy Variables for the 
Control-to-Output Buck Transfer Function 

The Buck dynamic system is then tested for the important 
control-to-output transfer function as shown in Fig. 31, where 
Fig. 31 presents the simulation results for the control-to-output 
Buck transfer function using the state space matrices                      

{A = 










1/RC  1/C

1/L         0
, B = 









0 

Vg , C =  1       0 , E =  0 }. The 

Buck system is simulated for different types of inputs 
including (a) step input in Figs. 31(I), (b) 0.2 Hz  pulse input 
with noise levels {0.1:1, 1:1, 10:1} in Figs. 31(II), and (c) 0.4 
Hz pulse input with noise levels {0.1:1, 1:1, 10:1} in Figs. 
31(III). The different noise levels are used to test the ability of 
this system to reject the corresponding noise.  

The results in Fig. 31 show an acceptable Buck 
performance in terms of the steady-state value. Fig. 31 also 
shows a rapid response, but this system has the drawback of 
slight overshoots for small periods of time, especially at the 
beginning rising edges of the step and square wave signals, 
where these small overshoots can be ignored as they have 
usually a comparatively negligible effect on the overall 
performance of the Buck dynamic system.  

The results in Fig. 31 show an acceptable steady-state Buck 
performance despite small overshoots that have usually a 
comparatively negligible effect on the overall performance.  

 

5. CONCLUSIONS AND FUTURE WORK 
 

Further testing and verification for the implementation of a 
previously introduced new hierarchical intelligent regulation 
upon the electronic Buck power converter, using a newly 
developed small-signal model of the pulse width modulation 
switching, is introduced in this article. The hierarchical 
intelligent control uses the GA-based settings of the fuzzy-PID 
controller to counteract the existence and effect of high-
amplitude noise. The additional experimental simulation 
results show that the presented control method, which is 
utilized using the new PWM small-signal model, succeeds in 

minimizing the effect of noise even when noise is of several 
levels higher than the Buck-generated output signal. 

The investigation of the application of the presented 
intelligent control method upon other important DC-to-DC 
power-electronic converters, e.g., Boost, Buck-Boost and C’uk 
converters, will be conducted in future work. 
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                                                         (c)                                                                                                      (d)         
 
             

Fig. 31. Simulation results for the Buck control-to-output: (a) using system values {Vg = 15 V, C = 1 mF, R = 1 k, L = 5.8 H}, 
(b) using system values {Vg = 20 V, C = 2 mF, R = 3 k, L = 11 H}, (c) using system values {Vg = 15 V, C = 2 mF, R = 1.5 k, 
L = 5 H}, and (d) using system values {Vg = 20 V, C = 2 mF, R = 1.5 k, L = 7 H}. 
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